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Vorticity

• A vortex line is a curve in the fluid such that its tangent at
any point gives the direction of the local vorticity.

• A vortex line is related to the vorticity the same way a
streamline is related to the velocity vector.

• A vortex line satisfies the equations:

dx

ωx
=

dy

ωy
=

dz

ωz
(1)
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Vorticity

• A group of vortex lines bound a vortex tube.

• The circulation around a narrow vortex tube is

dΓ = ω ·dA (2)

• The strength of a vortex tube is defined as the circulation
around a closed circuit taken on the surface of the tube.

Γ =
∮

c
uidxi (3)
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Vorticity

A vortex tube passing through a material sheet. The circulation is
the integral of the velocity around the boundary of A, and is equal
to the integral of the normal component of vorticity over A.
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Vorticity

origin is therefore zero, and that enclosing the origin is r. An irrotational vortex is 
therefore called a line vortex. Some aspects a€ the dynamics of flows with vorticity 
are examined in this chapter. 

2. hrhx JJines and V o r h  71dbes 
A vortex line is a curve in the fluid such that its tangent at any point gives the direction 
of the local vorticity. A vortex line is therefon: related to the vorticity vector the same 
way a streamline is related to the velocity vector. If w,, wJ, and w, are the Cartesian 
components of the vorticity vector o, then the orientation of a vortex line satisfies the 
equations 

dx dy dz  
(5.3) 

o x  my "2 

which is analogous to Eq. (3.7) for a streamline. In an irrotational vortex, the only 
vortex line in theflowjeld is the axis of the vortex. In a solid-body rotation, all lines 
perpendicular to the plane ofJIow arc vortex lines. 

Vortex lines passing through any closcd curve form a tubular sudace, which 
is called a vortex tube. Just as streamlincs bound a streamtube, a group of vortcx 
lines bound a vortex tube (Figure 5.1). The circulation around a narrow vortex tube 
is dI' = o dA, which is similar to the expression for the rate of flow d Q  = u d A  
through a n m w  skamtube. The strength of a vortex nrhe is defined as thc circulation 
around a closed circuit taken on the surface of thc tube and embracing it just once. 
From Stokes' theorem it follows that the strength of a vortex tube is equal to the mcan 
vorticity times its cross-sectional area. 

_ - _ - _  - - 

3. Rule of f imody  in Rotational and Irmlutional Vortices 
The role of viscosity in the two basic types of vortex flows, namely thc solid-body rota- 
tion and the irrotational vortex, is examined in this section. Assuming incompressible 

Slreamiubc Vorlcx lube 

Agnre 5.1 Analogy bclween strcmtube and vortex lube. 
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Vorticity

• IRROTATIONALITY does not imply the absence of viscous
stresses.

• In fact, viscous stresses must always exist in irrotational flows
for real fluids, because the fluid elements deform in such a
flow.

• An irrotational fluid is define as being curl-free; hence, ω = 0
and therefore ΓC = 0 for any C .
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Vorticity

• If the flow is irrotational then the net viscous forces vanish on
the element.

• The only example of vorticity and no viscous stresses is that
of solid-body rotation.

• In solid-body rotation the fluid elements do not deform.

• Viscous stresses are proportional to the deformation rate, and
hence they are zero for this flow.

σij = µ(
∂ui
∂xj

+
∂uj
∂xi

) = 0 (4)
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Kelvin’s Circulation Theorem

In an inviscid, barotropic flow with conservative body forces, the
circulation around a closed curve C moving with the fluid remains
constant in time (if the motion is observed from a nonrotating
frame).

DΓ

Dt
= 0 (5)
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Assumptions

• inviscid flow: µ = 0

• conservative body forces: fi = ∇(−gz)

• Barotropic flow, Density is a function of pressure only:
ρ = ρ(p)

Reversible forms of compressibility are OK (pressure) but mixing is
irreversible and therefore ρ ̸= ρ(T ,S).
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Kelvin’s Circulation Theorem

Integrating around a closed contour:

DΓ

Dt
=

∮

c
[−dP+dg +1/2d(uiui )] = 0 (6)

• P and g are single valued since they are reversible forms of
work

• uiui is single valued since ui is continuous
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Kelvin’s Circulation Theorem

Circulation is the surface integral of vorticity. Integrating around a
closed contour:

DΓ

Dt
=

D

Dt

∫

A
ωidA= 0 (7)

or
∫
A ωidA is constant as we follow the flow.

If the flow is irrotational ωi = 0 the flow will remain irrotational
under the four assumptions:

• Inviscid flow

• Conservative body forces

• Barotropic flow

• Nonrotaing frame
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Kelvin’s Circulation Theorem

• Inviscid flow: Circulation is preserved if there are no net
viscous forces along the path followed by C. If C moves into
viscous regions such as boundary layers along solid surface,
then circulation changes. Viscous effects cause diffusion of
vorticity in or out of the fluid circuit, thereby changing the
circulation.

• Conservative body forces: gravity acts through the centre
of mass of a fluid particle and therefore does not rotate it.
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Kelvin’s Circulation Theorem

• Barotropic flow: in a baroclinic flow, lines of constant p and
ρ are not parallel, and the net pressure force does not pass
through the centre of mass creating a torque which changes
the vorticity and circulation. Geophysical flows, which are
dominated by baroclinicity, are full of vorticity. Examples:
heating from below creates a buoyant force generating a
plume (ρ = ρ(T )), cooling from above will generate rolls and
vorticity.

• Nonrotating frame: motions observed with respect to a
rotating frame of reference can developed vorticity through
Coriolis (shown later).
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Vorticity

Figure 3: Evolution of a vortex tube. Solid dots correspond to fluid elements.
Due to the shear in the velocity field, the vortex tube is stretched and tilted.
However, as long as the fluid is inviscid and barotropic, incompressible or
isobaric, Kelvin’s circularity theorem assures that the circularity is conserved
with time. In addition, since vorticity is divergence-free, the circularity along
different cross sections of the same vortex-tube is the same.

Vorticity equation: The Navier-Stokes momentum equations, in the ab-
sence of bulk viscosity, in Eulerian vector form, are given by

∂"u

∂t
+ ("u · ∇) "u = −∇P

ρ
− ∇Φ + ν

[
∇2"u +

1

3
∇(∇ · "u)

]

Using the vector identity ("u · ∇) "u = 1
2
∇u2 + (∇ × "u) × "u = ∇(u2/2) − "u× "w

allows us to rewrite this as

∂"u

∂t
− "u × "w = −∇P

ρ
− ∇Φ − 1

2
∇u2 + ν

[
∇2"u +

1

3
∇(∇ · "u)

]

If we now take the curl on both sides of this equation, and we use that
curl(grad S) = 0 for any scalar field S, and that ∇ × (∇2 "A) = ∇2(∇ × "A),
we obtain the vorticity equation:

54

Due to shear in the velocity field, the vortex tube is stretched and
tilted. As long as the fluid is inviscid and barotropic,
incompressible, Kelvin’s circularity theorem assures that the
circularity is conserved with time. Since vorticity is divergent-free,
the circularity along different cross sections is the same.
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Vorticity Equation in a Nonrotating frame

• The flow is barotropic

• we retain viscous effects

• baroclinicity and the effect of a rotating frame of reference
will be dealt in the next derivation.

Vorticity is ω = ∇xu and its curl is zero ∇ ·ω = 0. The rate of
change of vorticity is:

D

Dt
ω = (ω ·∇)u+ν∇

2
ω (8)

where the first term on the r.h.s. is the rate of change of vorticity
due to stretching and tilting of vortex lines, and the second term is
the rate of change of vorticity due to diffusion of vorticity.
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Vorticity Equation in a Rotating frame

• The flow is nonbarotropic

• We use a rotating frame of reference.

• We still approximate to a nearly incompressible Boussinesq
fluid so that the contonuity equation is ∇ ·u= o

• Continuity is ui ,i = 0

• The momentum equation is

∂ui
∂ t

+ujui ,j +2εijkΩjuk =−(1/ρ)p,i +gi +νui ,jj (9)

• after some manipulation we get to

∂ui
∂ t

+(1/2u2j +Π),i − εijkuj(ωk +2Ωk) =−(1/ρ)p,i −νεijkωk,j

(10)
This is a form of the N-S equation, and we now take its curl.
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Vorticity Equation in a Rotating frame

D

Dt
ω = (ω +2Ω) ·∇u+(1/ρ

2)∇ρ ∧∇p+ν∇
2
ω (11)

This is the Vorticity equation for a nearly incompressible fluid
(Boussinesq) in rotating coordinates.

1 1st term is the rate of change of relative vorticity following a
fluid particle

2 2nd term is Absolute Vorticity

3 3rd term is the rate of change due to baroclinicity of the flow

4 4th term is the rate of change due to diffusion

(ω +2Ω) ·∇u is a crucial term in the vorticity dynamics.
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Vorticity Equation in a Rotating frame

(ω ·∇)u= ω
∂u

∂ s
(12)

= the magnitude of ω times the derivative of u in the direction of
ω

(ω ·∇)u= ω
∂us
∂ s

+ω
∂un
∂ s

+ω
∂um
∂ s

(13)

.
The first is the increase of us along the vortex line s (stretching of
vortex line). The second and third represent the change of normal
velocity components along s: rate of turning and tilting of vortex
lines about the m and n axes.
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Vorticity

Figure 5.8 Coordinate system alignd with vorlicity vector. 

Meaning of 2(8 - V) u 
Orienting the z-axis along the direction of 8, this term becomes 2(8  V)u = 
2C2 (au/az). Suppressing all other terms in Eq. (5.26), we obtain 

DO au 
Dt as 
- = 2C2- (barompic, inviscid, two-dimensional) 

whose components are 

This shows that stretching of fluid lines in the z direction increases o,, whereas a 
tilting of vertical lines changes the relative vorticity along the x and y directions. 
Note that merely a stretching or turning of verticalfluid lines is required for this 
mechanism to operate, in contrast to (o V) u where a stretching or turning of vortex 
lines is needed. This is because vertical fluid lines contain “planetary vorticity” 28 .  
A vertically stretching fluid column tends to acquire positive w,, and a vertically 
shrinking fluid column tends to acquire negative w, (Figure 5.9). For this reason 
large-scale geophysical flows are almost always full of vorticity, and the change of 8 
due to the presence of planetary vorticity 2 8  is a central feature of geophysical fluid 
dynamics. 

We conclude this section by writing down Kelvin’s circulation theorem in a 
rotating frame of reference. It is c a y  to show that (Exercise 5) the circulation theorem 
is modificd to 

-- -0 Dra 
Dt 

(5.29) 

where 
F a =  ( 0 + 2 8 ) * d A = F + 2  Q-dA. 

Here, re is circulation due to the absolute vorticity (o + 2P) and differs from r by 
the “amount” of planetary vorticity intersected by A. 

s, J, 
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Vorticity Equation in a Rotating frame

2(Ω ·∇)u= 2Ω
(

∂u

∂z

)
(14)

The third term says that stretching of fluid lines in the z direction
increases ωz .
The first and second say that turning and tilting of fluid lines
increase the relative vorticity along x and y. Here only fluid lines
have to tilt/turn. This is because vertical fluid lines contain
planetary vorticity 2Ω.
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The tilting of Vorticity

Suppose that the vorticity ω is initially directed horizontally, so that ωz

is zero. The vertical material lines and also the vortex lines are tilted by
the positive vertical velocity, creating a vertically oriented vorticity.
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The tilting of Vorticity

If the fluid is incompressible, circularity is conserved. Vorticity is tied to
material lines, and so amplified in the direction of stretching. Because
the volume of fluid is conserved, the end surfaces shrink, the material
lines through the cylinder ends converge and the integral of vorticity over
a material surface (the circulation) remains constant.
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