
Storage for HPC systems
part 2

Stefano Cozzini
AreaSciencePark

16.04.2024

• Intro
• Basic concepts on storage

• ORFEO storage
• Basic concept on File Systems
• ORFEO filesystems 11.04

• Storage and I/O for HPC
• I/O stack for HPC system
• Parallel FS 16.04
• CEPH fs
• ORFEO CEPH fs 18.04

Agenda of these lectures

• Data management services and tools on the top of data
infrastructure: benchmarking storage and FS

• May 9th

• Seminar: NFFA-DI ecosystem for data (Material science)
• May 10th

• Seminar: PRP ecosystem for data (Life Science)
• May 16th

• data management services and tools on the top of data
infrastructure: parallel I/O with hdf5

• May 17th

Lectures final schedule

Intro: Basic concepts on
storage

• Bandwidth: volume of data read/written in a second
→ throughput metric

• IOPs: number of I/O request processed by second
→ Is it a latency or a throughput metric ?

• Order of magnitudes:
• Intel v2/v3 CPU-DRAM: 80/200 GB/s
• Epyc node CPU-DRAM: 300 GB/sec
• IB link: 12 GB/s
• Hard Drive: ~100- 400 MB/s

Key metrics

• Storage follows a hierarchy with multiple levels:
• RAM disk, I/O buffers or file system cache
• Local disk (flash based, spinning disk) (SATA, SAS, RAID,

SSD, JBOD, ...)
• Local network attached device or file system server

(NAS, SAN NFS, CIFS, PFS,Lustre, GPFS,CEPH)
• Tape based archival system (often with disk cache)
• External, distributed file systems (Cloud storage)

Storage Hierarchy

Same as with the memory hierarchy:
Register -> Cache (L1->L2->L3) -> RAM

Storage Hierarchy

I/O Scheduler

Flash
Disk

RAM
Disk HDD

FlashRAM Disk Hard Disk

Pseudo Driver

Swap
Cache

Physical Memory

Block Device
Drivers

Logical Block
Address

Page Swapping

Intercept

FTL

User-Space
FS

Generic Block Layer

• Unix-like OS environments very frequently create
(small) temporary files in /tmp, etc.

• faster access and less wear with RAM disk
• Linux provides “dynamic RAM disk” (tmpfs)
• only existing files consume RAM
• automatically cleared on reboot (-> volatile)

RAM Disk

[cozzini@login ~]$ df
Filesystem 1K-blocks Used Available Use% Mounted
on
devtmpfs 1915112 0 1915112 0% /dev
tmpfs 1939960 0 1939960 0% /dev/shm
tmpfs 1939960 25316 1914644 2% /run
tmpfs 1939960 0 1939960 0%
/sys/fs/cgroup
/dev/vda1 41931756 11442916 30488840 28% /

• Rotating mechanical device
• 7200, 10000, 15000 rpm.

• Head on the right track
• (seek time) 4 ms

• Head on the right sector
• (latency) 2ms
• Capacity: 4-12 TB

• Bandwidth: Read / Write ~ 150/250 MB/s

Traditional disk: Hard Disk Drive
(HDD)

At constant rotating speed, where should I put
my data to get max bandwidth ?

• Two main technologies today:
• Serial Advanced Technology Attachment (SATA)

• less expensive, and it’s better suited for desktop file storage.
• Up to 6 Gbit/sec

• Serial Attached SCSI (SAS)
• more expensive, and it’s better suited for use in servers or in

processing-heavy computer workstations.
• Up to 12Gbit/sec

Current HDD technology

• pros:
• lower access time and latency
• no moving parts (silent, less susceptible to physical shock, low

power consumption and heat production)
• available over SATA, SAS, PCIe

• cons:
• expensive, low capacity; usage limited to special purposes

only (hardly used for big data-servers)
• limited write-cycle durability (depending on technology and

price)
• SLC NAND flash ~ 100K erases per cell
• MLC NAND flash ~ 5K-30K erases per cell
• TLC NAND flash ~ 300-500 erases per cell

Solid State Drive: SDD

HDD vs SSD

• NVMe is an “optimized, high-performance, scalable
host controller interface with a streamlined register
interface and command set designed for non-volatile
memory based storage.”

• Designed to fix many of the issues of legacy SAS/SATA.
• SATA /SAS protocols for mechanical drive
• Now the bottleneck

• Physical connectivity is much simplified, with devices
connected directly on the PCIe bus

NVMe (Non-volatile Memory express)

NVMe (Non-volatile Memory express)

VFS/file system

Block layer entry

application

Nvme driver

Block layer

USER MODE

KERNEL MODE

DEVICE

HARDWARE

AHCI driver

AHCI HBA PCIe Root port

NVMe controller

NVMe SSD

SATA/SAS controller

SATA/SAS SSDHDD

• UltraStar DC HC620 with SAS 12GB/s interface
• Sustained transfer rate: 255 MBps read and write

• Samsung 970 Evo with PCIe 3 interface
• Read speed 3,500 MBps
• Write speed 2,500 MBps

A recent comparison

From https://www.enterprisestorageforum.com/storage-hardware/ssdvs-hdd-speed.html

ORFEO storage: hardware

FAST storage
(NVMe)

FAST storage
(SSD)

Standard
storage
(HDD)

Long term preservation

of server 4 10 1

RAM 6 x 16GB 6 x 16GB 6 x 16GB

Disk per node
4x 1.6TB

NVMe PCIe
card

20 x 3.84TB

18 x 12TB
+ 18x16TB + (on

the 2 new
server)

84 x 12TB + 84 x 12TB+
84x 12TB

Storage
provider

CEPH parallel
FS

CEPH parallel
FS CEPH parallel FS Network FS (NFS)

RAW storage 24TB 320 TB 1872 TB 3024 TB

• Device Type
• SSD –NVME no hot swap
• Samsung PM1725b HHHL

• Capacity
• 1.6 TB

• Form Factor
• PCI-express

• Performance
• 6,3 GB/s read
• 3,3 GB/s write

See:
http://image-
us.samsung.com/SamsungUS/PIM/Samsung_1725b_Product.pdf

The ORFEO basic brick: NVME

https://eur02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fimage-us.samsung.com%2FSamsungUS%2FPIM%2FSamsung_1725b_Product.pdf&data=05%7C01%7Cstefano.cozzini%40areasciencepark.it%7C844763bad863445b1dbc08dad06b50fe%7Cd4aafca6bf354515b06a4973cdfbbed3%7C0%7C0%7C638051456941533976%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=ry4PbDJAkbKM4XtP%2B2f8VvFVulxj4bbDPzbzOHy4vP0%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fimage-us.samsung.com%2FSamsungUS%2FPIM%2FSamsung_1725b_Product.pdf&data=05%7C01%7Cstefano.cozzini%40areasciencepark.it%7C844763bad863445b1dbc08dad06b50fe%7Cd4aafca6bf354515b06a4973cdfbbed3%7C0%7C0%7C638051456941533976%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=ry4PbDJAkbKM4XtP%2B2f8VvFVulxj4bbDPzbzOHy4vP0%3D&reserved=0

• Device Type
• SSD driver nearline hot swap
• Intel SSDSC2KB038T8R

• Capacity
• 3.84 TB

• Form Factor
• 2.5"

• Interface
• SATA 6 Gb/s

• Performance
• 560 MB/s read
• 510 MB/s write

The ORFEO basic brick: SDD drive

• Device Type
• Hard drive - hot-swap - nearline

• Capacity
• 12 TB

• Form Factor
• 3.5"

• Interface
• SAS 12Gb/s

• Performance
• 255MB/s

The ORFEO basic brick: HDD drive

• Disks are slow: use lots of them in a parallel file
system

• However, disks are unreliable, and lots of disks are
even more unreliable

The disk bandwidth/reliability
problem

• RAID is a way to aggregate multiple physical devices
into a larger virtual device

• Redundant Array of Inexpensive Disks
• Redundant Array of Independent Devices

• Invented by Patterson, Gibson, Katz, et al
• hTtp://www.cs.cmu.edu/~garth/RAIDpaper/Patterson88.pdf

• Redundant data is computed and stored so the system
can recover from disk failures

• RAID was invented for bandwidth
• RAID was successful because of its reliability

RAID

• Reliability or performance (or both) can be
increased using different RAID “levels”.

• Let us examine some of the most important:
• Definitions:

• S: Hard disk drive size.
• N: Number of hard disk drives in the array.
• P: Average performance of a single hard disk drive

(MB/sec).

RAID reliability and performance..

• Performance = P * N
• Capacity = N * S

RAID 0: striping

• Write Perf. = P
• Read Perf. = P * N
• Capacity = S

RAID 1: redundancy

RAID 10: striping +redundancy
(1+0 / 0+1)

• Raid 1+0 : mirrored sets in a
striped set

• the array can sustain multiple
drive losses so long as no
mirror loses all its drives

• Raid 0+1: striped sets in
mirrored set

• if drives fail on both sides
of the mirror the data are
lost

RAID 5

• One disk can fail
• Distributed parity

RAID 6

• Two disks can fail
• Double distributed parity code

28

RAID Parameters
Level Description Minimum # of

drives
Space
Efficiency

Fault
Tolerance

Read
Benefit

Write
Benefit

RAID 0 Block-level striping without
parity or mirroring.

2 1 0 (none) nX nX

RAID 1 Mirroring without parity or
striping.

2 1/n n-1 drives nX 1X

RAID 4 Block-level striping with
dedicated parity.

3 1-1/n 1 drive (n-1)X (n-1)X

RAID 5 Block-level striping with
distributed parity.

3 1-1/n 1 drive (n-1)X (n-1)X

RAID 6 Block-level striping with
double distributed parity.

4 1-2/n 2 drives (n-2)X (n-2)X

RAID
1+0/10

Striped set of mirrored sets. 4 * needs 1 drive
on each mirror
set

* *

RAID 0+1 Mirrored set of striped sets. 4 * needs 1
working striped
set

* *

* depends on the # of mirrored/striped sets and # of drives

From http://en.wikipedia.org/wiki/RAID

29

Notes on redundancy

• Computing and updating parity negatively impact the
performance. Upon drive failure, though, lost data can be
reconstructed, and any subsequent read can be calculated
from the distributed parity such that the drive failure is
masked to the end user.

• However, a single drive failure results in reduced
performance of the entire array until the failed drive has
been replaced and the associated data rebuilt.

• The larger the drive, the longer the rebuild takes (up to
several hours (even days) on busy systems or large
disks/arrays).

• RAID is implemented both
in hardware and software.

• RAID controller is the
hardware part.

• Totally transparent to the
users

• Configured when the
system is installed

• No way to change it on the
fly..

Implementing RAID

• RAID 1 on all nodes for OS reliability
• For actual storage: NONE

• For CEPH FS redundancy managed at disk level (see
later)

• For long term storage redundancy managed at
hardware/software layer within the NAS (see later)

RAID on ORFEO storage

Intro: Filesystems

Filesystem
● Provide a unique namespace (i.e. organize and

maintain the file name space)
● Store your data on the medium (disk/array of disks

etc)

• Disk: A permanent storage medium of a certain
size.

• Block: The smallest unit writable by a disk or file
system. Everything a file system does is composed
of operations done on blocks.

• Partition: A subset of all the blocks on a disk.
• Volume: The term is used to refer to a disk or

partition that has been initialized with a file system.
• Superblock: The area of a volume where a file

system stores its critical data.

File Systems: Basic Concepts (1/2)

File Systems: Basic Concepts (2/2)

• Metadata: A general term referring to information
that is about something but not directly part of it.

• Journaling: write data to journal, commit to file
system when complete in atomic operation

• reduces risk of corruption and inconsistency

• Attribute: A name and value associated with the
name. The value may have a defined type (string,
integer, etc.).

Filesystem: data layout
[root@elcid ~]# tune2fs -l /dev/sda1

 tune2fs 1.41.12 (17-May-2010)
 Filesystem volume name: <none>
 Last mounted on: /boot
 Filesystem UUID: 72228245-8322-4b2f-b043-317f5d9653df
 Filesystem magic number: 0xEF53
 Filesystem revision #: 1 (dynamic)
 Filesystem features: has_journal ext_attr resize_inode
dir_index filetype
 // needs_recovery extent flex_bg sparse_super large_
 // file huge_file uninit_bg dir_nlink extra_isize
 Filesystem flags: signed_directory_hash
 Default mount options: user_xattr acl
 Filesystem state: clean
 Errors behavior: Continue
 Filesystem OS type: Linux
 Inode count: 38400
 Block count: 153600
 Reserved block count: 7680
 Free blocks: 116833
 Free inodes: 38336
 First block: 0
 Block size: 4096
 Fragment size: 4096
 Reserved GDT blocks: 37
 Blocks per group: 32768 [...] c

• Data structure pointed by the inode
number, a unique identifier of a file
in the file system

• address of data block on the storage
media description of the file (POSIX)

• Size of the file
• Storage device ID
• User ID of the file's owner.
• Group ID of the file.
• File type
• File access right
• Inode last modification time (ctime)
• File content last modification time

(mtime),
• Last access time (atime).
• Count of hard links pointed to the

inode.
• Pointers to the disk blocks that store

the file's contents

File System: data layout and inode

• ls -i
• stat filename
• df -i

Useful command to interact with FS

[cozzini@login ~]$ df -ih
Filesystem Inodes IUsed IFree IUse% Mounted on
10.128.6.211:6789,10.128.6.212:6789,10.128.6.213 969K - - - /fast
10.128.6.211:6789,10.128.6.213:6789,10.128.6.212/ 48M - - - /large
10.128.4.201:/opt/area 191M 797K 190M 1% /opt/area
10.128.2.231:/illumina_run 4.6G 1.9M 4.6G 1%
/illumina_run
10.128.2.231:/storage 3.7G 462K 3.7G 1% /storage

• Meta-data : Data to describe data attribute (and
extended attribute)

• size, owner, creation date

• Meta-data are the bottleneck of scalability
• How many times do you type ls in a day?

How many times to you write a file?

• ls means a scanning of all the files in the directory !

Data and metadata

• API to access data and metadata (1988)
• POSIX interface is a useful, ubiquitous interface for

building basic I/O tools.
• Standard I/O interface across many platforms.
• open, read/write, close functions in C/C++/Fortran
• It allows buffered file I/O (streams) within (c/sdtio)

Posix interface

• Posix assumes atomicity and ubiquity
• Changes are visible immediately to all clients

• Problem for parallel accesses:
• POSIX requires a strict consistency to sequential order :

lock
• (Create a directory is an atomic operation with immediate

global view)
• No support for non-continuous I/O
• No hint / prefetching

Posix interface (2)

MPI-IO can be useful here. (see later..)

• Linux
• Ext2
• Ext3
• ext4
• Raiserfs
• Jfs
• Xfs…

Local FS: some examples

I/O FS on ORFEO:
• Home

• once logged in, each user will land in its home
in `/u/[name_of_group]/[name_of_user]

• e.g. the home of user area is in /u/area/[name_of_users]
• it’s physically located on ceph large FS, and exported via

infiniband to all the computational nodes
• quotas are enforced with a default limit of 2TB for each

users
• soft link are available there for the other areas

[cozzini@login ~]$ ls -lrt
total 548398
lrwxrwxrwx 1 cozzini area 18 Apr 7 2020 fast -> /fast/area/cozzini
lrwxrwxrwx 1 cozzini area 21 Apr 16 2020 scratch -> /scratch/area/cozzini

I/O FS on ORFEO:
• /Scratch

• it is large area intended to be used to store data that need to be
elaborated

• it is also physically located on ceph large FS, and exported via
infiniband to all the computational nodes

• /fast
• is a fast space available for each user, on all the computing nodes
• is intended to be a fast scratch area for data intensive application

[cozzini@login ~]$ df -h /scratch
Filesystem
Size Used Avail Use% Mounted on
10.128.6.211:6789,10.128.6.213:6789,..:/ 598T 95T 503T 16% /large

[cozzini@login ~] df -h /fast
Filesystem
Size Used Avail Use% Mounted on
10.128.6.211:6789,10.128.6.212:6789,..:/ 88T 4.3T 83T 5% /fast

I/O FS on ORFEO:
• Long term storage:

• it is NFS mounted via InfiniBand
• it is intended for long-term storage of final processed

dataset
• Plenty of room to be allocated..

[root@login ~]# df –h | grep 231
10.128.6.231:/illumina_run 128T 109T 20T 85% /illumina_run
10.128.6.231:/lage_archive 128T 94T 34T 74% /lage_archive
10.128.6.231:/onp_run_1 117T 56T 61T 48% /onp_run
10.128.6.231:/burlo_lon 91T 8.6T 83T 10% /burlo_long_term_storage
10.128.6.231:/analisi_da_cons 100T 56T 45T 56% /analisi_da_consegnare
10.128.6.231:/lala_storage 4.6T 2.4T 2.3T 52% /lala_storage
10.128.6.231:/opt/area 477G 210G 267G 45% /opt/area

• dd command..

• Questions:
• Why such a difference between the two runs?
• Why copying unit of 512B ?

Measure (raw) performance on FS

$dd if=/dev/zero of=/dev/null count=1
1+0 records in
1+0 records out
512 bytes (512 B) copied, 0.000242478 s, 2.1 MB/s
$dd if=/dev/zero of=~/big-write count=1M
1048576+0 records in
1048576+0 records out
536870912 bytes (537 MB) copied, 3.43889 s, 156 MB/s

• 512 byte is a typical block-size of the disk:
• It cannot read less than 512 bytes, if you want to

read less, read 512 bytes and discard the rest.
• File System block-size can be different

Blocksize on FS

[exact@login ~]$ stat -f .
File: "."
ID: 9d0420af3cbc070e Namelen: 255 Type: ext2/ext3

Block size: 4096 Fundamental block size: 4096
Blocks: Total: 372561982 Free: 51012529 Available:
32646449
Inodes: Total: 94633984 Free: 90641935

• The performance DISK is not a single number

Blocksize effect in the Random
access

● Identify your FileSystem and its properties
● Measure/Estimate the rough performance of your

hard-drive
● Compare it with the ramfs on your linux box and

on your cluster system

Proposed exercise

cozzini@login ~]$ df
Filesystem 1K-blocks Used Available Use%
Mounted on
/dev/mapper/SysVG-Root 51474912 33126208 15710880 68% /
devtmpfs 16358128 0 16358128 0%
/dev
tmpfs 16371480 501024 15870456 4%
/dev/shm

Lecture 03: Parallel I/O in
HPC

A couple of citations

“Very few large scale applications
of practical importance are NOT data
intensive.”

A supercomputer is a device for
converting a CPU-bound problem into
an I/O bound problem." [Ken Batcher]

• HPC I/O system is the hardware and software that
assists in accessing data during simulations and
analysis and keeping data between these activities

• It composed by
• Hardware: disks, disk enclosures, servers, networks, etc.
• Software: parallel file system, libraries, parts of the OS
• Brainware: people who take care of it

HPC I/O ecosystem

Parallel I/O in HPC

I/O for scientific computing

Scientific applications use I/O:
• to load initial conditions or datasets for processing

(input)
• to store dataset from simulations for later analysis

(output)
• checkpointing to files that save the state of an

application in case of system failure
• (Implementing ”out-of-core” techniques for algorithms

that process more data than can fit in system memory)

Checkpoint/restart
• For long-running applications, the cautious user

checkpoints
• Application-level checkpoint involves the application

saving its own state
• –Portable!

• A canonical representation is preferred
• –Independent of number of processes

• Restarting is then possible
• Canonical representation aids restarting with a different

number of processes
• Also eases data analysis (when using same output)

Flavors of I/O applications

• Two “flavors” of I/O from applications:
• Defensive: storing data to protect results from data loss

due to system faults
• Productive: storing/retrieving data as part of the scientific

workflow
• Note: Sometimes these are combined (i.e., data stored

both protects from loss and is used in later analysis)

• “Flavor” influences priorities:
• Defensive I/O: Spend as little time as possible
• Productive I/O: Capture provenance, organize for analysis

Preprocessing/Post-processing phases..

• Pre-/post processing:
• Preparing input
• Processing output

• These phases are becoming comparable or even
larger in time than the computational phases..

HPC optimization works

• Most optimization work on HPC applications is
carried out on:

• Single node performance
• Network performance (communication)
• I/O only when it becomes a real problem

Do we need to start optimizing I/O ?

SOON

TODAY/TOMORROW

YESTERDAY/TODAY

We are not counting here pre/post processing phases !!

I/O challenge in HPC

Large parallel machines should perform large
calculations

=> Critical to leverage parallelism in all phases including
I/O

(do you remember Amdahl law ?)

Factors which affect I/O

• How is I/O performed?
• I/O pattern
• Number of processes and files.
• Characteristics of file access.

• Where is I/O performed?
• Characteristics of the computational system.
• Characteristics of the file system.

Challenges in Application I/O
• Leveraging aggregate communication and I/O bandwidth of

clients
• but not overwhelming a resource limited I/O system with

uncoordinated accesses!
• Limiting number of files that must be managed

• Also a performance issue
• Avoiding unnecessary post-processing
• Often application teams spend so much time on this that

they never get any further:
• Interacting with storage through convenient abstractions
• Storing in portable formats

Parallel I/O software is available to help fixing ALL
these problem

Application dataset complexity vs I/O

• I/O systems have very simple data models
• Tree-based hierarchy of containers
• Some containers have streams of bytes (files)
• Others hold collections of other containers (directories or

folders)

• Applications have data models appropriate to
domain

• Multidimensional typed arrays, images composed of scan
lines, variable length records

• Headers, attributes on data

• How to map from one to the other ?

How to perform input/output on HPC

Serial I/O : spokeperson
• One process performs I/O.

• Data Aggregation or Duplication
• Limited by single I/O process.

• Simple solution, easy to manage, but Pattern does not
scale.

• Time increases linearly with amount of data.
• Time increases with number of processes.

Parallel I/O: File-per-Process
All processes perform I/O to individual files.
• Limited by file system.

• Pattern does not scale at large number of processes
• Number of files creates bottleneck with metadata operations.
• Number of simultaneous disk accesses creates contention for file system

resources.

• Manageability issues:
• What about managing thousand of files ???
• What about checkpoint/restart procedures on different number of

processors ?

Parallel I/O

• Each process performs I/O to a single file which is shared.
• Performance Data layout within the shared file is very

important.
• Possible contention for file system resources when large

number of processors involved..

• Accessing a shared filesystem from large numbers of
processes could potentially overwhelm the storage system
and not only..

• In some cases we simply need to reduce the number of
processes accessing the storage system in order to match
number of servers or limit concurrent access.

Parallel I/O on very large system..

What does Parallel I/O mean ?

• At the program level:
• Concurrent reads or writes from multiple processes to a

common file

• At the system level:
• A parallel file system and hardware that support such

concurrent access

I/O access patterns

Access Patterns

Software/Hardware stack for I/O

I/O middleware
• Match the programming model (e.g. MPI)

• Facilitate concurrent access by groups of processes
• Collective I/O
• Atomicity rules

• Expose a generic interface
• Good building block for high-level libraries
• Efficiently map middleware operations into PFS ones
• Leverage any rich PFS access constructs, such as

• Scalable file name resolution
• Rich I/O descriptions

• I/O interface specification for use in MPI apps
• Available in MPI-2.0 standard on
• Data model is a stream of bytes in a file
• Same as POSIX and stdio
• Features:

• Noncontiguous I/O with MPI datatypes and file views
• Collective I/O
• Nonblocking I/O

• Fortran/C bindings (and additional languages)
• API has a large number of routines..

Overview of MPI I/O

NOTE: you simply compile and link as you would
any normal MPI program.

● Writing is like sending a message and reading is
like receiving one.

● Any parallel I/O system will need to
● define collective operations (MPI communicators)
● define noncontiguous data layout in memory and

file (MPI datatypes)
● Test completion of nonblocking operations (MPI

request objects)
● i.e., lots of MPI-like machinery needed

Why MPI is good for I/O ?

NOTE: you simply compile and link as you would
any normal MPI program.

• Why do I/O in MPI?
• Why not just POSIX?

• Parallel performance
• Single file (instead of one file / process)

• MPI has replacement functions for POSIX I/O
• Multiple styles of I/O can all be expressed in MPI

• Contiguous vs non contiguous etc….

Parallel I/O using MPI ?

• A parallel solution usually is made of
• several Storage Servers that hold the actual filesystem

data
• one or more Metadata Servers that help clients to

identify/manage data stored in the file system
• a redundancy layer that replicates in some way

information in the storage cluster, so that the file system
can survive the loss of some component server

• and optionally:
• monitoring software that ensures continuous availability

of all needed components

Elements of a PFS

A graphical view:

Picture from: http://www.prace-ri.eu/best-practice-guide-parallel-i-o/#id-1.3.5

Parallel File System: I/O hardware

88

Parallel File System: components
•In general, a Parallel File Systems has the following
components

• Metadata Server
• I/O Servers
• Clients

• Nodes, Disks, controllers, and interconnects
• Hardware defines the peak performance of the I/O system:

• raw bandwidth
• Minimum latency

• At the hardware level, data is accessed at the granularity of
blocks, either physical disk blocks or logical blocks spread
across multiple physical devices such as in a RAID array

• Parallel File Systems takes care of
• managing data on the storage hardware,
• presenting this data as a directory hierarchy,
• coordinating access to files and directories in a consistent manner

Hardware to build a PFS:

• Parallel File Systems are usually optimized for high
performance rather than general purpose use,

• Optimization criteria:
• Large block sizes (≥ 64kB)
• Relatively slow metadata operations (eg. fstat())

compared to reads and writes..)
• Special APIs for direct access and additional

optimizations. i.e. no Posix sometime/somewhere

An important disclaimer..

• An example parallel file system, with large
astrophysics checkpoints distributed across
multiple I/O servers (IOS) while small
bioinformatics files are each stored on a single IOS

Parallel FS approaches..

• BeeGFS
• Developed at Fraunhofer Institute, freely available not open
• http://www.fhgfs.com/cms/

• Lustre
• open and Free owned by Intel DDN
• Intel no longer sells tools to manage and support ($$$)
• http://lustre.opensfs.org/

• GPFS (now known as Spectrum Scale)
• IBM proprietary $$$
• Very nice solution and expensive ones !

• And many others (WekaIO/MooseFS/Panasas... etc)

What is available on the market ?

Lustre in two pictures: simple one

Lustre in two pictures: complex
one

16/04/2024 95

HPC infrastructure @ CRIBI

GPU node

GPU node

FAT node
(2TB RAM)

I/O srv

I/O srv

I/O srv

I/O srv

STORAGE
12x600GB

36x2TB

STORAGE
12x600GB

36x2TB

masternode

1 GB Ethernet (SP/iLO/mgmt)
1 GB Ethernet (NFS)
40 GB Infiniband (LUSTRE/MPI)
10 GB Ethernet (iSCSI)
1 GB (LAN)

32 blades

(2x6 cores,
24,48,96GB

RAM)

16/04/2024 96

LUSTRE@CRIBI as storage solution
clientsHP p2000 I/O serversenclosures

controllers
hard drives

/lustre
(113 TB)

OSS

OSS

OSS

OSS
MDS

enclosure
+

controller

HD

OST
OST
OST
OST
OST

OST
OST
OST
OST
OST

MDT

/lustre
(113 TB)

16/04/2024 97

accessing LUSTRE filesystem
clientsHP p2000 I/O serversenclosures

controllers
hard drives

R
A

ID

/lustre
(113 TB)

OSS

OSS

OSS

OSS
MDS

enclosure
+

controller

HD

OST
OST
OST
OST
OST

OST
OST
OST
OST
OST

MDT

/lustre
(113 TB)

16/04/2024 98

why “parallel” filesystem?
clientsHP p2000 I/O serversenclosures

controllers
hard drives

R
A

ID
R

A
ID

/lustre
(113 TB)

OSS

OSS

OSS

OSS
MDS

enclosure
+

controller

HD

OST
OST
OST
OST
OST

OST
OST
OST
OST
OST

MDT

/lustre
(113 TB)

16/04/2024 99

Expected performance
● Elements of the infrastructure:

●Network Speed: Infiniband QDR :3.2GB/sec for server
--> Network aggregate bandwith: 3.2 x 4 ~ 12GB/se

●4 IO-SRV two OST each
●Each OST: RAID 6 6 disks
●OST Aggregate bandwith: (6-2)*100 = 400 Mb/seconds

● [Disk speed: 100 Mb/seconds]
●Node Aggregate bandwith 400x 2 = 800 Mb/sec

Peak performance : 4 x 800 = 3.2 GB/sec read/write

overall LUSTRE performance

• ~ 1.7 GB/sec writing
• 32 clients, 32 GB files

• ~ 1.2 GB/sec reading
• 32 clients, 64 GB files

➢ sequential write/read by iozone
➢ 1 ~ 8 clients, 1 ~ 4 proc/client
➢ 32 GB files writing
➢ 64 GB files reading

Client #1
Client #2

Client #3
Client #4

Client #5
Client #6

Client #7
Client #8

IB QDR Network

OSS #1 OSS #2 OSS #3 OSS #4

LUSTRE can be disappointing too...

0 2 4 6 8 10
0

50

100

150

200

250

300

350

400

450

Gbytes

M
B/

s
writing 1 file with variable block size

1 kb

2 kb

4 kb

8 kb

64 kb

512 kb

1 Mb

2 Mb

4 Mb

To be continued

	Storage for HPC systems�part 2
	 Agenda of these lectures
	Lectures final schedule 	
	Intro: Basic concepts on storage
	Key metrics
	Storage Hierarchy
	Storage Hierarchy
	RAM Disk
	Traditional disk: Hard Disk Drive (HDD)
	Current HDD technology
	Solid State Drive: SDD
	HDD vs SSD
	NVMe (Non-volatile Memory express)
	NVMe (Non-volatile Memory express)
	A recent comparison
	ORFEO storage: hardware
	The ORFEO basic brick: NVME
	The ORFEO basic brick: SDD drive
	The ORFEO basic brick: HDD drive
	The disk bandwidth/reliability problem
	RAID
	RAID reliability and performance..
	RAID 0: striping
	RAID 1: redundancy
	RAID 10: striping +redundancy (1+0 / 0+1)
	RAID 5
	RAID 6
	RAID Parameters
	Notes on redundancy
	 Implementing RAID
	RAID on ORFEO storage
	Intro: Filesystems
	Filesystem
	File Systems: Basic Concepts (1/2)
	File Systems: Basic Concepts (2/2)
	Filesystem: data layout
	File System: data layout and inode
	Useful command to interact with FS
	Data and metadata
	Posix interface
	Posix interface (2)
	Local FS: some examples
	I/O FS on ORFEO:
	I/O FS on ORFEO:
	I/O FS on ORFEO:
	Measure (raw) performance on FS
	Blocksize on FS
	Blocksize effect in the Random access
	Proposed exercise
	Lecture 03: Parallel I/O in HPC
	A couple of citations
	HPC I/O ecosystem
	Parallel I/O in HPC
	 I/O for scientific computing
	Checkpoint/restart
	Flavors of I/O applications
	Preprocessing/Post-processing phases..
	 HPC optimization works
	 Do we need to start optimizing I/O ?
	I/O challenge in HPC
	 Factors which affect I/O
	�Challenges in Application I/O
	Application dataset complexity vs I/O
	How to perform input/output on HPC
	 Serial I/O : spokeperson
	Parallel I/O: File-per-Process
	 Parallel I/O
	Diapositiva numero 76
	What does Parallel I/O mean ?
	I/O access patterns
	Access Patterns
	Software/Hardware stack for I/O
	I/O middleware
	Overview of MPI I/O
	Why MPI is good for I/O ?
	Parallel I/O using MPI ?
	Elements of a PFS
	A graphical view:
	Parallel File System: I/O hardware
	Parallel File System: components
	Hardware to build a PFS:
	An important disclaimer..
	Parallel FS approaches..
	What is available on the market ?
	Lustre in two pictures: simple one
	Lustre in two pictures: complex one
	HPC infrastructure @ CRIBI	
	LUSTRE@CRIBI as storage solution
	accessing LUSTRE filesystem
	why “parallel” filesystem?
	Expected performance
	overall LUSTRE performance
	LUSTRE can be disappointing too...
	To be continued

