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Pattern Occurrences
Consider two strings, T[1..n] of length n and P[1..m] of length m n, 
both over the finite alphabet Σ.

P occurs with shift s (equivalently, occurs at position s+1) in T if           
0  s  n-m and T[s+1..s+m]=P[1..m].

If P occurs with shift s in T, then we call s a valid shift; otherwise, 
we call s an invalid shift. 


We call text the longer string T; pattern the shorter string P
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The string-matching problem
Input: a text T of length n and a pattern P of length m n

Output: all the occurrences of P in T
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The string-matching problem
Input: a text T of length n and a pattern P of length m n

Output: all the occurrences (or valid shifts) of P in T


OUTPUT: shift 2 (or position 3)
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The string-matching problem
The naive solution (compare the letters of P starting from each 
possible position in T) requires O(nm) time.


NAIVE_STRING_MATCHING(T,P)

sol emptylist;

for s=0 to |T|-|P|


i 1;

while i |P| and T[s+i]=P[i]


i i+1;

if i>|P|


sol.append(s);

return sol;

←

←
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O(|T|)O(|P|)



COMPUTE_PREFIX(P)        

1. π[1..|P|] emptyarray;

2. π[1] 0; 

3. k 0;

4. for q=2 to |P|


5. while k>0 and P[k+1] P[q]

6. k π[k];


7. if P[k+1]=P[q]

8. k k+1;


9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

KMP: Preprocessing the pattern



COMPUTE_PREFIX(P)        

1. π[1..|P|] emptyarray;

2. π[1] 0; 

3. k 0;

4. for q=2 to |P|


5. while k>0 and P[k+1] P[q]

6. k π[k];


7. if P[k+1]=P[q]

8. k k+1;


9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

• increase of k is at most |P|-1

• k is always decreased in the 

while loop

• k is never negative


The total decrease in k from 
the while loop is bounded 
from above by the total 
increase in k over all 
iterations of the for loop, 
which is |P|-1. 


The running time of 
COMPUTE_PREFIX(P) is 
thus (|P|).
Θ

KMP: Preprocessing the pattern



Preprocessing the pattern
Lemma 1. For q =1,2,…,|P|, if π[q]>0, then π[q]-1  π*[q-1]


Let Eq-1 = {k ∈ π*[q-1] : P[k+1]=P[q]} : these are all k<q-1 s.t. Pk is 
equal to a suffix of Pq-1 and Pk+1 is equal to a suffix of Pq. It holds 
the following corollary of Lemma 1.


  0    if Eq-1 

π[q] =


  1+max{k∈Eq-1}    otherwise


∈

= ∅



Preprocessing the pattern
COMPUTE_PREFIX(P)        


1. π[1..|P|] emptyarray;

2. π[1] 0; 

3. k 0;

4. for q=2 to |P|


5. while k>0 and P[k+1] P[q]

6. k π[k];


7. if P[k+1]=P[q]

8. k k+1;


9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

At the start of each iteration 
of the for loop we have 
k=π[q-1] (by initialisation and 
line 9). Lines 5-8 adjust k so 
that it becomes the correct 
value of π[q].


The while loop of lines 5–6 
searches through all values  
k ∈ π*[q-1] until it finds a 
value of k for which 
P[k+1]=P[q].


At that point, k is the largest 
value in the set Eq-1, so that 
we can set π[q] to k+1.



Preprocessing the pattern
COMPUTE_PREFIX(P)        


1. π[1..|P|] emptyarray;

2. π[1] 0; 

3. k 0;

4. for q=2 to |P|


5. while k>0 and P[k+1] P[q]

6. k π[k];


7. if P[k+1]=P[q]

8. k k+1;


9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

If the while loop cannot find 
a k ∈ π*[q-1] such that 
P[k+1]=P[q], then k equals 0 
at the end of the loop. 


If P[1]=P[q], then we should 
set both k and π[q] to 1; 
otherwise we should leave k 
alone and set π[q] to 0. 


Lines 7–9 set k and π[q] 
correctly in either case. 




The Knuth-Morris-Pratt algorithm
The time complexity of KMP is (|P|+|T|). The analysis of the 
algorithm is entirely analogous to the one of COMPUTE_PREFIX.

KMP(T,P)


1. π COMPUTE_PREFIX(P);

2. q 0;                  //q stores the number of matched chars of P

3. sol emptylist;

4. for i = 1,…,|T| 


 5. while q>0 and P[q+1] T[i]

6. q π[q];                          //next character does not match


7. if P[q+1]=T[i]

8. q q+1;                          //next character matches


9. if q=|P|

10. sol.append(i-|P|)

11. q π[q];                           //look for the next match

Θ
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