MICROSCOPIA OTTICA IN BIOLOGIA CELLULARE [6755M]

aa 2023/2024, 2nd semester

Lesson 4

Aula exCLA, edificio C1, 15:00-18:00

Agnes Thalhammer agnes.thalhammer@units.it

Centro Interdipartimentale di Microscopia Avanzata

MICROSCOPIA OTTICA IN BIOLOGIA CELLULARE [6755M]

date	lesson/lab	aula	time
06/03/24	intro	Aula Ex-Cla, C1	15-16
13/03/24	lesson1	Aula Ex-Cla, C1	15-18
20/03/24	Lesson2+lab	sala microscopia F2, C1	15-18
27/03/24	lesson3	Aula Ex-Cla, C1	15-18
10/04/24	lesson4	Aula Ex-Cla, C1	15-18
17/04/24	lesson5	Aula Ex-Cla, C1	15-18
24/04/24	Lesson6+lab2	Aula Ex-Cla, C1	15-18
08/05/24	lab2	sala microscopia F2, C1	15-18
15/05/24	lab3	CIMA center, groupl	15-17
22/05/24	lab3	CIMA center, groupII	15-17

12 h lab + 16 h lessons

Centro Interdipartimentale di Microscopia Avanzata

WHICH CONTRASTING TECHNIQUE?

Amphibian Skin

Bacteria, Yeast, and Blood

WHY FLUORESCENCE MICROSCOPY?

High resolution

High contrast High specificity Quantitative Live Cell Imaging

Interdipartimentale di Microscopia

Dipartimento di
 Scienze della Vita

FLUORESCENCE PRINCIPLE

Fundamental Concepts Underpinning Fluorescence Microscopy

Interdipartimentale di Microscopia Avanzata

BASIC CONCEPTS

- excitation light radiates specimen
- weaker emitted light to make up the image is separated
- use fact that the emitted light is of lower energy and has a longer wavelength
- The fluorescent areas can be observed in the microscope and shine out against a dark background with high contrast

Molecules absorbing the energy of electromagnetic radiation will jump to a higher energy level. When certain excited molecules return to the ground state they emit radiation. This phenomenon is known as fluorescence. Fluorescent molecules are known as fluorochromes or fluorophores.

Centro Interdipartimentale di Microscopia Avanzata

Centro Interdipartimentale di Microscopia Avanzata

Interdipartimentale di Microscopia Avanzata

- Chromophores are components of molecules which absorb light
- e.g. from protein most fluorescence results from the indole ring of tryptophan residue
- They are generally combined aromatic groups, planar or cyclic molecules with several π -bonds
- Used alone as dyes or conjugated to macromolecules (antibodies!!)

FLUOROPHORES (Fluorochromes, chromophores)

Probe	Ex (nm)	Em (nm)	MW	Notes					
Reactive and conjugated probes									
Hydroxycoumarin	325	386	331	Succinimidyl ester					
Aminocoumarin	350		330	Succinimidyl ester					
Methoxycoumarin	360		317	Succinimidyl ester					
Cascade Blue	(375);401		596	Hydrazide					
Pacific Blue	403	455	406	Maleimide					
Pacific Orange	403	551							
Lucifer yellow	425	528							
NBD	466	539	294	NBD-X					
R-Phycoerythrin (PE)	480;565	578	240 k						
PE-Cy5 conjugates	480;565;650	670		aka Cychrome, R670, Tri-Color, Quantum Red					
PE-Cy7 conjugates	480;565;743	767							
Red 613	480;565	613		PE-Texas Red					
PerCP	490	675		Peridinin chlorphyll protein					
TruRed	490,675	695		PerCP-Cy5.5 conjugate					
FluorX	494	520	587	(GE Healthcare)					
Fluorescein	495	519	389	FITC; pH sensitive					
BODIPY-FL	503	512							
TRITC	547	572	444	TRITC					
X-Rhodamine	570	576	548	XRITC					
Lissamine Rhodamine B	570	590							
Texas Red	589	615	625	Sulfonyl chloride					
Allophycocyanin (APC)	650	660	104 k						
APC-Cy7 conjugates	650,755	767		PharRed					

Rhodamine

Fluorescein

Centro Interdipartimentale di Microscopia

Chromophore Structural Motifs of Green Fluorescent Protein Variants

MULTICHANNEL FLUORESCENCE

Arterial edothelial cell Ch1(Green) FITC Tubulin Ch2(Red) mitotracker Ch3(Blue) DAPI

- Direct coupling to macromolecules
- Fluorescent dyes and substrates
- Fluorescent fusion proteins
- Fluorescent Antibodies

Dipartimento di

Scienze della Vita

① Click & drag to zoo	om into graph						C .	Reset 👻	🔹 Sett	ings 👻 🖌	↗ View full s	creen
100												
300	350 400	4	50 500	550	600 Wavelen	650 ath (nm)	700	750	800	850	900	950
402nm DAF 12%	l Ex, 1% Em				narolon	901 (111)						
Light source 1	Excitation	filter ⊘	Emission filter	D								^
Show 🗹 Laser							w	avelength	Normalize	Custom name		
Violet							•	405	•			×

https://www.thermofisher.com/order/fluoresc ence-spectraviewer#!/

Beware of light source!!

() Clic	k & drag to zoom i	nto graph					[🖰 Reset 👻	🔅 Setti	ngs 👻	, ^A View fu	ull screen	3 F	luorophores			
100 —								<u> </u>	, <u> </u>		-		Sho	w		Ex	Em
80 —														Fluorophore			
60																\checkmark	~ ×
(%)														Fluorophore			
tensity 40														DAPI			× ×
lative in														•			
8 0 -														Fluorophore			
	300 350	400	450	500	550	600 650	700		800	850	900	950		Ennanced Gree	en Fluorescent Pr		⊻ ×
453nm	😑 DAPI		e Enhan	ced Green		Wavelength (nm)											_
	0% Ex, 8	3% Em	53% E	x, 0% Em		447/60 (Em)											e l
Ligh	nt source 1	Excitation filter	C Emis	sion filter 2								^					odbo
Show	Laser							Wavelength	Normalize	Custom nam	e						
	Violet						•	405				~					ö
												^					
() Clic	ck & drag to zoom	into graph						C Reset	-	Settings 👻		View full scree	en				
 — 001 — 00 — 08 — 04 — 05 — 06 — 0 																htt end	ps: ce-:
	300 35	0 400	450	500	550	600 6	50	700 7	750 E	800	850	900	950				
873nm	1					wavelength (nm											_
																	ł
Lig	ht source 🙎	Excitation filter	r 🖉 🛛 Em	nission filter 2								^					
Show	Laser							Waveler	ngth Normal	ze Custo	m name						
	Violet							▼ 405					~				
								. 405					^	- I	Centro		
	Blue							▼ 488					×	1a	di Microsco	menta pia	ale

ps://www.thermofisher.com/order/fluoresc e-spectraviewer#!/

Beware of light source!!

Give Feedback

https://www.thermofisher.com/order/fluoresc ence-spectraviewer#!/

Beware of light source!!

https://www.thermofisher.com/order/fluoresc ence-spectraviewer#!/

Check for crosstalk!!

https://www.thermofisher.com/order/fluoresc ence-spectraviewer#!/

Check for cross-talk!!

① Click & drag to zoom into graph	C	Reset 👻 🏟 Settin	ngs ▼	reen 4 F	Fluorophores	Fx
100 — 80 — 60 —					Fluorophore	<u> </u>
00					Fluorophore DAPI Fluorophore	
0 300 350 400 450 500 330nm ● Alexa Fluor 546 11% Ex, 0% Em	550 600 650 700 Wavelength (nm)	750 800	850 900	950	Enhanced Green Fluorescent Pr Fluorophore Alexa Fluor 546	•
Light source Excitation filter Emission filter 3				_		
				·		
Show 🗖 Filter		Wavelength Bandwidth	Custom name			
Show Filter		Wavelength Bandwidth	Custom name	×		
Show Filter DAPI GFP (FITC, Alexa Fluor 488)		Wavelength Bandwidth 357 44 470 22	Custom name	×××		

https://www.thermofisher.com/order/fluoresc ence-spectraviewer#!/

Beware of filter!!

https://www.thermofisher.com/order/fluoresc ence-spectraviewer#!/

Beware of crosstalk!!

① Click & drag to zoom into graph	C Reset ▼	Settings 👻	View full screen	4 Fluorophores
80 —				Fluorophore
60				۹. ۵
				Fluorophore
				DAPI S
				Fluorophore
	700 750	800 850	900 950	Enhanced Green Fluorescent Pr
Wavelength (nm)				Fluorophore
93 INM				Alexa Fluor 568
Light source Excitation filter Emission filter 3			^	
Show - Filter	Wavelength	Bandwidth Custom name		
GFP (FITC, Alexa Fluor 488)	- 470	22	×	
RFP (TRITC, Alexa Fluor 555)	▼ 531	40	×	

▼ 593

https://www.thermofisher.com/order/fluoresc ence-spectraviewer#!/

Beware of fluorophore!!

🕻 Reset 👻 🦯 View full screen 👶 Settings 👻 ① Click & drag to zoom into graph · 40 550 600 Wavelength 730nm Excitation filter ⊘ Emission filter Light source $\mathbf{\wedge}$ Show 🗹 Filter Bandwidth Custom name RFP (TRITC, Alexa Fluor 555)

500

Excitation filter 🖉 Emission filter 1

600

Wavelength (nm

40

529nm

Light source 1

Vellow

Show 🔽 Laser

Alexa Fluor 59

22% Ex. 0% Em

https://www.thermofisher.com/order/fluoresc ence-spectraviewer#!/

Beware of fluorophore!!

800

() Click & drag to zoom into graph

Alexa Fluor 594 10% Ex. 0% Em

402nm

🗘 Reset 👻

🔹 Settings 👻

View full screen

900

https://www.thermofisher.com/order/fluoresc ence-spectraviewer#!/

Beware of filter cube!!

700

650

https://www.thermofisher.com/order/fluoresc ence-spectraviewer#!/

Farred is not visible to eye!!

FLUORESCENCE OVERLAP

FLUORESCENCE OVERLAP

() Click a	& drag to zoom into graph			🗘 Reset 🔻	🔹 Sett	ings 👻 🖉	View full screen	3 Fluorophores	
100 —								Show	Ex ✓
80 —								Fluorophore	
60 (%)								Fluorophore	
e intensity								Enhanced Yellow Fluorescent F	
Relativ								Fluorophore	
30	0 350 400	450 500 550	0 600 650	700 750	800	850	900 950	tdTomato	
348nm			Wavelength (nm)						
Light	Source 3 Excitation filter	Emission filter					•		
Show 🔽	Filter			Wavelength	Bandwidth	Custom name			
	GFP (FITC, Alexa Fluor 488)			▼ 510	42		×		
~	RFP (TRITC, Alexa Fluor 555)			▼ 593	40		×		

FLUORESCENCE OVERLAP

▼ 531

RFP (TRITC, Alexa Fluor 555)

 \checkmark

Overlap!!

Х

Advanced Microscopy Techniques

Interdipartimentale di Microscopia Avanzata

5. Lesson 4 – Confocal, super-resolution and 2-photon microscopy

5.1. TIRF microscopy

5.2. Confocal microscopy

- 5.3. 2-photon microscopy
- 5.4. Superresolution microscopy

5.4.1. SIM microscopy

- 5.4.2. STED microscopy
- 5.4.3. PALM microscopy
- 5.4.4. STORM microscopy

5.5. FRET microscopy

5.6. FRAP microscopy

Centro Interdipartimentale di Microscopia Avanzata

Centro

eima

lab3

Interdipartimentale

di Microscopia

Dipartimento di

Scienze della Vita

WHICH IMAGING TECHNIQUE SHOULD I USE?

	1-5 μm	TIRF (for samples at the coverslip)	Ĺ	
Sample	1-20 um	Wide-field (+deconvolution)	Fa	
		Spinning Disk Confocal	S	ity
Thickness	10-100 μm	Line-scanning confocal		Sensitiv
	>20 µm	Point scanning Confocal	Slov	
Ę	_ >50-100 μm	2-photon confocal		
		centro Interdipartiment di Microscopia Avanzata	tale	UNIVERSITÀ DEGLI STUD DI TRIESTE
NEAR FIELD IMAGING (NSOM)

-place microscope distance less than 1 wavelength from sample

-20-50 nm resolution

problem: cannot image into sample because of wavelength restriction

ntro erdipartimentale Aicroscopia nzata

You need:

- •TIRF objectives with high NA
- •TIRF condensor, where you are able to change the angle of illumination
- •Glass coverslips

Result: very thin section at the bottom of the sample 150-200nm

<u>Use:</u> to study membrane dynamics (endocytosis, focal adhesions, receptor binding) *Nikon TE 2000*

TIRF vs EPI

Heather Spence, R10

TIRF vs EPI

Lasp in TIRF mode

Heather Spence, R10

PRINCIPLE OF CONFOCAL MICROSCOPY

two pinholes are used:

- One pinhole is placed in front of the illumination source to allow transmission only through a small area
- only a point of the specimen is illuminated at one time
- Fluorescence excited at the focal plane is imaged onto a confocal pinhole placed right in front of the detector
- Only fluorescence excited within the focal plane of the specimen will go through the detector pinhole
- Need to scan point onto the sample

Dipartimento di

Scienze della Vita

CONFOCAL DETECTION

Sample 3D -> Detector 2D A pinhole allows only in-focus light through

fluorescence which gets to detector

gets rejected

Smaller the pinhole, better out-of-focus discrimination but lose more signal.

Scan sample in x, y, z and reconstruct entire image

WIDE-FIELD vs CONFOCAL MICROSCOPY

- a light source
- b dichroic filter
- c objective lens
- d focal plane
- e specimen
- f light detector
- g confocal aperture

WHEN TO USE CONFOCAL?

- Confocal is not a magic bullet
 - It is extremely wasteful of photons
 - Laser-scanning confocal is 100 200-fold less sensitive than widefield

CONFOCAL MICROSCOPY

Fast imaging via moveable mirrors

3-D SECTIONING WITH CONFOCAL

3D-dimensional reconstruction of a series of 2D images of PMMA spheres

A macrophage cell was stained with fluorochrome-labeled reagents specific for DNA (blue), microtubules (green), and actin microfilaments (red). The series of fluorescent images obtained at consecutive focal planes (optical sections) through the cell were recombined in three dimensions.

(a) In this three-dimensional reconstruction of the raw images, the DNA, microtubules, and actin appear as diffuse zones in the cell. (b) After application of the deconvolution algorithm to the

images, the fibrillar organization of microtubules and the localization of actin to adhesions become readily visible in the reconstruction.

2-PHOTON EXCITATION

Two-photon excitation occurs through the absorption of two lower energy

One-photon excitation

Two-photon excitation

Centro Interdipartimentale di Microscopia Avanzata

21

FROM 2-PHOTON TO MULTIPHOTON...

SINGLE- vs TWO-PHOTON EXCITATION

Image source: Current Protocols in Cytometry Online Copyright C 1999 John Wiley & Sons, Inc. All rights reserved.

The cuvette is filled with a solution of a dye, safranin O, which normally requires green light for excitation. **Green light (543 nm)** from a continuous-wave helium-neon laser is focused into the cuvette by the lens at upper right. It shows the expected pattern of a continuous cone, brightest near the focus and attenuated to the left. The lens at the lower left focuses an invisible **1046-nm infrared beam** from a mode-locked Nd-doped yttrium lanthanum fluoride laser into the cuvette. Because of the two-photon absorption, excitation is confined to a tiny bright spot in the middle of the cuvette.

Slide credit: Brad Amos, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom $\ensuremath{24}$

PENETRATION DEPTH

Comparison of imaging penetration depth between conice and multiphoton microscopy. Optical sections through a glomerulus from an acid-fucsin- stained monkey kidney pathology sample imaged by confocal microscopy with 2 μ W of 532-nm light (left, columns 1 and 2) and multiphoton microscopy with 4.3 mW of 1047-nm light (descanned; right, columns 3 and 4) were compared. At the surface, the image quality and signal intensity are similar; however, at increasing depth into the sample, signal intensity and quality of the confocal image falls off more rapidly than the multiphoton image. Images were collected at a pixel resolution of 0.27 μ m with a Kalman 3 collection filter. Scale bar, 20 µm.

Centonze VE, White JG. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J. 1998 Oct;75(4):2015-24.

WIDE-FIELD VS. CONFOCAL VS. 2-PHOTON

Drawing by P. D. Andrews, I. S. Harper and J. R. Swedlow

FAR FIELD: TWO-PHOTON

- Non-linear 2-photon excitation and pinhole detection decrease SPF beyond classical limits
- 2^{1/2} improvement in resolution
- High penetration depth (IR wavelengths for stimulation)

TWO-PHOTON MICROSCOPY – DYE examples

	Alexa Fluor® 350	Alexa Fluor® 488	Alexa Fluor® 546	Alexa Fluor® 555	Alexa Fluor® 568	Alexa Fluor® 594	Alexa Fluor® 647
Target	label/conjugate						
Bibliography	Citations						
TPE excitation (nm)	720	720, 830	810	810	770	810	800
Laser line (nm)	350/405	488	488	488	561	594	594/633
Standard filter set	DAPI	FITC	TRITC	TRITC	RFP	Texas Red®	Cy®5
Ex/Em (nm)	346/442	490/525	556/573	555/580	578/603	590/617	650/665

TWO-PHOTON MICROSCOPY – DYE examples

Kondo et al, 2017

ntale

TWO-PHOTON MICROSCOPY – DYE examples

Kondo et al, 2017

STRUCTURED-ILLUMINATION MICROPSCOPY (SIM) Objective Diffractive grating Excitation

100 nm resolution possible

STRUCTURED ILLUMINATION - HISTORY

Optischen Abbildung unter Überschreitung der beugungsbedingten Auflösungsgrenze

von W. LUKOSZ und M. MARCHAND Physikalisches Institut, Technische Hochschule, Braunschweig, Germany

(Received 5 February 1963, and in revised form 1 July 1963)

Bekanntlich setzt die Beugung dem mit einem optischen System erreichbaren Auflösungsvermögen (präziser formuliert : der Bandbreite des vom System durchgelassenen Orts-Frequenzbandes) eine prinzipielle Grenze.

In der vorliegenden Arbeit wird ein neues Verfahren zur optischen Abbildung mit einem über die beugungsbedingten Grenzen hinausgehenden Auflüsungsvermögen erläutert : Das optische System selbst wird unverändert benutzt. In (bzw. in der Nähe) der Objektebene wird aber eine

- Lukosz and Marchand suggested in 1963 that lateral light patterns could be used to enhance resolution
- Practical implementation was reported by T. Wilson et al. in 1997. (Neil, M. A. A., Wilson, T. & Juskaitis, R. (1997) Opt. Lett. 22, 1905–1907.)

RESOLUTION EXTENSION THROUGH THE MOIRÉ EFFECT

The word moiré is French (from the past participle of the verb moirer, meaning to water).

If an unknown sample structure (*a*) is multiplied by a known regular illumination pattern (*b*), moiré fringes will appear (*c*). The Moiré fringes occur at the spatial difference frequencies between the pattern frequency and each spatial frequency component of the sample structure and can be coarse enough to observe through the microscope even if the original unknown pattern is unresolvable. Otherwise-unobservable sample information can be deduced from the fringes and computationally restored.

Gustafsson, M.G.L. (2005) Proc. Natl. Acad. Sci. USA 102, 13081-13086

Advanced microscopy techniques

SIM-Structural illumination microscopy

- methods (TIRF, cofocal, SIM and 2 photon) use common dyes (good)
- confocal is easiest, most widely used

- best resolution obtainable only 100 nm (SIM)
- single molecule is problematic
- Consider sample thickness!

29

Advanced microscopy techniques

CIMA SIM superresolution vs MP vs confocal

cima.services@units.it

	confocal	SIM	MP
Fixed sample	yes	yes	yes
Live sample	not ideal	yes dedicated incubation chamber with temperature, CO ₂ and humidity regulation	yes to be set up customized to needs
Sample thickness	tens of µm	tens of μm preferably monolayer of cells	up to 2 mm
Wavelengths (nm)	405/488/561/640	405/488/561/640	tuneable, range 700-1000 nm
strength	Multichannel imaging for colocalisation	Structural resolution and time series (1 fps)	Penetration depth, time series (> 1 fps)

Resonance Energy Transfer Jablonski Diagram

DI TRIESTE

DI TRIESTE

Donor	Acceptor	
Tryptophan	Dansyl	
IAEDANS (1)	DDPM (2)	
BFP	DsRFP	
Dansyl	FITC	
	Octadecylrhodamine	
CFP	GFP	
CF (3)	Texas Red	
Fluorescein	Tetramethylrhodamine	
СуЗ	Cy5	
GFP	YFP	
BODIPY FL (4)	BODIPY FL (4)	
Rhodamine 6G	Malachite Green	
FITC	Eosin Thiosemicarbazide	
B-Phycoerythrin	Cy5	
Cy5	Cy5.5	

Fluorescence recovery after photobleaching

Principle of FRAP A) The bilayer is uniformly labeled with a fluorescent tag B) This label is selectively photobleached by a small (~30 micrometre) fast light pulse C) The intensity within this bleached area is monitored as the bleached dye diffuses out and new dye diffuses in D) Eventually uniform intensity is restored

Fluorescence recovery after photobleaching

- Laser for photobleaching can be used on an epifluorescence or confocal microscope, usually with CCD camera, not PMT
- GFP dyes or photoconvertable dyes used

COMPARISON

5	
(J	D

method	excitation	detection	sectioning	use
Wide field	Whole sample	Whole sample	No sectioning	Simple fluorescence samples
confocal	Whole sample	One z-plane	350-500nm	High contrast images, optical sectioning
2-Photon	One z-plane	One z-plane	500-700nm	Deep tissue imaging, optical sectioning
FRET				Protein interactions
FRET FRAP + photoactivation	405 laser (UV)			Protein interactions dynamics/mobility

SUPER-RESOLUTION MICROSCOPY

Goal: obtain sub-100 nm resolution

pioneered by Stefan Hell in mid-1990s Max Plank Institute (Germany)

two methods:

(i) Spatially Patterned Excitation STED, SIM

(ii) Localization Methods STORM, PALM

Centro Interdipartimentale di Microscopia Avanzata

29

(a) The process of stimulated emission. A ground state (S_0) fluorophore can absorb a photon from the excitation light and jump to the excited state (S_1) . Spontaneous fluorescence emission brings the fluorophore back to the ground state. Stimulated emission happens when the excited-state fluorophore encounters another photon with a wavelength comparable to the energy difference between the ground and excited state. (b) The excitation laser and STED laser are combined and focused into the sample through the objective. A phase mask is placed in the light path of the STED laser to create a specific pattern at the objective focal point. (c) In the *xy* mode, a donut-shaped STED laser is applied with the zero point overlapped with the maximum of the excitation laser focus. With saturated depletion, fluorescence from regions near the zero point is suppressed, leading to a decreased size of the effective point spread function (PSF).

SUPER-RESOLUTION MICROSCOPY OF **BIOLOGICAL SAMPLES.**

microscopy." The Journal of Cell Biology 190 (2) (July 26): 165 -175. doi:10.1083/jcb.201002021.

čima

Centro Interdipartimentale di Microscopia Avanzata

SINGLE MOLECULE LOCALISATION MICROSCOPY (SMLM

 Induction of fluorescence emission of only a subset of molecules at a given time in order to localize each of them individually. By repeating this process, you can accumulate enough localizations to reconstruct a final super-resolved image.

STORM and PALM are based on SMLM principle. The only difference is the way to induce the stochastic emission of the fluorophores:
In STORM, fluorescent organic dyes (cyanines, rhodamines, ...etc.) together with a specific imaging buffer (abbelight's buffer) are used to allow blinking of the fluorescent molecules;

•In PALM, photoactivatable, photoconvertible or photoswitchable proteins are used (ex: PA-GFP, PA-mCherry, mEOS, mMAPLE, ...etc.);

ntro erdipartimentale Microscopia anzata

PALM-Photoactivated localization microscopy

- invented by E Betzig and H Hess (2014 Nobel Prize for Chemistry)
- uses photoactivatable fluorophores to resolve spatial details of tightly packed molecules
- The laser stochastically activates fluorophores until all have emitted. Fluorophores emit for a short period but eventually bleach -> a more accurate view of positions can be obtained.

PALM-Photoactivated localization microscopy

- Signals from each fluorophore are still subject to the 300 nm diffraction of light limit. However, because each has been activated separately, the centre of mass can be calculated accurately
- The point spread function (PSF) is used to determine the location down to a resolution of 20 nm
- By mapping each of the more accurately defined points together, a complete super-resolution microscopy image can be compiled.

PALM-Photoactivated localization microscopy

Three commonly used types of fluorophores are:

•Photoactivatable Fluorophores, e.g.: PAmCherry, PA-GFP, which emit light upon activation with UV.

•Photoconvertible Fluorophores, which change their emission spectrum upon activation with UV light (e.g.: mEOS proteins).

•Photoswitchable Fluorophores: Typically chemical dyes (e.g. Alexa Fluor 647, DyLight555) which can switch between dark, nonfluorescent and bright, fluorescent states repeatedly.

Sequential activation illumination with activator-reporter pair

STEP 1 Most activator-reporter dye pairs are converted to a non-emissive state by combining them with high intensity light and specialized imaging buffer additives.

STEP 2 Absorption of light by an activator results in transfer of energy to a nearby reporter dye, accelerating the transition of the reporter dye from a non-emissive to a ground state. The use of spectrally distinct activator dyes allows for the use of the same reporter dye for multiple imaging channels.

STEP 3 High intensity illumination results in fluorescence emission from the activated reporter dye.

https://downloads.microscope.healthcare.nikon.com/phase4/literature/Brochures/Super-Resolution_2CE-SCJK-3.pdf

Interdipartimentale di Microscopia

Conventional fluorescent microscopy

N-STORM processing

low-intensity light Excites with strong light Activates with verv low-intensity light Excites with strong light

reconstructs a superresolution image by combining the highaccuracy localization information of individual fluorophores

https://downloads.microscope.healthcare.nikon.com/phase4/literature/Brochures/Super-Resolution_2CE-SCJK-3.pdf

Interdipartimentale

Figure 1 - Basic Principles of STORM Superresolution Imaging

https://www.microscopyu.com/tutorials/sto chastic-optical-reconstruction-microscopystorm-imaging

Centro Interdipartimentale di Microscopia Avanzata

N-STORM images

50 nm resolution

Conventional widefield images

African green monkey kidney cells (BSC-1) labeled with Alexa Fluor® 647 (Tubulin) and ATTO 488 (Calreticulin) Photos courtesy of: Dr. Michael W. Davidson, National High Magnetic Field Laboratory, Florida State University

https://downloads.microscope.healthcare.nikon.com/phase4/literature/Brochures/Super-Resolution_2CE-SCJK-3.pdf

Interdipartimentale di Microscopia Avanzata

SUPER-RESOLUTION MICROSCOPY OF **BIOLOGICAL SAMPLES**

Schermelleh, Lothar, Rainer Heintzmann, and Heinrich Leonhardt. 2010. "A guide to super-resolution fluorescence microscopy." The Journal of Cell Biology 190 (2) (July 26): 165 -175. doi:10.1083/jcb.201002021.

Centro

