
Exact Pattern Matching on
Strings

Chapter 32 of Cormen’s book, excluding 32.2 and 32.3

Giulia Bernardini

giulia.bernardini@units.it

Algorithmic Design, Algorithmic Data Mining, Advanced
Algorithms for Scientific Computing

a.y. 2023/2024

mailto:giulia.bernardini@units.it

Pattern Occurrences
Consider two strings, T[1..n] of length n and P[1..m] of length m n,
both over the finite alphabet Σ.

P occurs with shift s (equivalently, occurs at position s+1) in T if
0 s n-m and T[s+1..s+m]=P[1..m].

If P occurs with shift s in T, then we call s a valid shift; otherwise,
we call s an invalid shift.

We call text the longer string T; pattern the shorter string P

≤

≤ ≤

T

P

The string-matching problem
Input: a text T of length n and a pattern P of length m n

Output: all the occurrences of P in T

≤

The string-matching problem
Input: a text T of length n and a pattern P of length m n

Output: all the occurrences (or valid shifts) of P in T

OUTPUT: shift 2 (or position 3)

≤

The string-matching problem
The naive solution (compare the letters of P starting from each
possible position in T) requires O(nm) time.

NAIVE_STRING_MATCHING(T,P)

sol emptylist;

for s=0 to |T|-|P|

i 1;

while i |P| and T[s+i]=P[i]

i i+1;

if i>|P|

sol.append(s);

return sol;

←

←
≤

←
O(|T|)O(|P|)

COMPUTE_PREFIX(P)

1. π[1..|P|] emptyarray;

2. π[1] 0;

3. k 0;

4. for q=2 to |P|

5. while k>0 and P[k+1] P[q]

6. k π[k];

7. if P[k+1]=P[q]

8. k k+1;

9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

KMP: Preprocessing the pattern

COMPUTE_PREFIX(P)

1. π[1..|P|] emptyarray;

2. π[1] 0;

3. k 0;

4. for q=2 to |P|

5. while k>0 and P[k+1] P[q]

6. k π[k];

7. if P[k+1]=P[q]

8. k k+1;

9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

• increase of k is at most |P|-1

• k is always decreased in the

while loop

• k is never negative

The total decrease in k from
the while loop is bounded
from above by the total
increase in k over all
iterations of the for loop,
which is |P|-1.

The running time of
COMPUTE_PREFIX(P) is
thus (|P|).
Θ

KMP: Preprocessing the pattern

Preprocessing the pattern
Lemma 1. For q =1,2,…,|P|, if π[q]>0, then π[q]-1 π*[q-1]

Let Eq-1 = {k ∈ π*[q-1] : P[k+1]=P[q]} : these are all k<q-1 s.t. Pk is
equal to a suffix of Pq-1 and Pk+1 is equal to a suffix of Pq. It holds
the following corollary of Lemma 1.

 0 if Eq-1

π[q] =

 1+max{k∈Eq-1} otherwise

∈

= ∅

Preprocessing the pattern
COMPUTE_PREFIX(P)

1. π[1..|P|] emptyarray;

2. π[1] 0;

3. k 0;

4. for q=2 to |P|

5. while k>0 and P[k+1] P[q]

6. k π[k];

7. if P[k+1]=P[q]

8. k k+1;

9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

At the start of each iteration
of the for loop we have
k=π[q-1] (by initialisation and
line 9). Lines 5-8 adjust k so
that it becomes the correct
value of π[q].

The while loop of lines 5–6
searches through all values
k ∈ π*[q-1] until it finds a
value of k for which
P[k+1]=P[q].

At that point, k is the largest
value in the set Eq-1, so that
we can set π[q] to k+1.

Preprocessing the pattern
COMPUTE_PREFIX(P)

1. π[1..|P|] emptyarray;

2. π[1] 0;

3. k 0;

4. for q=2 to |P|

5. while k>0 and P[k+1] P[q]

6. k π[k];

7. if P[k+1]=P[q]

8. k k+1;

9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

If the while loop cannot find
a k ∈ π*[q-1] such that
P[k+1]=P[q], then k equals 0
at the end of the loop.

If P[1]=P[q], then we should
set both k and π[q] to 1;
otherwise we should leave k
alone and set π[q] to 0.

Lines 7–9 set k and π[q]
correctly in either case.

The Knuth-Morris-Pratt algorithm
The time complexity of KMP is (|P|+|T|). The analysis of the
algorithm is entirely analogous to the one of COMPUTE_PREFIX.

KMP(T,P)

1. π COMPUTE_PREFIX(P);

2. q 0; //q stores the number of matched chars of P

3. sol emptylist;

4. for i = 1,…,|T|

 5. while q>0 and P[q+1] T[i]

6. q π[q]; //next character does not match

7. if P[q+1]=T[i]

8. q q+1; //next character matches

9. if q=|P|

10. sol.append(i-|P|)

11. q π[q]; //look for the next match

Θ

←
←

←

≠
←

←

←

