Graphs

Chapter 22 of Cormen’s book

Giulia Bernardini
giulia.bernardini@units. it

Algorithmic Design and Algorithms for Scientific
Computing
a.y. 2023/2024

mailto:giulia.bernardini@units.it

BFS: Pseudocode

BFS(G,s) - G is represented by the adjacency lists Adj[-] of its vertices

for each u € V\{s} |
u.color<—white; Initialisation
u.distance<—oo;

S.color<—gray,

s-distance <0; Visit of the source

Q<&

enqueue(Q,s);

while Q # &
u<dequeue(Q);

for each v € Adj[u]

if v.color = white

Visit of the other vertices
v.color<—gray;

v.distance<u.distance + 1;
enqueue(Q V);
u.color<black;

BFS: Complexity

BFS(G,s) - G is represented by the adjacency lists Adj[-] of its vertices
for each u € V\{s} |
u.color<—white; Initialisation: O(|V|)
u.distance < oo;
s.color<gray;

s.distance<0;
Visit of the source: O(1)

Q<O
enqueue(Q,s); 1
while Q # & T Visit of the other vertices:
each iteration of the for loop
u«dequeue(Q);

enqueues v € Adj[u] only if

for each v € Adjlu] it is white, and it

" if v.color = white immediately turns its color
v.color<gray; O(Adj[ul)) lto gray => each vertex is
O(1) , , . inserted in Q at most once.
v.distance «u.distance + 1; Cost of the while loop:
enqueue(Qv);

u.color<black;) 1 (2, | aalu]) E)

uevV

Breadth-First Search

The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet;

Breadth-First Search

The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours;

Breadth-First Search

The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours;

Breadth-First Search

The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

Breadth-First Search

The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

Breadth-First Search

The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

Breadth-First Search

The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

Breadth-First Search

The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

Breadth-First Search

The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

Breadth-First Search

The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

Breadth-First Search

The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

@I Not reachable from s

BFS: Properties

Lemma 1. The time complexity of BFS is O(|V|+|E|) (linear in the
size of the adjacency-list representation of G)

Lemma 2. Let Q=|v1,...,vn] be the queue at any iteration of BFS.
Then vi.distance<vi.i.distance and vn.distance<vi.distance+1,
for all i=1,...,n-1

Lemma 2 tells us that, at any iteration, if the head node of Q is
at distance d from s, Q only contains nodes at distance d or
d+1 from s; possible nodes at distance d+2 will be only
enqueued after all nodes at distance d have been dequeued.

Lemma 3. Let d(v,s) be the distance between v and s, for any
v € V. Then:

() v.distance # oo <= v isreachable from s

(i) if v.distance # co — v.distance = d(v,s)

DFS: Pseudocode

DFS(G) - G is represented by the adjacency lists Adj[-] of its vertices

foreachu &V
u.color<—white;
t<0;

foreachu &V
if u.color = white
DFS_visit(G,u)

DFS_visit(G,u)
t—t+17;
u.d<t;
u.color<—gray;

for each v € Adj[u]
if v.color = white
DFS_visit(G,v);
u.color<black;
t—t+1;
u.f<t;

Initialisation

Start the search from
a new source

Visit the graph recursively

DFS: Complexity

DFS(G) - G is represented by the adjacency lists Adj[-] of its vertices

foreachu &V
u.color<—white;
t<0;

foreachu &V
if u.color = white
DFS_visit(G,u)

DFS_visit(G,u)
t—t+17;
u.d<t;
u.color<gray,

for each v € Adj[u]
if v.color = white
DFS_visit(G,v);
u.color<black;
t—t+1;
u.f<t;

Initialisation: O(|V|)

Start the search from
a new source: this only
happens when a vertex

- is white = O(|V|) calls

Visit the graph recursively:
this procedure is only called
on white vertices, which
are immediately painted gray

— O<Z | Adj[u] |)=O(|EI)

uevV

Depth-First Search

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

Depth-First Search

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=1

O

Depth-First Search

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=2

O

Depth-First Search

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=3

O

Depth-First Search

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=4

O

Depth-First Search %ﬁi
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

Back edge: links a node with one of its ancestors in the DF forest t=5

O

Depth-First Search %ﬁi
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=6

O

Depth-First Search

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=7

O

Depth-First Search

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=8

O

Depth-First Search

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=9

O

Depth-First Search %ﬁi
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=10

O

Depth-First Search %ﬁi
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=11

Depth-First Search %ﬁi
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=12

Depth-First Search

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=13

Depth-First Search

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=14

Depth-First Search

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=15

Depth-First Search

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=16

Depth-First Search

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=17

Depth-First Search

Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: records
when v becomes gray, v.f records when it becomes black.

t=18

Depth-First Search

DFS produces a depth-first (DF) forest (a different tree for each
source). Even for the same sources, this forest is not unique: it

depends from the order in which the edges outgoing from each
node are traversed. All the results are essentially equivalent.

The red edges are tree edges; the light blue edges are back
edges, linking a node with one of its ancestors in the DF forest.

You can verify yourself that the result below is another possible
outcome of DFS with the same two sources.

An application: Topological Sort

An edge (u,v) indicates that item u must be worn before item v.

An application: Topological Sort

11/16 - 9/10 W\, 17/18

TopologicalSort(G)
DFS(G);
VI[1,...,|V|] « V sorted w.r.t finishing time
TopOrder<—empty_stack;
fori=1...|V|
TopOrder.push(V[i]);
return TopOrder;

An edge (u,v) indicates that item u must be worn before item v.

L\ S — "—*’ = ‘_’G 4—*'“'
6/7 2/5 3/4

17/18 11/16 12/15 13/14 9/10 1/8

An application: Topological Sort

1/10 - 1112 W\, 13/14

TopologicalSort(G)
DFS(G);
VI[1,...,|V|] « V sorted w.r.t finishing time
TopOrder<—empty_stack;
fori=1...|V|
TopOrder.push(V[i]);
return TopOrder;

An edge (u,v) indicates that item u must be worn before item v.

M) = —-=-% 2

15/18 16/17 13/14 11/12 1/10 4/9 5/8 6/7 2/3

Exercises

EX (Cormen 17.1-1): If the set of stack operations included a
MULTIPUSH operation, which pushes k items onto the stack,
would the O(1) bound on the amortized cost of stack operations

continue to hold?

Exercises

EX1: Given a connected, undirected graph, design an algorithm
that assigns one of two colors (say blue or green) to each vertex in
such a way that no edge links two vertices of the same color; or
return FAIL if no such coloring is possible.

Exercises

EX2: Give an O(|V|)-time algorithm that determines whether or not
a given undirected graph contains a cycle. (Hint: Think of the
maximum number of edges that an acyclic undirected graph may
have; use DFS and terminate it early when appropriate).

