MICROSCOPIA OTTICA IN BIOLOGIA CELLULARE [675SM]

20th March 2024:

Contrasting techniques with laboratory

Agnes Thalhammer agnes.thalhammer@units.it

Interdipartimer
di Microscopia

Last time….OPTICAL MICROSCOPY

- 1. How a microscope works
- 2. Magnification vs resolution
- 3. Numerical aperture and working distance
- 4. Objectives
- 5. Point-spread function and Airy disk
- 6. Optical abberations

cima

UPRIGHT MICROSCOPE

Transmitted and reflected light: transmission for bright field and reflection for flourescent light

Nikon Eclipse E600 with U-III Film

Camera System
(circa early 1990s)

DI TRIESTE

INVERTED MICROSCOPE

CCTV
Port

Lamphouse

Centro
Interdipartimentale
Idi Microscopia
Avanzata

ABSORPTION

REFRACTION & DISPERSION

Short wavelengths are "bent" more than long wavelengthsdispersion

Light is "bent" and the resultant colors separate (dispersion). Red is least refracted, violet most refracted.

DIFFRACTION

Diffraction: Rays

Parallel rays incident on an aperture, say rays from a point source at infinity, begin to diverge.

The smaller the aperture, the larger the divergence.

This can be explained if we consider light as a wave phenomenon

This lesson: CONTRASTING TECHNIQUES

- Brightfield
- •Darkfield
- Phase Contrast
- Polarization Contrast
- •Differential Interference Contrast (DIC)
- Fluorescence Contrast

Interdipartin
di Microscop

CONTRAST GENERATION FOR TRANSMITTED LIGHT

- Brightfield >>> absorbance
- Darkfield >>> diffraction
- Phase Contrast >>> Phase shift
- Differential Interference Contrast (DIC) Microscopy

>>> Phase shift / Polarization / Interference

BRIGHTFIELD

Principle:

Light is transmitted through the sample and absorbed by it.

Application:

- Only useful for specimens that can be contrasted via dyes
- Very little contrast in unstained specimens
- With a bright background, the human eye requires local intensity fluctuations of at least 10 to 20% to be able to recognize objects.

Cross section of su (http://www.zum.de/Faecher/Mater

BRIGHTFIELD

- Bright Field is the most universal technique used in light microscope.
- Usually used in samples with colorimetric staining or good contrast; dark sample absorbing light on bright background
- Particularily useful on samples with intrinsic colour (e.g. chloroplasts)
- AI programs using mashine-learning techniques on stained samples to be able to identify cells/organelles etc.. without staining in Bright Field.

DARKFIELD

Principle:

The illuminating rays of light are directed through the sample from the side by putting a dark disk into the condenser that hinders the main light beam to enter the objective. Only light that is scattered by structures in the sample enters the objective.

Application:

Diatoms and other unstained or colourless specimens

Symbiotic Diatom colony

(www1.tip.nl/~t936927/making.html)

Interdipartimenta

Brightfield

DARKFIELD

Fine structures can often not be seen in front of a bright background.

DARKFIELD

- Dark background against which objects are brilliantly illuminated.
- This is accomplished by a special condenser that transmits a hollow cone of light.
- Most of the light directed through the condenser does not enter the objective, the field is dark.
- However, some of the light rays will be scattered if the medium contains objects.
- The diffracted light will enter the objective & reach the eye, thus the object will appear bright in an dark background.
- Best for observing pale objects, unstained cells

icienze della V

PHASE CONTRAST

Principle:

Incident light is out of phase with transmitted light as it was slowed down while passing through different parts of the sample. when the phases of the light are synchronized by an interference lens, a new image with greater contrast is seen.

Interdipartimental di Microscopi

PHASE CONTRAST Phase contrast in practice

Application: Phase contrast is the most commonly used contrasting technique All tissue culture microscopes and many time-lapse microscopes are set up for phase contrast.

brightfield wrong phase stop right phase stop

partimento di

PHASE CONTRAST

Interdipartimentale
di Microscopia

Centro **Centro** Interdipartimentale

POLARISATION

(i.e., all planes .
the propagation light vibrates in all planes that contain the light ray perpendicular to direction

© Jane Selverstone, University of New Mexico, 2003

(right)

Only the component of light vibrating in E-W direction can pass through lower polarizer – light intensity decreases

Though polarized, still white light!

© Jane Selverstone, University of New Mexico, 2003

Dipartimento di

Scienze della Vita

Interdipartimental

Now what happens? What reaches your eye?

Why would anyone design a microscope that prevents light from reaching your eye???

© Jane Selverstone, University of New Mexico, 2003

Interdipartimentale
di Microscopia

3) Now insert a **thin section** POLARISATION

© Jane Selverstone, University of New Mexico, 2003

Dipartimento di

Scienze della Vita

Interdipartimentale
di Microscopia

POLARISATION CONTRAST

Principle:

Polarized light is used for illumination. Only when the vibration direction of the polarized light is altered by a sample placed into the light path, light can pass through the analyzer. The sample appears light against a black background. A lambda plate can be used to convert this contrast into colours.

Application:

Polarization contrast is used to look at materials with birefringent properties, in which the refractive index depends on the vibration direction of the incident light, e.g. crystals or polymers.

Polarizer

Analyzer

Lambda plate

NOMARSKI IMAGE

- Result is extinction (shadow) on one side of specimen and reinforcement (bright) on the other
- Shear of image
- False relief 3D image
- Consider wavefront diagrams

Differential Interference Contrast Schematic

BIREFRINGENCE

Bi-Refraction in Calcite Crystals

- Birefringent materials have different indices of refraction for light polarized parallel or perpendicular to the optical axis.
- Two beams with orthogonal polarization are produced if illumination is at an angle to optical axis

Interdipartime

Differential Interference Contrast (DIC)

The idea:

Use two beams and interference to measure the path length difference between adjacent points in the sample

WOLLASTON / NOMARSKI PRISMS

- Two pieces of cemented calcite/quartz
- Produce orthogonally polarized beams propagating at different angles
- Placed at a back focal plane, this produces the two beams that will probe the OPL difference of our sample

THE DIFFERENTIAL INTERFERENCE CONTRAST (DIC)

HOW DIC GENERATES CONTRAST

Scienze della Vita

- Both beams see same OPL
- Emerge in phase
- Regenerate initial

polarization

• No light makes it through analyzer

HOW DIC GENERATES CONTRAST

- Beams see different OPL
- Right beam is phase retarded
- Generate elliptical polarization
- Light makes it through analyzer

Centro Interdipartimentale

di Mer**Jano** Selverstone, University

HOW DIC GENERATES CONTRAST

- Both beams see same OPL
- Emerge in phase
- Regenerate initial polarization
- No light makes it through analyzer

Centro Interdipartimentale
di Microscopia

Specimen Optical Path Difference and DIC Amplitude Profile

THEORY & APPL. LIGHT MICROSCOPY

- 1. Contrast is directional
- 2. Contrast highlights edges
- 3. One end brighter, other is dimmer giving a pseudo – 3D image

THE DIFFERENTIAL INTERFERENCE CONTRAST (DIC) MICROSCOPE

THE DIFFERENTIAL INTERFERENCE CONTRAST (DIC) MICROSCOPE

SHEAR IN IMAGE

- Degree of shear is set by wollaston combination
- Bias of shear adjustable by shifting upper wollaston position to retard one beam more or less relative to other
- Cannot be used for quantitative measurements of dry mass
- But extremely useful for observing living cells

Positive and Negative Bias in Differential Interference Contrast

THEORY & APPL. LIGHT MICROSCOPY

Dipartimento di Scienze della Vita

COMPARISON OF NOMARSKI AND PHASE CONTRAST OPTICS

Centro Interdipartimentale
di Microscopia Avanzata

COMPARISON OF NOMARSKI AND PHASE CONTRAST OPTICS

Centro Interdipartimentale
di Microscopia

DIC IS HIGHER RESOLUTION THAN PHASE CONTRAST

Microscope Apertures in DIC and Phase Contrast

Halos in Phase Contrast and DIC Microscopy

Transparent Specimens in Phase Contrast and DIC

Dipartimento di Scienze della Vita

Birefringent Specimens in Phase Contrast and DIC

THEORY & APPL. LIGHT

Heliozoans

(*Actinophrys sol*)

THEORY & APPL. LIGHT MICROSCOPY

https://en.wikipedia.org/wiki/Polarized_light_microscopy#/me dia/File:Paper_Micrograph_Bright.png

THEORY & APPL. LIGHT MICROSCOPY

CONTRASTING TECHNIQUES - A SUMMARY

• **Brightfield - absorption**

Light transmitted through sample. Only useful for colored samples. Very little contrast in unstained on

• **Darkfield - scattering**

Light directed from the side - only scattered light enters the microscope lenses -> sample appears as an illuminated object

• **Phase Contrast - phase interference**

Incident light is out of phase with transmitted light. phases of the light are synchronized by an interference lens -> new image with greater contrast

• **Polarization Contrast – polarization**

Polarized light for illumination. vibration direction of the polarized light is altered by a sample - light can pass through analyzer. The sample appears light against a black background.

• **Differential Interference Contrast (DIC) – polarization + phase interference**

Also known as Nomarski microscopy. Synchronizing of the different phases of incident and transmitted light is done by a set of special condenser lens mounted below the stage of a microscope

• **Fluorescence Contrast**

