

Esercitazione Gurobi: Ottimizzazione del funzionamento di un sistema trigenerativo

Prof. Rodolfo Taccani

Dr. Pivetta Davide

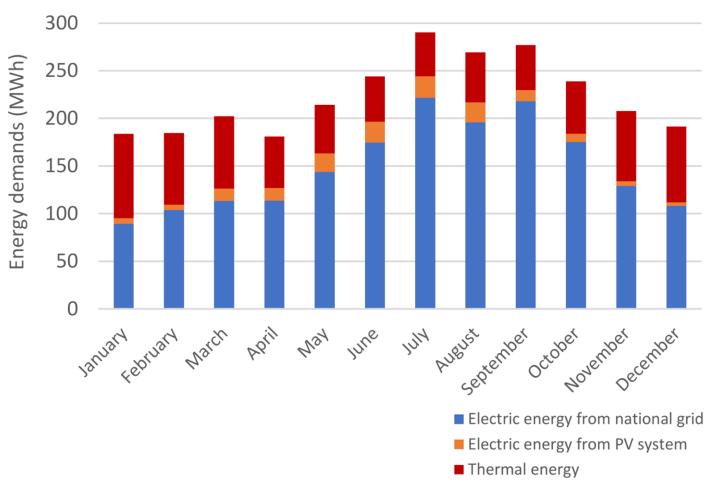
AA 2023 - 2024

Analisi energetica di una cantina di vino

Obiettivi:

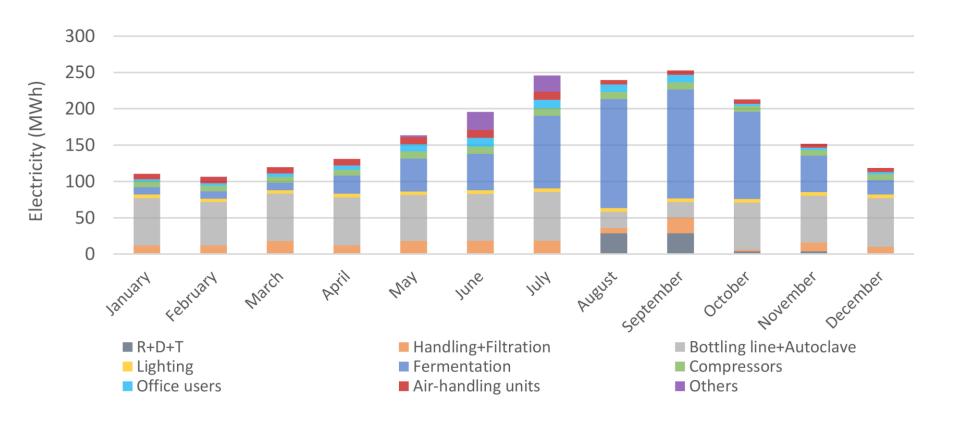
- Analizzare le richieste di energia della cantina
- Individuare le unità di conversione e stoccaggio di energia esistenti
- Proposta di altre configurazioni del sistema energetico
- Ottimizzazione del funzionamento delle configurazioni proposte

Borgo Molino Vigne&Vini - http://www.borgomolino.it/

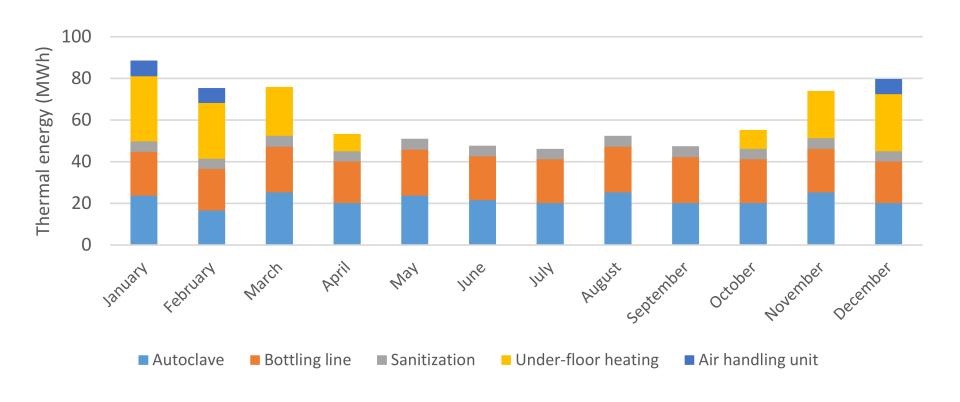


Roncadelle (TV)

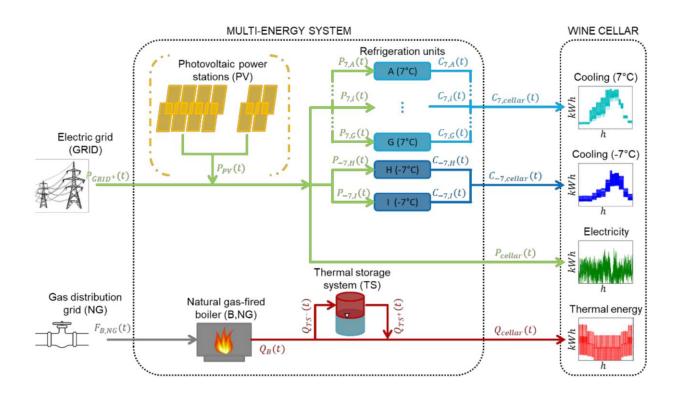
Richiesta energetica complessiva



Pivetta et al., Choice of the Optimal Design and Operation of Multi-Energy Conversion Systems in a Prosecco Wine Cellar. Energies 2020


Richiesta di energia elettrica

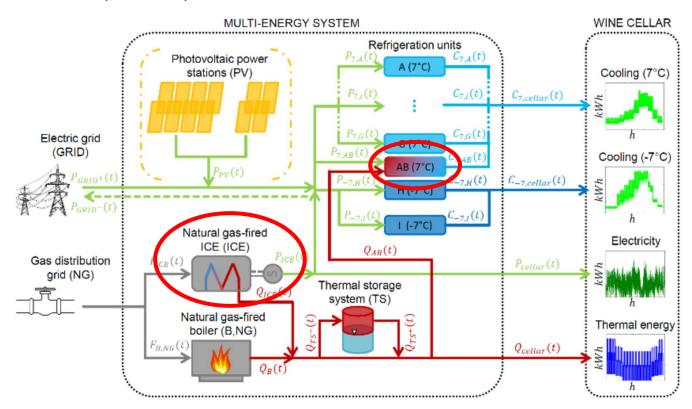
Richiesta di energia termica



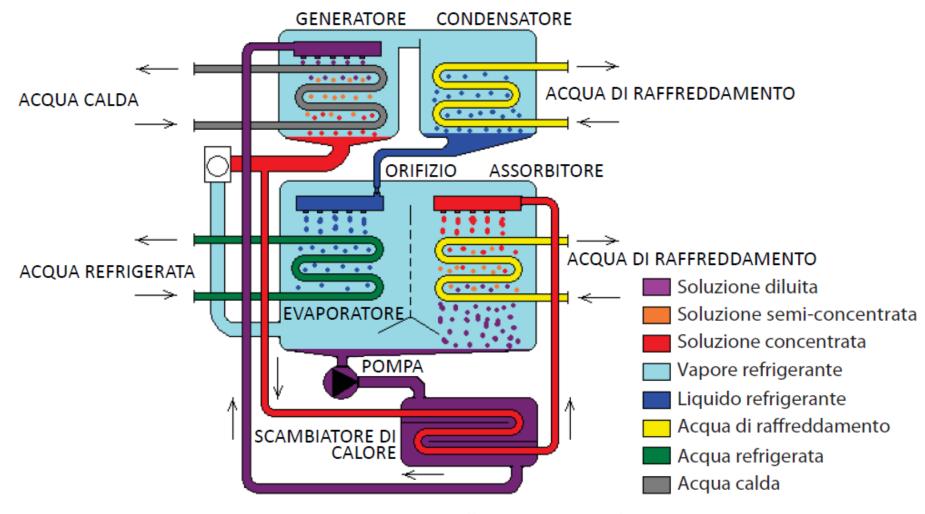
Configurazione sistema energetico attuale

Macchine per la conversione di energia esistenti:

- Caldaia alimentata a gas naturale (275 kW)
- Frigoriferi a compressione (COP≈3)
- Impianto fotovoltaico (150 kW_P)

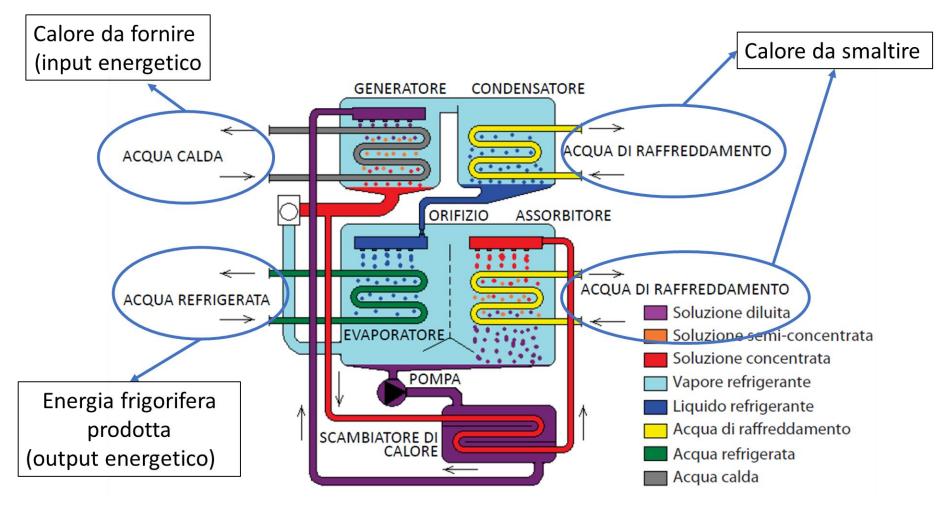


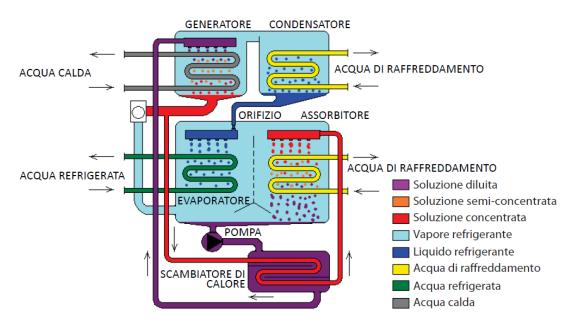
Configurazione alternativa al sistema energetico esistente



Nuove macchine da installare:

- Motore a combustione interna cogenerativo alimentato a gas naturale (200 kW)
- Assorbitore (176 kW)




Assorbitori Maya–Yazaki – https://maya-airconditioning.com/

Assorbitori Maya-Yazaki - https://maya-airconditioning.com/

Assorbitori Maya-Yazaki - https://maya-airconditioning.com/

NOTE:

- ASSORBIMENTO: si utilizzano due fluidi, uno dei quali evapora per produrre energia frigorifera, l'altro è usato come assorbitore; ad esempio, acqua (refrigerante) e bromuro di litio (assorbente), o acqua (assorbente) e ammoniaca (refrigerante).
- Come per i normali frigoriferi, si possono operare due o tre livelli di pressione, in modo da aumentare l'efficienza del processo.
- Coefficient Of Performance (COP) = $\frac{E_{OUTPUT}}{E_{INPUT}} = \frac{E_{FRIG}}{E_{TERM} + E_{ELETT}} \simeq 0.7$

Problema di ottimizzazione MILP (Mixed-Integer Linear Programming)

Trovare $x^*(t)$, β^* , δ^* che massimizzano/minimizzano:

$$Z = f(x^*(t), \beta^*, \delta^*) \tag{1}$$

s.v.
$$g(x^*(t), \beta^*, \delta^*) = 0$$
 (2)

$$h(x^*(t), \beta^*, \delta^*) \le 0 \tag{3}$$

Dove:

 $x^*(t)$ Valore ottimo variabile continua;

 β^* , δ^* Valore ottimo variabile intera o binaria;

Z Funzione obiettivo;

 $g(x^*(t), \beta^*, \delta^*)$ Vincolo di uguaglianza;

 $h(x^*(t), \beta^*, \delta^*)$ Vincolo di disuguaglianza.

Vincoli: $g(x^*(t), \beta^*, \delta^*)$ e $h(x^*(t), \beta^*, \delta^*)$

Unità di conversione di energia

$$\varphi_{in}(t) = K1_i * \varphi_{out}(t) + K2_i * \delta_i(t)$$

$$\varphi_{out}(t) \le K3_i * \varphi_{out,max} * \delta_i(t)$$

$$\varphi_{out}(t) \ge K4_i * \varphi_{out.min} * \delta_i(t)$$

Unità di accumulo di energia

$$V_{TS}(t) = V_{TS}(t-1) + \left(\frac{1}{\rho_{TS} * c_{p,TS} * (\theta_{TS,hot} - \theta_{TS,cold})}\right) * \left(\eta_{H} * F_{TS}(t) - \frac{1}{\eta_{H}} * QH_{TS}(t)\right) * dt$$

$$0.1 * V_{TS,max} \le V_{TS}(t) \le 0.9 * V_{TS,max}$$

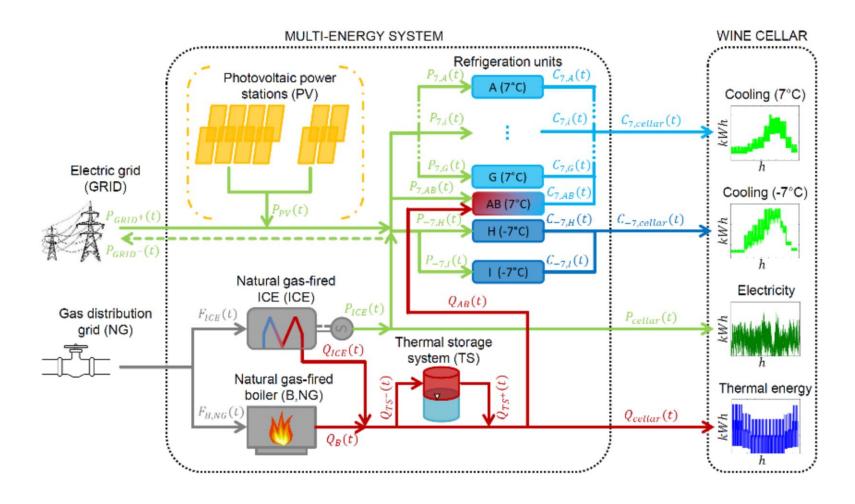
ICE cogenerativo

$$F_{ICE}(t) = K1_{ICE} * P_{ICE}(t) + K2_{ICE} * \delta_{ICE}(t)$$

$$QH_{ICE}(t) \le K3_{ICE} * P_{ICE}(t) + K4_{ICE} * \delta_{ICE}(t)$$

$$P_{ICE,min} * \delta_{ICE}(t) \le P_{ICE}(t) \le P_{ICE,max} * \delta_{ICE}(t)$$

Gruppo frigo ad assorbimento


$$QH_{AB}(t) = K1_{AB} * Q7_{AB}(t) + K2_{AB} * \delta_{AB}(t)$$

$$P_{AB}(t) = K3_{AB} * Q7_{AB}(t) + K4_{AB} * \delta_{AB}(t)$$

$$Q7_{AB,min} * \delta_{AB}(t) \le Q7_{AB}(t) \le Q7_{AB,max} * \delta_{AB}(t)$$

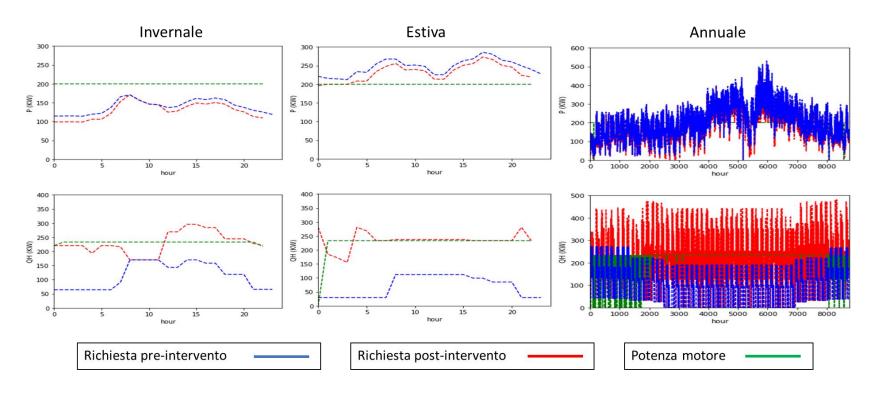
Modello del sistema energetico cantina

Funzioni obiettivo: $Z = f(x^*(t), \delta^*)$

Minimization of cost

$$\sum F_{GN}\left(t\right)*c_{GN}+\sum P_{GR_{pos}}\left(t\right)*c_{GR_{pos}}-\sum P_{GR_{neg}}\left(t\right)*c_{GR_{neg}}+\sum F_{ICE}\left(t\right)*c_{ICE}$$

Minimization of primary energy consumption


$$\left(\sum F_{GN}(t) + F_{ICE}(t)\right) * e_{GN_t} + \left(\sum P_{GR_{pos}}(t) - \sum P_{GR_{neg}}(t)\right) * e_{GR_t}$$

Minimization of primary energy consumption from fossil fuels

$$\left(\sum F_{GN}(t) + F_{ICE}(t)\right) * e_{GN} + \left(\sum P_{GR_{pos}}(t) - \sum P_{GR_{neg}}(t)\right) * e_{GR}$$

Minimizzazione dei costi d'esercizio

Minimizzazione costo

	Costo operativo (€/anno)	Costi di manutenzione (€/anno)	Costo totale (€/anno)	Risparmio ottenuto (€/anno)	Payback time (anni)	VAN* a 25 anni (€)
1. Rete + Caldaia Gas	288.509	0	288.509	0	/	/
2. Motore	160.360	35.000	195.360	93.149	3,8	962.832
3. Motore + Assorb.	142.046	45.000	187.046	101.463	4,4	980.009

^{*}t.a.=5%

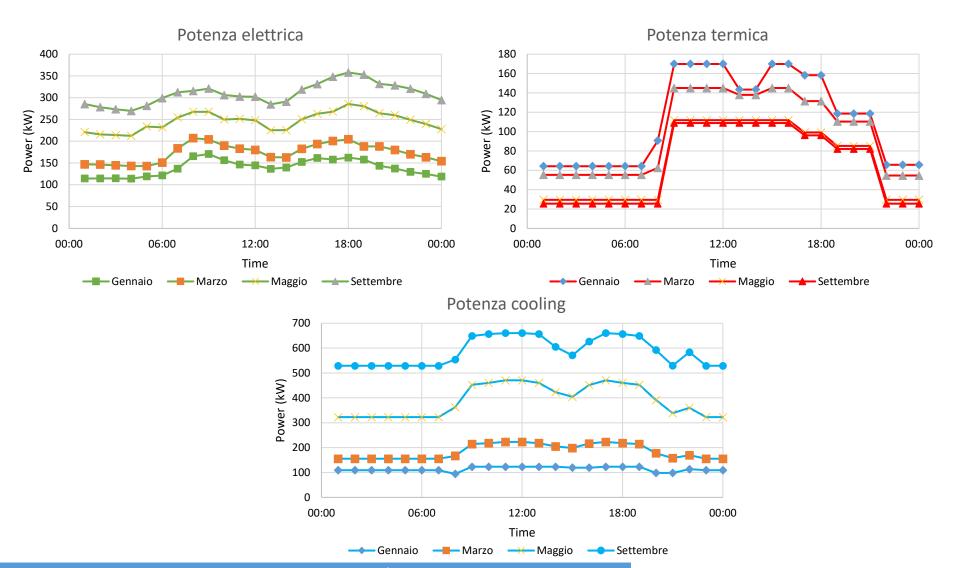
Minimizzazione energia primaria

	Energia primaria consumata (MWh)	Energia primaria risparmiata (MWh)
1. Rete + Caldaia Gas	5201	/
2. Motore	4466	735
3. Motore + Assorb.	4284	917

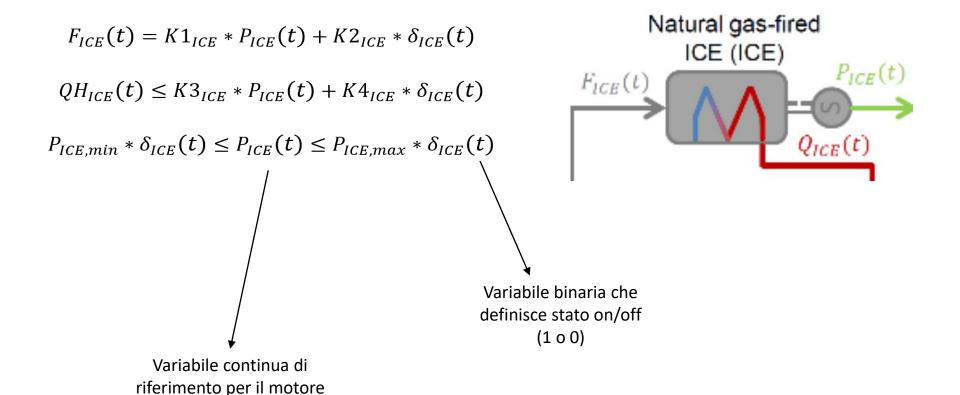
Minimizzazione energia primaria da fonte fossile

	En. Prim. consumata da fonte fossile (MWh)	En. Prim. risparmiata da fonte fossile (MWh)
1. Rete + Caldaia Gas	4361	/
2. Motore	3935	426
3. Motore + Assorb.	3935	426

ESERCITAZIONE

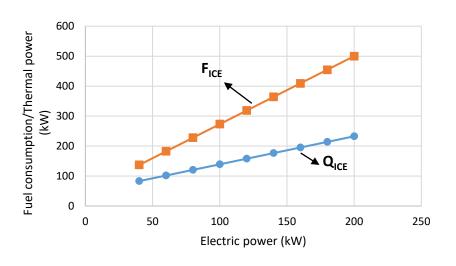


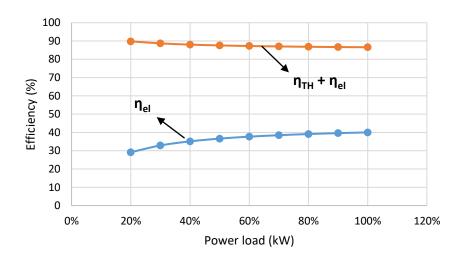
Domanda di energia



Potenza elettrica, termica e cooling definita per 4 giornate caratteristiche (dati orari)

Motore a combustione interna cogenerativo

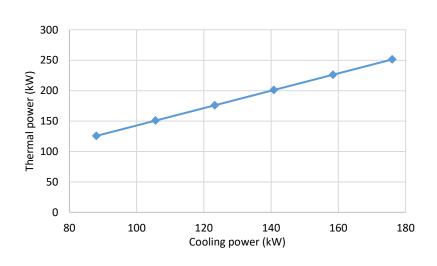


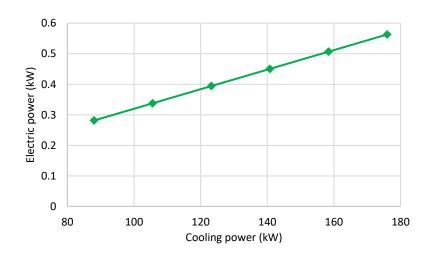

Motore a combustione interna cogenerativo

$$F_{ICE}(t) = K1_{ICE} * P_{ICE}(t) + K2_{ICE} * \delta_{ICE}(t)$$

$$QH_{ICE}(t) \le K3_{ICE} * P_{ICE}(t) + K4_{ICE} * \delta_{ICE}(t)$$

$$P_{ICE,min} * \delta_{ICE}(t) \le P_{ICE}(t) \le P_{ICE,max} * \delta_{ICE}(t)$$

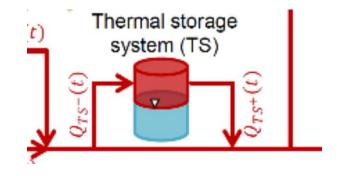




$$QH_{AB}(t) = K1_{AB} * Q7_{AB}(t) + K2_{AB} * \delta_{AB}(t)$$

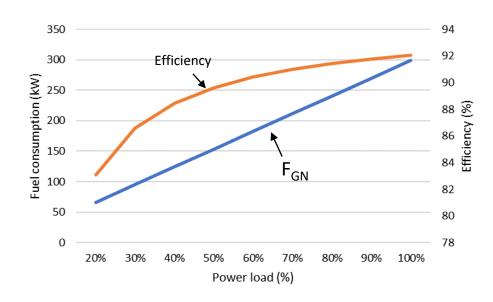
$$P_{AB}(t) = K3_{AB} * Q7_{AB}(t) + K4_{AB} * \delta_{AB}(t)$$

$$Q7_{AB,min} * \delta_{AB}(t) \le Q7_{AB}(t) \le Q7_{AB,max} * \delta_{AB}(t)$$



$$V_{TS}(t) = V_{TS}(t-1) + \left(\frac{1}{\rho_{TS} * c_{p,TS} * (\theta_{TS,hot} - \theta_{TS,cold})}\right) * \left(\eta_{H} * F_{TS}(t) - \frac{1}{\eta_{H}} * QH_{TS}(t)\right) * dt$$

$$0.1 * V_{TS,max} \le V_{TS}(t) \le 0.9 * V_{TS,max}$$


	Value	Unit
$V_{TS_{MAX}}$	10.0	m^3
$ ho_{TS}$	1000	kg/m^3
cp_{TS}	4.186	kJ/kgK
$ heta_{TS_{hot}}$	90	$^{\circ}C$
$ heta_{TS_{hot}}$	50	°C

$$F_{GN}(t) = (k1_{GN} * QH_{GN}(t) + k2_{GN}) * \delta_{GN}(t)$$

$$\delta_{GN}(t) * QH_{GN_{min}} \le QH_{GN}(t) \le QH_{GN_{max}} * \delta_{GN}(t)$$

$$F_{GN}(t) = (k1_{GN} * QH_{GN}(t) + k2_{GN}) * \delta_{GN}(t)$$

$$\delta_{GN}(t) * QH_{GN_{min}} \le QH_{GN}(t) \le QH_{GN_{max}} * \delta_{GN}(t)$$

Gruppi frigoriferi a compressione

$$QC_{x}(t) = COP_{x} * P_{x}(t)$$

Rete elettrica

$$if \ P_{GR_{pos}} > 0 \rightarrow P_{GR_{neg}} = 0$$

$$if \ P_{GR_{neg}} > 0 \rightarrow P_{GR_{pos}} = 0$$

Bilanci di energia

Potenza elettrica

$$P_{GR_{pos}}(t) * \delta_{GR}(t) - P_{GR_{neg}}(t) * (1 - \delta_{GR}(t)) + P_{ICE}(t) * \delta_{ICE}(t) = P_{el}(t) + P_{x}(t) + P_{AB}(t) * \delta_{AB}(t)$$

Potenza termica

$$QH_{ICE}(t) * \delta_{ICE}(t) + Q_{TS}(t) + QH_{GN}(t) * \delta_{GN}(t) = P_{th}(t) + QH_{AB}(t) * \delta_{AB}(t) + F_{TS}(t)$$

Potenza cooling

$$QC_{AB}(t) * \delta_{AB}(t) + QC_{x}(t) = P_{cool}(t)$$

Funzioni obiettivo

Minimizzazione del costo operativo dell'intero impianto

$$\mathsf{Min.} \rightarrow \sum P_{GR_{pos}}(t) * c_{GR_{pos}} - \sum P_{GR_{neg}}(t) * c_{GR_{neg}} + \sum F_{ICE}(t) * c_{ICE} + \sum F_{GN}(t) * c_{GN}$$

Minimizzazione del consumo di energia primaria

$$\mathsf{Min.} \rightarrow \left(\sum P_{GR_{pos}}(t) - \sum P_{GR_{neg}}(t)\right) + e_{P_{GRt}} + \left(\sum F_{ICE}(t) + \sum F_{GN}(t)\right) * e_{GNt}$$

Minimizzazione del consumo di energia primaria da fonte fossile

$$\mathsf{Min.} \rightarrow \left(\sum P_{GR_{pos}}(t) - \sum P_{GR_{neg}}(t)\right) + e_{P_{GRt}} + \left(\sum F_{ICE}(t) + \sum F_{GN}(t)\right) * e_{GNt}$$

Dati problema

	Costo	Prezzo	Energia	Energia
	acquisto	vendita	primaria	primaria
	(€/kWh)	(€/kWh)	totale (-)	da f.f. (-)
Elettricità da rete	0.140	0.075	2.42	1.95

	Costo per	Costo per	Energia	Energia
	ICE	caldaia	primaria	primaria
	(€/kWh)	(€/kWh)	totale (-)	da f.f. (-)
Gas naturale	0.0311	0.0374	1.05	1.05

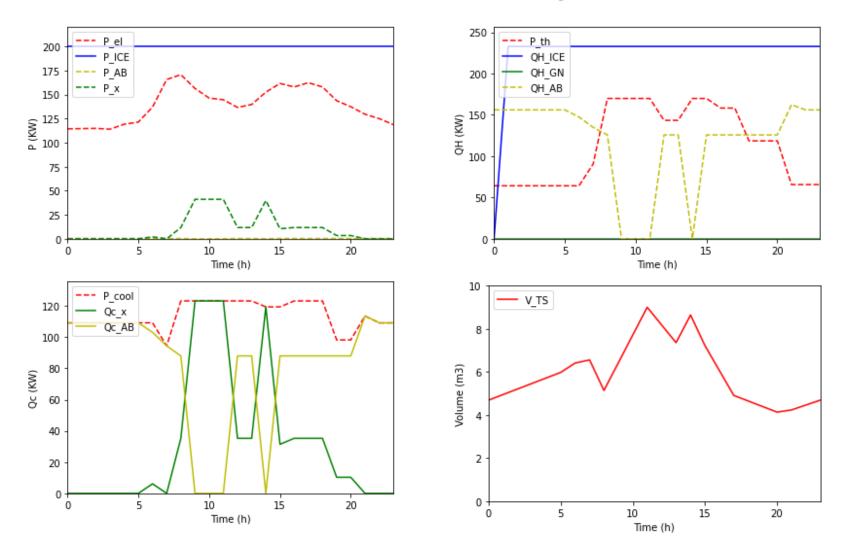
$$PES = (1 - \frac{E_{fuel}}{\frac{E_{el}}{\eta_{el,ref} \times p} + \frac{Q_{rec}}{\eta_{th,ref}}}) \times 100$$

Primary energy saving

Esempio di valori di riferimento		
Rendimento elettrico $\eta_{\text{el,ref}}$	0.525	
Rendimento termico $\eta_{\text{th,ref}}$	0.90	
Efficienza di rete p (es. BT)	0.925	

Es. minimizzazione costo con ICE + AB: caso maggio

Es. minimizzazione costo con ICE + AB: caso maggio


- > Il valore della funzione obiettivo è = 835
- > Costo = 835.02 euro
- > Energia primaria = 20589 kWh
- > Energia primaria da fonte fossile = 19038 kWh
- > Fattore di utilizzo del motore = 100.0 %
- > Fattore di utilizzo del assorbitore = 65.6 %
- > Fattore di utilizzo della caldaia = 0.0 %
- > Efficienza media = 51.91 %
- > Efficienza media caso base = 45.34 %

$$f. u._{i} = \frac{\int_{0}^{24} \varphi_{i}(t)dt}{24 * \varphi_{i,max}} * 100$$

$$\eta = \frac{\int_0^{24} \left(P_{el}(t) + P_{th}(t) + \frac{P_{cool}(t)}{COP_x}\right) dt}{En_{primaria}} * 100$$

Es. minimizzazione costo con ICE + AB: caso gennaio

Es. minimizzazione costo con ICE + AB: caso gennaio

- > Il valore della funzione obiettivo è = 283
- > Costo = 282.84 euro
- > Energia primaria = 9696 kWh
- > Energia primaria da fonte fossile = 10260 kWh
- > Fattore di utilizzo del motore = 100.0 %
- > Fattore di utilizzo del assorbitore = 46.8 %

-18 % f.u. assorbitore

- > Fattore di utilizzo della caldaia = 0.0 %
- > Efficienza media = 71.85 %
- > Efficienza media caso base = 53.02 %

+19 % efficienza complessiva

- 1. Ottimizzare il sistema energetico con e senza assorbitore per tutte le tre funzioni obiettivo impostate
- 2. Calcolare valori annuali di costo, energia primaria ed energia primaria da fonte fossile (valore medio moltiplicato x 365 giorni) e valore medio PES, fattore utilizzo del motore e del frigorifero ad assorbimento
- 3. Commentare risultati ottenuti

	Gennaio	Marzo	Maggio	Settembre	Annuale
Costo					
En prim					
En prim ff					
PES					
f.u. ICE					
f.u. AB					

Valuto l'impatto in termini di riduzione delle emissioni e dei costi operativi con una cella a combustibile di tecnologia Proton-Exchange Membrane Fuel Cells (PEMFC) operante ad alta temperatura (150-180°C), alimentata con idrogeno puro. Fisso la taglia della cella pari a 200 kW elettrici e considero la possibilità di recuperare calore. Le equazioni che descrivono il funzionamento della cella sono:

$$F_{FC}(t) = (k1_{FC} * P_{FC}(t) + k2_{FC}) * \delta_{FC}(t)$$

$$QH_{FC}(t) = (k3_{FC} * P_{FC}(t) + k4_{FC}) * \delta_{FC}(t)$$

$$\delta_{FC}(t) * P_{FC_{min}} \le P_{FC}(t) \le P_{FC_{max}} * \delta_{FC}(t)$$

	Valore	Unità
$k1_{FC}$	0.078	kg/(kWh)
$k2_{FC}$	2.3	kg/h
$k3_{FC}$	0.780	-
$k4_{FC}$	22.0	kW
$P_{FC_{min}}$	80	kW
$P_{FC_{max}}$	200	kW

Impostare una nuova funzione obiettivo che vada a minimizzare contemporaneamente i costi operativi del sistema e le emissioni. Definiamo una funzione obiettivo emissioni per la valutazione delle emissioni di $CO_{2,eq}$.

$$f_{emis} = \left(\sum P_{GR_{pos}}(t) - \sum P_{GR_{neg}}(t)\right) * E_{GR} + \left(\sum F_{ICE}(t) + \sum F_{GN}(t)\right) * E_{GN} + \sum F_{FC}(t) * E_{H_2}$$

Andiamo a definire una carbon tax per valutare in termini di costo l'emissione di $CO_{2,}$ eq. La funzione multi-obiettivo che verrà minimizzata è pari alla combinazione lineare delle due funzioni obiettivo:

$$f_{MO} = f_{cost} + carbon_{tax} * f_{emis}$$

Nota: i costi per l'acquisto di idrogeno per la cella a combustibile sono pari a $\sum F_{FC}(t) * c_{H_2}$.

Dati del problema:

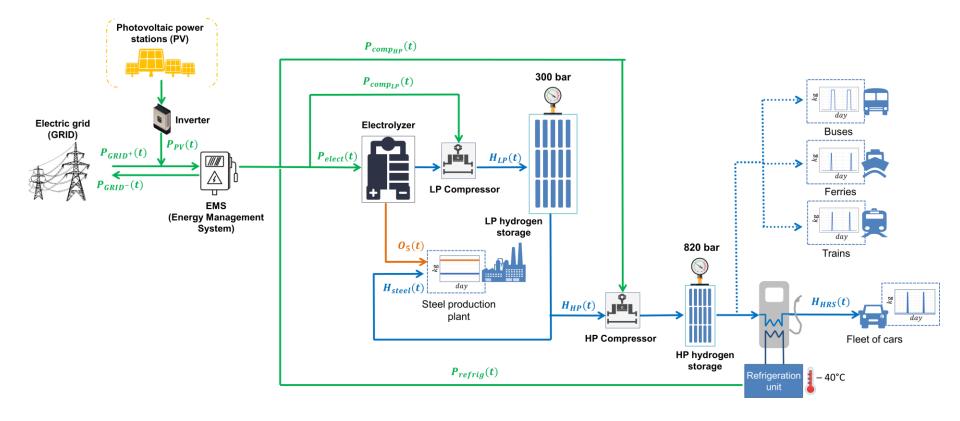
	Valore	Unità di misura
cH2	7	€/kg _{H2}
Carbon tax	0 - 5,000	€/tCO _{2,eq}

	Fattore emissione	Unità di misura
Elettricità da rete	0.35	kg _{CO2} /kWh
Gas naturale	2.8	kg _{CO2} /kg _{NG}
Idrogeno	3.0	kg _{CO2} /kg _{H2}

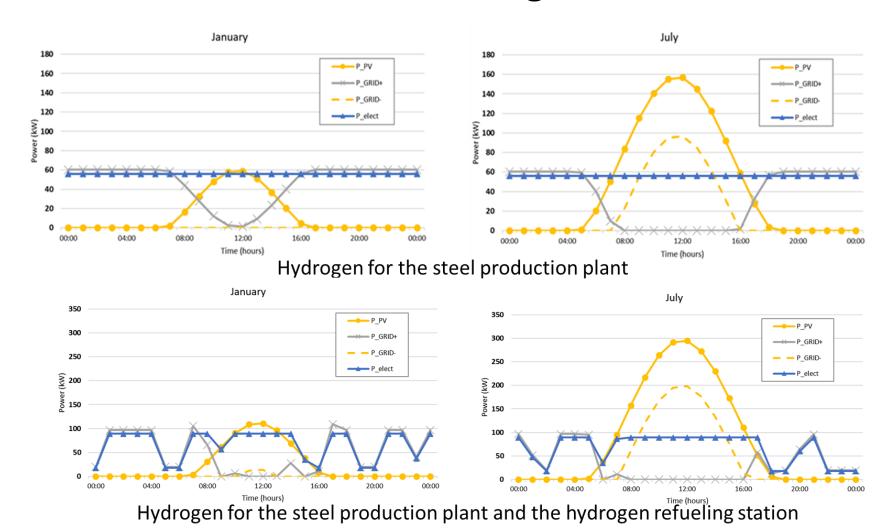
- Ottimizzare il sistema energetico nelle due configurazioni: motore + assorbitore e fuel cell + batteria
- 2. Calcolare i risultati su base annuale (valore medio moltiplicato x 365 giorni) del costo e delle emissioni. Commentare i risultati ottenuti.
- 3. Valutare con quale carbon tax sarebbe conveniente l'utilizzo della soluzione cella a combustibile rispetto alla soluzione con motore.

Report da consegnare

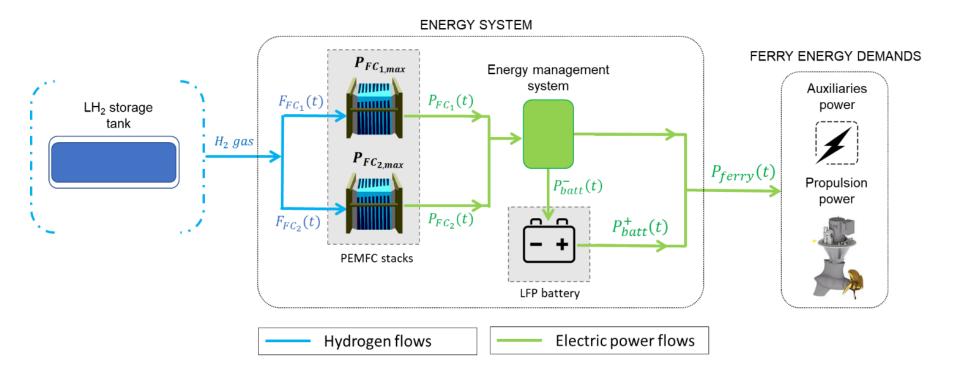
Vi suddividerete in gruppi da circa 4 persone per svolgere le due esercitazioni. Al termine dell'attività, dovrete consegnare un report contenente:


- Introduzione modello cantina
- Metodologia applicata (approccio MILP) con riferimento alle equazioni che descrivono le unità di conversione e stoccaggio di energia e le funzioni obiettivo
- Risultati esercizio 1 e relativo commento/discussione dei risultati
- Risultati esercizio 2 e relativo commento/discussione dei risultati
- Conclusioni e proposta futuri sviluppi dell'attività

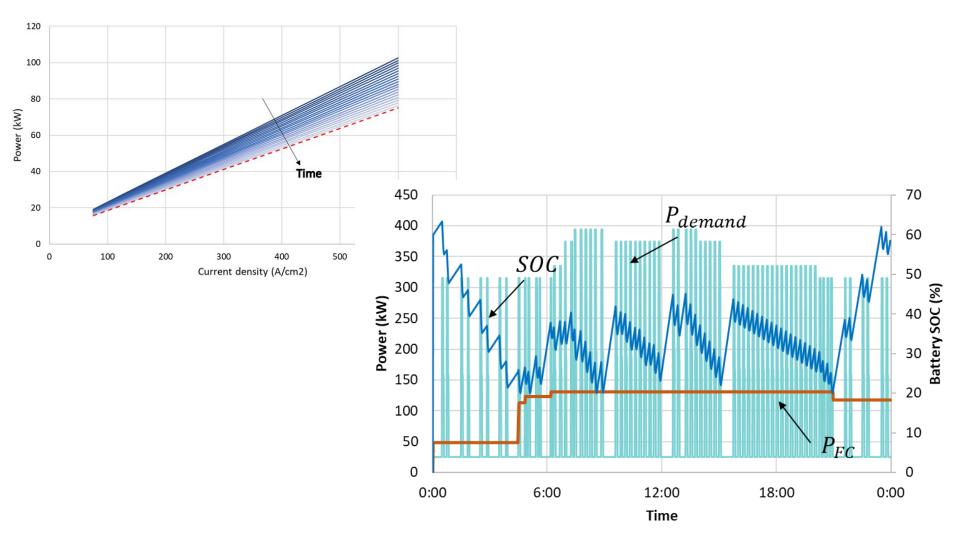
Attività ENESYS Lab



Sistemi di produzione, stoccaggio e distribuzione di idrogeno verde



Sistemi di produzione, stoccaggio e distribuzione di idrogeno verde


Sistemi di propulsione ibridi (PEMFC + Li-ion battery) per navi

D. Pivetta, C. Dall'Armi, R. Taccani, Multi-objective optimization of hybrid PEMFC/Li-ion battery propulsion systems for small and medium size ferries, International Journal of Hydrogen Energy, 2021, https://doi.org/10.1016/j.ijhydene.2021.02.124.

Sistemi di propulsione ibridi (PEMFC + Li-ion battery) per navi

GUROBI Riferimenti e link utili

Gurobi Optimization:

- https://www.gurobi.com/documentation/9.1/refman/index.html
 (Manuale con tutte le istruzioni sulla definizione delle funzioni)
- https://www.gurobi.com/documentation/9.1/examples/index.html
 (Esempi di modelli di ottimizzazione)
- https://www.gurobi.com/documentation/9.1/refman/multiple_objective s.html#sec:MultipleObjectives
 (Vedi per approfondire ottimizzazioni multi-obiettivo)

Riferimenti:

 Vedi cartella «Riferimenti», guida ed esempi per utilizzo approccio MILP per l'ottimizzazione di sistemi energetici

Per eventuali domande: Davide Pivetta — <u>davide.pivetta@phd.units.it</u>

Grazie per l'attenzione!

