

Understanding Luminescent Reporter Assay Design

Carl Strayer, PhD

Reporter Assay Design Considerations

What is a Reporter?

- Genetic reporters are indicators of gene expression or cellular events coupled to gene expression
- Reporters can mark any gene product
 - Transcriptional Fusion reports on transcriptional and post-transcriptional regulatory inputs & events
 - Translational Fusion reports on post-translational regulatory inputs & events
- Reporters may be used in cells, tissues, or whole organisms

Basic Reporter Assay Principle

Transcriptional Fusion to the Reporter Gene

Transcriptional Fusion To The Reporter Gene

Translational Fusion To The Reporter Gene

Reporters Can Be Used For A Variety Of Applications

Gene expression:

Transcription and posttranscriptional regulation

- Promoters/response elements
- Enhancers
- 5'- and 3'-UTRs
- Transcriptions factors
- RNA binding proteins & miRNAs

Post-translational regulation

- Protein stability
- Protein localization
- Protein:protein interactions

Cellular Events:

Receptor activation/signaling

- Receptor ligands, agonists & antagonists
- Nuclear receptors

Pathway analysis

- Defining pathways
- Protein:protein interactions

Disease/Immune responses

- Cellular response to infection
- Cellular response to therapy
- Infectious agent replication/response to therapy

Reporter Assay Design Considerations

Reporter Choice & Reporter Design

Properties Of A Good Reporter

- Enzyme signal amplification
- Active upon synthesis no processing or assembly
- No endogenous analog (protein or substrate) *low background*
- Convenient assay
- Quantitative, sensitive & wide dynamic range

Bioluminescence In Nature

Marine algae (Gonyaulax)

Lantern fish (Lampanyctodes)

Squid (Euprymna)

Mushroom (Armillaria)

Glow worms (Arachnocampa)

Jellyfish (Aequorea)

Bioluminescence In The Lab - Luciferase As A Reporter

Luciferase is the generic name for the class of enzyme

(the substrate is generically referred to as **luciferin**)

Light signal is read by a luminometer or a CCD camera

Lytic -OR- Live Assay

Properties Of A Good Reporter

- Enzyme signal amplification
- Active upon synthesis no processing or assembly
- No endogenous analog (protein or substrate) low background
- Convenient assay
- Quantitative, sensitive & wide dynamic range

Genetic Reporter

Reporter as a <u>transcriptional</u> fusion

 Short protein half-life maximally responsive

Protein Fusion Reporter

Reporter as a <u>translational</u> fusion

- Small, compact protein
- Activity is minimally affected by fusion
- Protein half-life & localization determined by fusion partner

Promega Optimized Luciferase Reporters

Firefly luciferase - Luc2

61 kDa, ATP-dependent enzyme; utilizes beetle luciferin (D-luciferin)

- Sequence optimized codon utilization & "cleaned"
- ~200-fold increased signal compared to native *luc* per gene copy number
- Luc2 protein half-life ~ 3 hr
- Further destabilized version, Luc2P,
 ~1.5 hr protein half-life

NanoLuc® - Nluc

19 kDa, ATP-independent enzyme; utilizes novel coelenterazine analog (furimazine)

- Sequence optimized codon utilization & "cleaned"
- Further ~100-fold increase in signal compared to luc/luc2 per protein copy number
- Nluc protein half-life >6 hr
- NlucP destabilized version, ~30 minute protein half-life

Nanoluc® Provides The Brightest Signal, Best Sensitivity

Recombinant NLuc/Nano-Glo™ Assay Recombinant FLuc/ONE-Glo™ Assay Recombinant RLuc/Renilla-Glo™ Assay

CMV-driven NLuc/Nano-Glo™ Assay CMV-driven FLuc/ONE-Glo™ Assay

Properties Of A Good Reporter

- Enzyme signal amplification
- Active upon synthesis no processing or assembly
- No endogenous analog (protein or substrate) low background
- Convenient assay
- Quantitative, sensitive & wide dynamic range

Genetic Reporter

Reporter as a <u>transcriptional</u> fusion

 Short protein half-life maximally responsive

Protein Fusion Reporter

Reporter as a translational fusion

- Small, compact protein
- Activity is minimally affected by fusion
- Protein half-life & localization determined by fusion partner

Destabilized Reporters Gives The Best Dynamic Response

Brightness/Sensitivity

Nluc> NlucP > Fluc > FlucP

Protein half-life

Nluc > Fluc > FlucP > NlucP

Relative Response

NlucP > FlucP > Fluc > Nluc

Nlucp Is Most Sensitive For Weakly Induced Responses

Relative Response

NlucP > FlucP > Fluc, Nluc

Experimental details: transient transfection of Hela cells w/ Hsf1 inducible constructs; addition of 500 nM 17-AAG at time zero.

Summary Of Choices For Genetic Reporter

New users – NanoLuc® is the best choice

Brightness/Sensitivity

Relative Response

Nluc > NlucP > Fluc > FlucP

NIucP > FlucP > Fluc > NIuc

If I'm already are using Firefly should I switch to NanoLuc?

Not necessarily – Fluc is still a *great* reporter!

- ✓ Excellent signal:background
 ✓ Great in vivo reporter
- ✓ Excellent dynamic range
 ✓ Well developed system

Yes if you are having problems with sensitivity!

✓ Poor transfection

✓ Weak responses

✓ Weak promoter

✓ Detection limitations

Note that Nluc and Fluc *CAN* be multiplexed as dual primary reporters

Properties Of A Good Reporter

- Enzyme signal amplification
- Active upon synthesis no processing or assembly
- No endogenous analog (protein or substrate) low background
- Convenient assay
- Quantitative, sensitive & wide dynamic range

Genetic Reporter

Reporter as a <u>transcriptional</u> fusion

 Short protein half-life maximally responsive

Protein Fusion Reporter

Reporter as a translational fusion

- Small, compact protein
- Activity is minimally affected by fusion
- Protein half-life & localization determined by fusion partner

Nanoluc® Is Localized Based On The Protein Partner

NanoLuc® by itself is uniformly distributed in cells

Fusion of NanoLuc to POI or localization tag confers expected spatial pattern

Nanoluc® As A Protein Fusion Reporter

NanoLuc® fused to a protein-of-interest takes on the fusion partner's stability profile

p53 stabilization by MDM2

Nanoluc® Is *The Best Choice* for a Protein Fusion Reporter

Protein-Protein Interactions

What Elements To Include In A Genetic Reporter Fusion?

Elements to include are guided by the experimental question

What Elements To Include In A Genetic Reporter Fusion?

To study transcriptional regulation, you might include only the proximal promoter...

~1kb upstream of, & including, the transcriptional start site (+1)

Response Element constructs more precisely define the experiment

Including Other Elements From The GOI May Have Other Effects – *Intended Or Not*

- May mask more relevant proximal elements
- Heterologous regulatory elements from adjacent genes may be captured

Untranslated regions (UTR)

• May add post-transcriptional regulatory effects - change translation efficiency or mRNA stability

Intron

- If spanning from promoter to 1st intron, necessitates inclusion of 5'UTR and possibly CDS - introduces related regulator considerations
- May introduce splicing artifacts

Coding sequence (CDS)

- In-frame fusion introduces another level of regulation
- Out-of-frame insertion will greatly decrease reporter translation from start codon, and therefore decrease signal

Brighter luciferase reporter facilitates knock-ins

Figure 4. Treatment of the X-MAN® P21 NanoLuc®-PEST promoter reporter cell line with actinomycin D induces a DDR at low doses. The X-MAN® P21 NanoLuc®-PEST promoter reporter cell line was treated with actinomycin D for 6h. (A) P21 transcription was measured using Nano-Glo® luciferase and the assays were multiplexed with CellTiter-Blue® to give a measure of cell viability. (B) Western blotting confirmed the induction of a DDR, with results consistent between the unmodified parental and X-MAN® P21 NanoLuc®-PEST promoter reporter cell lines. Abbreviation: c, vehicle control.

NOTÍZON

Reporter Assay Design Considerations

Controls

Background
Normalization

Controls To Determine Assay Background Are Crucial

Like any quantitative assay, you need to determine the background in the assay to know if signal from experimental samples is significant...

Background signal is inherent in all instruments

- Electrical noise from current running through the detection device
- Varies between instruments; varies depending on gain/sensitivity setting

Background signal can be contributed by assay chemistry

- Coelenterazines have some chemiluminescence
- Varies depending on assay

Background Control – Process several replicates of samples without luciferase in them - untransfected cells, medium-only wells, or lysis buffer only – plus detection reagent

(This is NOT the same as an untreated reporter control)

Background controls are not necessary in every experiment – Perform this control the first time you adopt a new assay or change detection parameters (instrument, gain setting, assay chemistry)

Example Of Determining Acceptable Assay Threshold

Minimum Detectable Level (MDL)

- Measure signal for background controls (control sample without reporter, plus reagent)
- Determine average and standard deviation
- MDL would be Ave + 3×SD

Normalization Assay Is An Important Control

Several parameters in a cell-based reporter experiment can cause variation or artifacts in reporter signal

- Starting cell number pipetting variation, problems with clumping/dispersion
- Transfection efficiency related to cell density
- Ending cell number cytotoxic effect of treatment; detached cells lost in media transfers or washing steps

Normalization Methods:

- Co-Reporter
- Cell Health Assay
- Protein Assay

Normalization Using A Co-reporter

Co-reporter, or normalization reporter:

- A second, compatible reporter gene is co-transfected with the primary reporter plasmid. Driven by a "constitutive" promoter
- Controls for cell number AND transfection efficiency. Can also serve as a control for specificity of effect
- Measured along with primary reporter using a dual reporter assay

When is a co-reporter less important?

- Repeat measures assay (timecourse, live assay)
 Variation in transfection efficiency & starting cell number less important
- Stable transgenic reporter cell line

 No variation in transfection efficiency; Variation in seeding density can still be an issue

* Cell Health Assay still may be advisable to control for variation in seeding density & cytotoxicity

Co-Reporter Options

- **Renilla** luciferase (**Rluc**) is often used as a control with **Fluc** as the primary reporter. Use **Dual-Glo**® or Dual-Luciferase® Reporter (**DLR**) assay.
- Fluc and Nluc can be combined either can be used as the primary or coreporter. Use NanoDLR® assay.
- TK, SV40, CMV, PGK promoters are most often used. TK or PGK are good default choices. Provide low-level expression, least likely to be affected by treatments.
- Reporter vector ratios (primary:co-reporter)
 - 10:1 to 100:1 is typical
 - Depends on promoters and reporters used, etc

Normalization Using A Cell Health Assay

Cell Health Assay

- Measures cell viability &/or cytotoxicity
- Controls for cell number only
- Measured using a compatible assay multiplexed with the reporter assay. Sequential assay in same plate. Fluorescent, non-lytic viability assay, performed upstream of reporter assay
- Examples:
 - CellTiter-Fluor™
 - CellTox-Green™

Luc2-reporter with Bright-Glo reporter assay multiplexed with CellTiter-Fluor viability assay

Multiplexing is...

Gathering more than one set of data from the same sample

Multiplexing requirements:

- Assays must be biologically & chemically compatible
- Signals must be spectrally distinct
- Assays must fit in the available volume of the well

Reporter Assay Design Considerations

Cell Culture &

Transgenesis

Cell Culture Considerations

Cell confluence

- Pre-confluent cultures generally best for transfection...
 - ...however, cells may become confluent by the time of treatment
 - Pre- and post-confluent cells may have different metabolic states and respond differently to treatment
 - Cell density per se can influence response to treatment

Passage number

 Use a low passage number and minimize variation in passage number used for experiments

As passage number increases, cells may change character:

- Differences in transfection efficiency
- Differences in response to treatments
- Consider bulking up a low passage, freeze aliquots, thaw for each experiment

Transfection – Reporter Gene Dose

It may be necessary to titrate the amount of reporter gene transfected – ideally, to approximate physiological levels.

Excessive expression may...

- Overwhelm endogenous regulatory factors or protein partners
- Produce a high basal signal that masks small changes in expression
- Cause ectopic effects of protein fusion localization, stability, PTM, protein-protein interactions, etc.
- Excess normalization reporter may interfere with expression of the primary reporter

To keep the total DNA mass constant use a transfection carrier DNA

Transfection carrier DNA = a standard cloning plasmid, e.g., pGEM, pUC, etc. Avoid a plasmid that has eukaryotic promoters or expression cassettes, e.g., pcDNA3.1. Eukaryotic sequences could interfere with the experiment (e.g., compete for cellular transcriptional machinery).

Reporter Assay Design Considerations

Detection Assay

Reporter Assay Choice – Lytic Assays

For most cell-based, plate-based reporter experiments a lytic, endpoint assay is the best choice:

- 96-well plate a homogenous, Glo assay is best Bright-Glo® or Nano-Glo®
- Low-density plate you'll need to make a lysate you can still use that lysate with a Glo assay.

Considerations:

- Signal brightness
- Signal duration
- Process # steps; Injectors?
- Single vs Dual assay

Lytic vs Live Reporter Assay

	Lytic	Live
Sensitivity	+++	+
Repeat-measures	X	\checkmark
Preserves sample (propagation)	X	√
Multiplex-capable	(upstream)	(upstream or downstream)
Compatible with plate-reader	√	√
Imaging-compatible	X	√

Reporter Assay Choice – Live Assays

Firefly luciferase assays

- beetle luciferin, Luciferin-EF, VivoGlo™ Luciferin
- Chemiluminescence is not an issue

NanoLuc® luciferase assays

- Nano-Glo[®] Live Cell Assay System
- Chemiluminescence can be a consideration

Substrates are reasonably soluble, cell-permeable & stable

Several options for timing of addition - Add substrate to culture at beginning (seeding or media change, with drug, or at end of experiment

Luminometer Parameters & Plate Choice

Luminometer

- No filters or wavelength setting!
 - No need to block excitation light
 - Filters reduce signal
- 0.5 1 sec integration for Glo assays
 - Increasing integration won't increase sensitivity

White or Black Plates? Solid or Clear-bottom?

- White is preferred better signal
- Black eliminates cross-talk
- Clear-bottom plates can be used for viewing cultures prior to assay
- Opaque plates gives better signal (for white), and less cross-talk (both W or B)

Reporter Assay Design Considerations

