
Energy Bernoulli Equation

Geophysical Fluid Dynamics

Lecture V, VI, VII: Conservation Laws

1 Leibniz Theorem for time derivative of volume integrals
2 Conservation of Mass - Continuity Equation

• Conservation Equation for a tracer
• Advection-Diffusion
• Diffusion

3 Conservation of Momentum
• Cauchy
• Navier-Stokes Equations
• Euler Equation
• The case of a rotating frame (towards the GFD Eq.)

4 Conservation of Energy
• Kinetic, Mechanical, Potential and Total Energy
• First and Second law of thermodynamics
• Bernoulli’s Equation - Principle
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Geophysical Fluid Dynamics

Lecture VII: Conservation Laws

1 Conservation of Energy
• Kinetic, Mechanical, Potential and Total Energy
• First and Second law of thermodynamics
• Bernoulli’s Equation - Principle
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Energy

Potential Energy = mgh = ρgh = ρgz

Kinetic Energy =
1

2
mu ·u =

1

2
m(u2 + v2 +w2) =

1

2
ρu2

Equation for Conservation of Mechanical Energy will be

rate of change in(Ek +Ep) = rate of change in E +

+rate of Work− rate of viscous dissipation
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Mechanical Energy Equation

The mechanical energy equation can be obtained from the scalar
product of the momentum equation and the velocity vector.
Remember Cauchy’s Eq.:

ρ
Dui
Dt

= ρfi +
∂τij

∂xj

where fi is the body force (gravitational and Coriolis) and we keep
the stress tensor (the constitutive equation will be used only later
on).
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Mechanical Energy Equation
Now let’s multiply the i-momentum equation by ui , and we’ll get to

D

Dt

(uiui
2

+gz
)

=
1

ρ
ui

∂τij

∂xj
(1)

The Coriolis force, vanished, does not contribute to any of the
energy eq.
That the rate of increase in Em at any point equals the rate of
work done by net surface force ∇ · τ per unit volume.
Or, if you prefer, let’s rewrite it as

D

Dt

(uiui
2

)
= giui +

1

ρ
ui

∂τij

∂xj
(2)

so that the rate of increase in Ek at any point equals the sum of
the rate of work done by net surface force ∇ · τ and the rate of
work done by the body force g .
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Deformation work and viscous dissipation

The term ui
∂τji

∂xj
is velocity times net force imbalance at a point. It

means that the net force accelerates the local fluid and increases
its Kinetic Energy. However, this in not the total rate of work done
by the stress, there is also deformation of the element with no
acceleration. So, the total rate of work done by surface forces on a
fluid element is

∂uiτij
∂xj

= ui
∂τij

∂xj
+ τij

∂ui
∂xj

(3)

Total work = increase of Ek + deformation work.
Hence, the second term is work that only deforms the element, and
increases its internal energy.
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Deformation work and viscous dissipation

Substituting the total rate of work into the Mechanical Energy
Equation, we see that the deformation work is

τij
∂ui
∂xj

= τijeij (4)

the strain rate tensor! and we now have:

ρ
D

Dt

(uiui
2

+gz
)

=
∂uiτij
∂xj

− τijeij . (5)

and now we make use of the Newtonian constitutive equation:

τij =−(p+
2

3
µ∇ ·u)δij + 2µeij (6)

linearly relating the stress to the rate of strain in a fluid.
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Deformation work and viscous dissipation

so now τijeij becomes

τijeij = −p(∇ ·u) + 2µeijeij −
2

3
µ(∇ ·u)2 (7)

τijeij = −p(∇ ·u) + φ (8)

where we have denoted the viscous terms by φ .
This is the deformation work.
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Mechanical Energy Equation

going back to our Mechanical Energy Equation:

ρ
D

Dt

(uiui
2

+gz
)

=
∂uiτij
∂xj

− τijeij

ρ
D

Dt

(uiui
2

+gz
)

=
∂uiτij
∂xj

+p(∇ ·u)−φ

or better:

ρ
D

Dt

(uiui
2

)
= ρgw +

∂uiτij
∂xj

+p(∇ ·u)−φ
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Mechanical Energy Equation

going back to our Mechanical Energy Equation:
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D
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2
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Mechanical Energy Equation

ρ
D

Dt

(uiui
2

)
= ρgw +

∂uiτij
∂xj

+p(∇ ·u)−φ

ρgw rate of work by body force
∂ui τij

∂xj
total rate of work byτ

p(∇ ·u) rate of work by volume expansion/contraction
φ rate of viscous dissipation
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Mechanical Energy Equation

ρ
D

Dt

(uiui
2

)
= ρgw +

∂uiτij
∂xj

+p(∇ ·u)−φ

the term τijeij =−p(∇ ·u) + φ is the total deformation work rate
(per unit volume).

p(∇ ·u) reversible conversion to internal energy by volume changes
φ irreversible conversion to internal energy by viscous effects

φ , always positive, a rate of loss of mechanical energy, the rate of
viscous dissipation of Kinetic Energy per unit volume, is
proportional to µ and the square of the velocity gradient. It is
therefore very important in regions of high shear, usually resulting
in heat.
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Mechanical Energy Equation

Now consider the continuity eq. times 1
2ρu2i

1

2
ρu2i

(
∂ρ

∂ t
+

∂

∂xj
(ρuj)

)
= 0 (9)

we add this to Eq.39:

∂

∂ t

(1

2
ρu2i

)
+

∂

∂xj

(
uj

1

2
ρu2i

)
= ρuigi +ui

∂τij

∂xj
(10)

if E ≡ 1
2ρu2i is Kinetic Energy per unit volume, then

∂E

∂ t
+ ∇ · (uE ) = ρu ·g + u · (∇ · τ) (11)
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Mechanical Energy Equation

∂E

∂ t
+ ∇ · (uE ) = ρu ·g + u · (∇ · τ) (12)

the second term is the divergence of the Kinetic energy flux.
– If source terms on rhs are zero, then E will increase in time if
∇ · (uE ) is negative.
– Flux divergence terms are also called transport terms, because
they transfer quantities (but no net contribution).
– If integrated over the entire volume, their contribution vanishes
without any sources at the boundaries. Through the divergence
theorem ∫

V
∇ · (uE )dV =

∫
A
Eu ·dA (13)

which vanishes if the flux is zero at the boundaries.
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Conservation of Mechanical energy

ρ
D

Dt

(
Ek +Ep

)
=

∂uiτij
∂xj

+p(∇ ·u)−φ

Conversion of grativational potential energy into kinetic energy
Video of MIT Prof. Water Lewin

http://www.youtube.com/watch?v=mhIOylZMg6Q
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First law of Thermodynamics: Thermal Energy
Equation

The mechanical energy equation was derived from the momentum
equation. This means that it is not a separate principle.
We need an independent equation, for flows with varying
temperature → first law of thermodynamics.
Let q be a heat flux vector per unit area.
Let e be the internal energy per unit mass (for a perfect gas
e = CvT ).
The stored energy per unit mass is then (e + 1

2uiui )
The rate of change of stored energy equals the sum of rate of total
work done and rate of heat addition to a material volume.

de = dw +dQ (14)
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First law of Thermodynamics: Thermal Energy
Equation

the First law of Thermodynamics can also be written as

ρ
D

Dt

(
e +

uiui
2

)
= ρgw +

∂uiτij
∂xj

− ∂qi
∂xi

This expression has both the mechanical and the thermal energy
terms. If we subtract the mechanical energy equation

ρ
D

Dt

(uiui
2

)
= ρgw +

∂uiτij
∂xj

+p(∇ ·u)−φ

we obtain the thermal energy equation (aka heat equation)

ρ
De

Dt
=−∇ ·q−p(∇ ·u) + φ (15)
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First law of Thermodynamics: Thermal Energy
Equation

ρ
De

Dt
=−∇ ·q−p(∇ ·u) + φ

this is saying that internal energy increases because of convergence
of heat, volume compression, and heating due to viscous
dissipation.
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Bernoulli Equation (or the conservation of energy)

The Bernoulli equation is derived from the inviscid momentum
equation, the Euler equation.

ρ
Dui
Dt

= ρfi −∇p

We will assume flows that are

1 steady

2 inviscid

3 no heat conduction
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Bernoulli Equation (or the conservation of energy)

Let’s start from the total energy equation:

ρ
D

Dt

(
e +

uiui
2

+gz
)

=
∂uiτij
∂xj

+
∂qi
∂xi

to get to

B ≡ 1

2
u ·u +gz +

1

ρ
p = constant
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Bernoulli Equation (or the conservation of energy)

The Bernoulli function will be:

B ≡ 1

2
u ·u +gz +

1

ρ
p
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Bernoulli Equation (or the conservation of energy)

B ≡ 1

2
u ·u +gz +

1

ρ
p = constant

The Bernoulli equation is a statement of the principle of
conservation of energy along a streamline:
Kinetic + Potential + Pressure energy = Total Energy = Constant
Strong Restrictions

1 Flow is steady

2 Density is constant

3 Friction losses are negligible

4 relating the states at two points along a single streamline

Very hard to satisfy all these conditions, but many real situations
are close enough and this equation is a reasonable approximation
to the fluid behaviour.
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Bernoulli Equation (or the conservation of energy)
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Bernoulli Equation (or the conservation of energy)

B ≡ 1

2
u ·u +gz +

1

ρ
p = constant

p1 +
ρU2

1

2
= p2 (16)

1 static pressure: does not include any dynamic effects. It
represents thermodynamic pressure.

2 Dynamic pressure: is the pressure rise when a fluid in motion
is brought to rest isentropically (no viscous effects).

3 stagnation pressure: is the sum of static and dynamic
pressures.

4 ρgz is the hydrostatic pressure.

5 p+ ρU2/2 + ρgz is the total pressure.

Bernouilli Eq. says that total pressure is constant along a
streamline.
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Fluid Mechanics

Conservation Laws

1 Conservation of Mass - Continuity Equation

2 Conservation of Momentum

3 Conservation of Energy
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