Exact Pattern Matching on Strings:
Boyer-Moore

Chapter 2 of Dan Gusfield: Algorithms on strings, trees, and
sequences

Giulia Bernardini
giulia.bernardini@Qunits.it

Algorithmic Design, Advanced Algorithms for Scientific
Computing, Algorithmic Data Mining
a.y. 2023/2024

mailto:giulia.bernardini@units.it

The Boyer-Moore-Galil algorithm

Boyer-Moore-Galil is the practical method of choice for exact
matching: it typically examines less than |P|+|T| characters, so it
has an expected sublinear running time and a linear worst-case

time.

It uses four clever ideas:
1. The characters of the pattern are scanned from right to left

2. It uses the bad character shift rule
3. It uses the good suffix shift rule
4. |t uses the Galil rule

The good suffix rule

P before shift

P after shift

Preprocessing P for the good suffix rule requires O(|P|) time.

Preprocessing P for the bad character rule

Let 2 be the alphabet of T (note that we can assume |Z|<[T)).

* Initialise an array of zeroes R of length |Z|<|T]
- For each i=1,...,|P|, R[P[i]]<i

» At the end, R[x] contains the rightmost position of P where
character x occurs; or O if x does not occur in P.

» This preprocessing requires O(/Z|+|P|) time

Comparison between Knuth-Morris-Pratt

and Boyer-Moore-Galil

» Both use a sliding window of the same length as the pattern. The
window delimits a factor of the text to be examined, and slides
along the text from left to right. Not all existing pattern matching
algorithms use this framework.

KMP BMG
e O(P|+|T|) worst-case running | ¢ O(|P|+|T|) worst-case running
time time; sublinear expected time

e Pisscanned from left to right | ® P is scanned from right to left

