Network visualization methods



Outline

= Structural representation
= Spring embedders

= Other layouts

= Relational matrices representation

= Visualization syntax and attributes representation, network measures



Graph drawing

Graph drawing is not a trivial problem because they are not
defined in a metric space

This has led to the development of many methods in literature.

= some for general purpose

= others for specific purpose

= coming from different scientific community

(Social Network Community, Mathematical Community,

Statistical Community, Computer Scientists Community)
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Graph visualization

806 CHAPTER 26. SOCIAL NETWORKS

Figure 26.1 A sociogram from [Mor53, p. 422] showing a graph with fourteen highlighted
vertices and four clusters.



DISCAITE MATHEMATICS AND TS APPLICATIONS

Handbook of

Graph Visualization il
(Tomassia, 2013)

Network representations have two main goals:

= Data structure exploration

Edited by
Roberto Tamassia

(‘jﬁ) CRC Press

= Results communication

A good representation has to represent all relevant information from the analytical point of view.

“A process of charting has been devised by the sociometrists, the sociogram,
which is more than merely a method of presentation. It is first of all a method
of exploration.” [Mor53, p. 95{]




Layout

» A drawing, or better a layout, is a mapping of the nodes and edges
into the plane (or into R3 for 3-dimensional drawings).

» Nodes (actors, entities) are represented as a circles, points or
other forms

» Edges/Arcs (ties, relations) are represented as a segments or
arrows

» Information on nodes and edges can be visualized using text
labels at various positions, different colors, or other visual
elements such as thickness of lines, size of nodes



Layouts and information

»5 examples of different
layout of a given social
network

» Each layout emphasized
different aspects of the
network

» The first layout emphasize
the presence of 3 dense
subgroups

»The last suggests a more
interconnected system



Layout: Aesthetics criteria

Crossings minimization

If too many edges cross each other, the human eye can not easily find out which nodes are connected.
If a graph can be drawn without edge crossings (such graphs are called planar) is often better

Folds / curves minimization

human eye can much more easily follow an edge with none or only a few bends. This is

Graph area minimization
a picture looks much better if the nodes and edges fill the space with homogenous density.

Angle maximization

It is important that edges are as far apart as possible for visual clarity especially in low resolution
pictures.

Edges length minimization

Length of the segments representing edges should be minimized

Symmetry

If graphs contain symmetrical substructures then it is important to show this symmetry in its layout.

Clustering

Especially in large networks is necessary to cluster the nodes to reveal some insights on the graph
structures



Mapping networks (Krempel, 2009)

3 Mapping Networks

The most important task in mapping networks is to determine the 2D or 3D lo-
cations of the nodes from the links of a graph. Such a layout encodes certain
features of a network that maintain as much information as possible relating to
the embeddedness of the nodes.

» Nodes position may reflects some network properties



A possible classification (correa s ma, 2011

= Structural

" Nodes-ties representation

= Spring Embedders
= Property Based Layout
= Statistical Layout

= (socio)Matrix-form

= Statistics

= Temporal or Dynamic methods e

Visualizing Social Networks
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(d) Temporal

Figure 11.1. Example of different types of visualization (a) Structural, typically a node-link
diagram. (b) Semantic, where nodes and links can represent different aspects of the social
network. (c) Statistical, useful for depicting the distribution of social network metrics and (d)
Temporal, a particular case of a semantic diagram that uses time as the main attribute.

C. C. Aggarwal (ed.), Social Network Data Analytics,

DOI 10.1007/978-1-4419-8462-3 1, © Springer Science+Business Media, LLC 2011



Nodes-ties structural
representations
SPRING EMBEDDERS



structural representations of networks

A structural visualization of the social networks focuses precisely on that, its structure.

" The structure can be thought of as the topology of a graph represented only by nodes and
edges in a social network.

= 2 predominant approaches to structural visualization:

1. node-link diagrams

2. matrix-oriented methods



structural representations of networks

Node-link diagrams are easy to interpret and depict explicitly the links

between nodes (the most common representation of networks)

As social networks grow in complexity and size, finding a good layout

becomes increasingly challenging

Some of the most flexible algorithms for calculating layouts of simple
undirected graphs belong to a class known as force-directed algorithms,

also known as spring embedders



Force-directed and Energy- Based Layout
(spring embedders)

4. Drawing on Physical Analogies 73

A class of methods applicable to general
graphs, without prior knowledge of any
structural properties, rather than relying on
domain-specific knowledge.

Comparing the graph to a system of
interacting physical objects, i.e. the springs
and rods that link the spheres

The underlying assumption being that
relaxed (energy-minimal) states of suitably

defined systems correspond to readable
layouts.

4 Drawing on Physical Analogies M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 71-86, 20(
© Springer-Verlag Berlin Heidelberg 2001

Ulrik Brandes



Force-directed and Energy- Based Layout

4. Drawing on Physical Analogies 73

In general, these methods consist of two
components:

1) a model consisting of physical objects
(representing the elements of the graph)
and interactions between these objects, and

2) an algorithm that (approximately)
computes an equilibrium configuration of
the system.

4 Drawing on Physical Analogies M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 71-86, 20(
© Springer-Verlag Berlin Heidelberg 2001

Ulrik Brandes



Force-directed and Energy- Based Layout

In these algorithms models employ the 4. Drawing on Physical Anzlogies 73

physical analogies = springs and rods that
link spheres.

The attraction and repulsion forces that
produce the final layout are designed to

1.Distribute the vertices evenly in the frame.
2. Minimize edge crossings.

3. Make edge lengths uniform.

4. Reflect inherent symmetry.

5. Conform to the frame

4. Drawing on Physical Analogies M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 71-86, 2001.
© Springer-Verlag Berlin Heidelberg 2001
Ulrik Brandes



Spring Embedders Force-directed (Eades 1984)

Given a graph G(V,E) and p, =(X,,Y,) a vector of coordinates of a node v in the plane.

the attraction and repulsion forces can be defined as follows:
Co
Py — Pu

N Mouw— vl —
7 PuPv f spring(Pu, Pv) = Co -log a | 2 “PvPu,

frep(Pu, Pv) =

with

H P, — puH the Euclidean distance between the position of two nodes u and v

P, P, the unit vector of the direction from p, to p,
Cp repulsion constant
C_ spring force (attraction constant)

| the length of the springs



Spring Embedders Force-directed (Eades 1984)

The question is how to obtain an equilibrium configuration.

The Spring embedders algorithm works as follows:
= Node positions not corresponding to a system at equilibrium imply positive internal stress.
= The system reaches the equilibrium when the forces acting on each node are balanced.

" To relax a stressed system, vertices are iteratively moved, at time t, according to a net force
vector F,, (t)

which is the sum of all repulsion and spring forces acting on a node v.
After computing F, (t)for all v €V, each node is moved a constant 6 times this vector.

= By iteratively computing the forces on all nodes and updating positions accordingly, the

system approaches a stable state, in which no local improvement is possible.



Spring Embedders Force-directed (Eades 1984)

Algorithm 6: Spring embedder

Input: connected undirected graph G' = (V, E)

initial placement p = (py), -y

Output: placement p with low internal stress

for t — 1 to ITERATIONS do

for v € 1 dD
F fr'ey::(pu:'pv) + Z fspring (put.pv)
u: {u vigEE u:{u,v}ek
| forveVdo p, —p,+0-Fu(t)




Spring Embedders Force-Directed
Fructherman & Reingold (1991)

To simplify calculations and to make the graph more readable, Fructherman
and Reingold (1991) modified the repulsion and attraction forces
computation as follows:

|2

- #Pu — //2 —_—
Py = B -

frep(Pu, Pv) = Pubv fattr(Pu, Pv) = | Pu

Iow — pull

The force of the spring between two adjacent vertices is given by the sum of
the repulsion and attraction forces.



Spring Embedders Force-Directed
Fructherman & Reingold (1991)

From the paper of Fruchterman and Reingold (1991):

“Eades modelled a graph as a physical system of rings and springs, but his
implementation did not reflect Hooke’s law; rather, he chose his own
formula for the forces exerted by the springs.”

Only two principles for graph drawing:
1. Vertices connected by an edge should be drawn near each other.
2. Vertices should not be drawn too close to each other.

How close vertices should be placed depends on how many there are and
how much space is available



Spring Embedders Force-Directed
Fructherman & Reingold (1991)

The attractive and repulsive forces are redefined as:
fa(d) = d*/k, fr(d) = —k*/d.

in terms of the distance d between two vertices and the optimal distance
between vertices

k defined as

area
kE=C :
number of vertices



Spring Embedders Force-Directed
Fructherman & Reingold (1991)

The Eades algorithm was also modified by introducing other correction factors:

° > \\\
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(a) neglecting weak repulsive forces (b) coordinate clipping

4. Drawing on Physical Analogies M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 71-86, 2001.
© Springer-Verlag Berlin Heidelberg 2001
Ulrik Brandes

(a) Since repulsion from far
away vertices does not
contribute much to the
displacement vector, a grid
is established and the
repulsion force is calculated
only for nodes within the
same grid cell.

(b) The displacement
ensures that the graph is
laid out inside a rectangular
area, like a screen. If the
displacement positions a
vertex beyond a fixed
boundary, the coordinate of
the displacement vector is
clipped.



Fructherman & Reingold (1991) — GRID
VARIANT

The parameter defining the maximum length of the shifts is modify at each iterations(t) so that
when the system is reaching the equilibrium the shifts are smaller.

The direction of movement is constrained with respect to a rectangular area (the screen or

sheet of paper) and when the node move close the edge of the area, the moving vector
proceeds along the border/margin.

(b) coordinate clipping

Fig. 4.4. Spring embedder modifications of Fruchterman and Reingold (1991).

4. Drawing on Physical Analogies M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 71-86, 2001.
© Springer-Verlag Berlin Heidelberg 2001
Ulrik Brandes



Spring

-mbedders Force-Directed

Fructh

erman & Reingold (1991)

Fruchterman-Reingold layout



Spring Embedders Force-Directed
Fructherman & Reingold (1991)

Randomly place vertices -BG Fruchterman-Reingold layout -BG




Spring Embedders Energy-based
Kamada and Kawai (1989)

Force-directed algorithms that minimize the force acting on each node have the implicit goal of
minimizing the overall energy of the system (given by the sum of the forces not in equilibrium).

Energy-based algorithms try to minimize the energy of the system directly.

Given a spring of force C_, natural length | and real length d, the spring will have a potential
energy equal to:

Uspring(d) = Co - (d = |)2

4. Drawing on Physical Analogies M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 71-86, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Ulrik Brandes



Spring Embedders Energy-based
Kamada and Kawai (1989)

K&K assume that:

= The spring ideal length between two nodes is given by the minimum path, geodesic distance d; (u,V),
multiplied for the edge length

* The best paths in the graph are linear (as if they were Euclidean distances among the positions)

sUnder these assumptions the objective function that results is as follows:

C 2
Uck(P) = Y (Mpu = pud =1 -da(u,v))
UVEV dG(pU1pV)2

In this model there are no separate attractive and repulsive forces between pairs of vertices, but instead if a
pair of vertices is (geometrically) closer/farther than their corresponding graph distance the vertices
repel/attract each other.

4. Drawing on Physical Analogies M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 71-86, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Ulrik Brandes



Spring Embedders Energy-based
Kamada and Kawai (1989)

The goal of the algorithm is to find values for the variables that minimize the objective function (energy
function)

At local minimum all the partial derivatives are 0 and this corresponds to solving a number of
simultaneous non linear equations (2*number of vertices)

KK computes the position of one vertex at time viewing U as function of only p,and p,

The objective function then can be minimized through a modified Newton-Raphson algorithm, where
(from time to time) the node with the highest gradient moves.

4. Drawing on Physical Analogies M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 71-86, 2001.

© Springer-Verlag Berlin Heidelberg 2001
Ulrik Brandes



Spring Embedders Energy-based
Kamada and Kawai (1989)

The 1989 algorithm of Kamada and Kawai introduced a different way of thinking about “good” graph layouts.

-the algorithms of Eades and Fruchterman-Reingold aim to keep adjacent vertices close to each other while

ensuring that vertices are not too close to each other, Kamada and Kawai take graph theoretic approach.

In this model, the “perfect” drawing of a graph would be one in which the pair-wise geometric distances
between the drawn vertices match the graph theoretic pairwise distances and there are no separate attractive
and repulsive forces between pairs of vertices, but instead if a pair of vertices is (geometrically) closer/farther
than their corresponding graph distance the vertices repel/attract each other.

4. Drawing on Physical Analogies M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 71-86, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Ulrik Brandes



Spring Embedders Energy-based
Kamada and Kawai (1989

Kamada-Kawai layout -BG

Kamada-Kawai layout
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4. Drawing on Physical Analogies
© Springer-Verlag Berlin Heidelberg 2001
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Spring Embedders for
2-mode networks

In the case of a 2-mode network is not possible to apply directly the spring embedding
algorithms to the network but it is necessary data transformation.

If | is the incidence matrix actors for events is possible:

» To apply the spring embedding algorithms after the use of projection approach: Calculating the
two weighed adjacency matrices actors x actors (I x I’) or events x events (‘l x 1)

»In this way we get two separate networks

0 1
»To apply the spring embedding algorithms to a block matrix constructed as follows B =
»In this way we get a single networks | O

4. Drawing on Physical Analogies M. Kaufmann and D. Wagner (Eds.): Drawing Graphs, LNCS 2025, pp. 71-86, 2001.

© Springer-Verlag Berlin Heidelberg 2001
Ulrik Brandes



Spring Embedders for
2-mode networks

Deep South Women (Davis,Gadner and Gadner, 1941)
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Spring Embedders for 2-mode networks

Borgatti

Weighed adjacent matrices actors x actors (I x I’)
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Figure 2. Women-by-women matrix of overlaps across events.

ENCYCLOPEDIA OF COMPLEXITY AND SYSTEMS SCIENCE

PEARL

@ ORA==® OLIVIA

CHARLOTTE

Figure 6. Spring-embedding representation of Jaccard similarities dichotomized at > 0.4

@ Springer
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Spring Embedders for 2-mode networks

(Borgatti)
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Figure 9. Spring-embedding representation of bipartite graph.

Figure 8. Bipartite adjacency matrix B created from theoriginal
DGG 2-mode matrix X.



Advantages of Spring Embedders

= Produce very readable graphs for networks that are not excessively large
= Distribute the nodes uniformly and try to have similar edge length

= Visualization is often more effective in 3D and if supported by graphing interaction tools (manual
correction)

= They are very useful if you want to proceed to a classification and grouping: spring embedders
bring out the dense subgraphs very well

= If you add vertices that represent clusters, the representation becomes even more effective

= There are numerous variations in literature that represent ties with curved line and introduce
constraints on representation and orientation



Disadvantages of Spring Embedders

They are not able to represent

Structural aspects

YET ANOTHER
Roles

Positions IMPENETRABLE

Attributes

_ _ BUT POSSIBLY BEAUTIFUL
They can have very high computational costs

They depend on the starting position

NETWORK
(random)

They consider symmetric matrices VISUALIZATION

Human protein-protein intractions

Often they end up reprOd UC|ng the (ha|rba” ip://melihsozdinler.blogspol.com/2010/03/graph-of
effect’

day-9-hairball .htmi




Nodes-ties structural
representations



Multidimensional Scaling (MDS)

The MDS is a statistical method that starts from a matrix of distances or dissimilarities
among N objects trying to reconstruct a coordinate system (not known) of n objects.

The MDS minimizes a objective function called STRESS that represents the difference

among the observed distances D; and the distance obtained with the coordinates of
objects X and X;:

1/2
Stressp(xl, ...,XN) — ( Z (Dm- - HXZ — Xj”)2 )
i#j=1..N

The vector size X is usually equal to 2 or 3 to get planar or spatial representations.



M DS for social networks

Given a 1-mode graph G(V, E), we construct the matrix of the geodesic distances D the layout with the
MDS is obtained by solving the minimization problem:

STRESS =( > (dg (u,v) | p, - va)zj

u,veV

That can also be modified to be a spring embedder using a weighting factor is used to either emphasize or
dampen the importance of certain pairs

It is interesting to note that this objective function resembles that of Kamada and Kawai where c=1.

Originally Kruskal minimizes the STRESS function using gradient descent but one can follow the KK approach
(Newton-Raphson method)



M DS for social networks
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M DS for social networks

Possible alternatives

= Apply the MDS algorithm to a modified adjacency matrix
A*=1-A

= Apply the MDS algorithm to a distance or similarity matrix other than geodesic

(for example, similarity in terms of structural equivalence)



M DS for social networks

MDS on Adjacency Matrix MDS on Structural equivalence




Correspondence Analysis

Correspondence Analysis (CA) is a statistical method used to analyze and represent the association structure
present in a contingency table.

o Let N a contingency table I x | rows for columns of elements n;
o Let P the contingency table of elements n;; / n of the relative frequencies;
o Let S be the standardized residue table under the hypothesis of independence

sy =Py —rie; )/ {fre;

AC consists of decomposition in singular values of matrix S

s=D,*(P-rcT)D.* = UAA

Where U and V are the matrices of the right and left singular vectors and A is the diagonal matrix of the
singular values



CA and networks

Correspondence analysis has been widely used in 2-mode networks analysis.

This method is specifically indicated in the case of weighted networks in which the link
represents the number of times the actor participated in the event, or the number of times an
author mentions a magazine, or in all those cases in which the value of the tie is a positive
number of count.

CA was also used to analyze affiliation matrices, that is, those where the link is binary (0/1),
raising some criticisms.

For the mathematical structure of CA unrelated actors or events (that is, with a low degree)
weigh heavily (sometimes excessively) in the analysis by obscuring the main structures.



CA and networks: reading criteria

The reading criteria are different from those of nodes-arcs representations.

The CA highlights the similarity among the actors or among the events and their association
in terms of structural similarity.

Two actors close to the factorial plane are structurally similar, i.e. participate in the same
events.

Two events close on the factorial plane are structurally similar, i.e. the same actors
participate.

It is possible to represent jointly actors and events.

The relation between actors and events should be read in terms of angles and not distance.



Factor 2

CA: reading criteria
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CA and networks: reading criteria

KAT REFIJEEM
SYLVI rg;
: E10
T : E12.
' - “,'t"
----------- FHAYRNA
BBENDA FRANGES % canOR . NORA¥
o —%hAER%o%éEL;URA----E-6¢-------~-----—-—-— --------------------------------------------- ST
E4 gygiyne  YHERESA 38.01%
HefEn
oV
s -~ _|
"6 |
i
o
|
e GroupA
- * GroupB
t Group 1
---- Group 2 .
""" Group 3 : Ef4
19.34%
I I I I I I
-1.0 -0.5 0.0 0.5 1.0 15

Factor 1



Social Networks

journal homepage: www.elsevier.com/locate/socnet

M On the use of Multiple Correspondence Analysis to visually explore @Cm
orresponaence ANAlysSIS oo

Maria Rosaria D’Esposito?, Domenico De Stefano*, Giancarlo Ragozini®

Multiple Correspondence Analysis (MCA) is a statistical method used to analyze and represent
the association structure present in several qualitative variables.

There are numerous formulations. We refer to the case in which there are individuals (actors) on
the rows and categorical variables on the columns (participation in events)

o Let F a matrix that encodes the affiliation matrix (we treat it as individuals for variables);
o Let Z the table in complete disjunctive coding Z = [F+ | F']

o Let S the standardized residue table under the hypothesis of independence will be

_ Z _ Z 1 _
S =D,/ <— - DallTDe> D,'? = n (— - —11TDe) D, /2, — O N D
nm nm n T -l «]-1+«T-1+71-
, ST a |1 10 10 111 1511 (oo |1 [0 |1 |1 |0
o MCA is the decomposition in singular values of S a, {1 [0 |1 |0 2, |1 [0 |0 |1 0 [0 |1
8g[0 |1 11 |1 a, |0 [1 |1 |0 o |1 |o
F- Affiliation matrix Z- Full disjunctive coding of F

Fig. 1. A fictitious affiliation matrix F and the corresponding indicator matrix i
obtained through full disjunctive coding.
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On the use of Multiple Correspondence Analysis to visually explore
affiliation networks

Maria Rosaria D’Esposito?, Domenico De Stefano®*, Giancarlo Ragozini®
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Nodes-ties structural
representations
DIFFERENT LAYOUTS



Some comparisons

Graph lzyout nicaly -BG Randomiy piacs verticss _BG Fruchtsrman-Reingoid iayout -BG

Graph zyout mutticimansional scaling -BG




Bipartite Graph

The bipartite graph is the simplest layout
for 2-mode networks.

The two modes of the network are
represented with different symbols and
colors aligned one face to the other

Arcs or segments from one mode to
another connect the nodes of the two
sets.
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Visual alphabet of nodes-ties representations

= Dimensions

= Forms and simbols
= Lines

= Colors



Visual alphabet of nodes-ties representations

Dimensions

" The size of the nodes is one of the main
stimuli of node-tie representation.

" Too small nodes or too large nodes can
produce misleading representations.



Visual alphabet of nodes-ties representations

Forms and Symbols

"The basic shape for the node is the circle or the
sphere, but many other shapes and symbols can be
used.

"|s relevant that they are meaningful, that is
consistent: for example homogeneous groups must
be represented by similar symbols.



Visual alphabet of nodes-ties representations

Lines

= |tis possible to choose whether the ties are
segments, curves, arcs.

" |tis possible to change the thickness of the
lines, the color of the lines.

= For large and dense networks it is good to use
transparency.



Visual alphabet of nodes-ties representations

Colors

" The colors must create a distinguishable and
orderly visualization.

= The colors have an aesthetic value, but they
also depend on culture and can generate
different psychological reactions.

= Tone, brightness and saturation.



Nodes-ties structural

representations
INCORPORATE GRAPH PROPERTIES



Show attributes and roles and positions

Dimensions, shapes and symbols, lines and colors can be used to encode additional information
within the nodes-ties representation

Examples:

Actors attributes: categorical variables or group memberships can be encoded with different
shapes, symbols, or colors.

Centralization measures: Continuous variables can be related to the size of the symbols or the
color saturation level.

Ties attributes: can be encoded with different line or with different colors.

Transparency and saturation reveals the dense and sparse areas of the graph.



SOCIOMATRICES
Representation



Soclomatrices representation

An alternative way of representing social networks such as graphs is the direct representation of
sociomatices.

The matrix is represented as a square or rectangle and divided into as many squares as the cells
of the sociomatrix.

Each square is filled if the tie is present (if the network is weighed it is possible to fill the square
with a color of varying intensity as the weight changes).

Even in this case the basic problem is sorting rows and columns, which in general is a problem

NP-Hard.

The main goal is to show clusters and groups and so it is very much used after clustering,
community detection, or blockmodeling.



Soclomatrices representation
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b) blocked sociomatrix with edge counts [Lon43|
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o

) ordered sociomatrix of a signed graph [FK46]
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Figure 26.11 Trade between countries reordered according to a hierachical clustering . ) ) o
(reproduced from [BMO4]). Figure 26.10 Sociomatrix and block partition.
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Soclomatrices representation

8 Tsinghua Science and Technology, August 2012, 17(4): 000-000
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Fig. 6 Patterns corresponding to interesting subgraphs appear along the diagonal of an appropriately ordered adjacency ma-
Fig. 5 Adjacency matrix visualizations of a 43-node, 80- trix.
edge network. Top: with a random ordering of rows and
columns. Bottom: after barycenter ordering and adding arc
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Representations: final consideration

" Many possible layouts
" Many possible aspects to highlight

"= Many choices possible for size, shape, color, lines

It follows that there are so many possible representations for
the same network and making a good representation is a
matter of "artistic craftsmanship” and experience



