
Network visualization methods

Outline

 Structural representation
 Spring embedders

Other layouts

 Relational matrices representation

 Visualization syntax and attributes representation, network measures

Graph drawing
Graph drawing is not a trivial problem because they are not
defined in a metric space

This has led to the development of many methods in literature.

 some for general purpose

 others for specific purpose

 coming from different scientific community

(Social Network Community, Mathematical Community,

Statistical Community, Computer Scientists Community)

Graph visualization

Graph Visualization
(Tomassia, 2013)
Network representations have two main goals:

 Data structure exploration

 Results communication

A good representation has to represent all relevant information from the analytical point of view.

Layout

 A drawing, or better a layout, is a mapping of the nodes and edges
into the plane (or into R3 for 3-dimensional drawings).

 Nodes (actors, entities) are represented as a circles, points or
other forms
 Edges/Arcs (ties, relations) are represented as a segments or

arrows
 Information on nodes and edges can be visualized using text

labels at various positions, different colors, or other visual
elements such as thickness of lines, size of nodes

Layouts and information

5 examples of different
layout of a given social
network

Each layout emphasized
different aspects of the
network

The first layout emphasize
the presence of 3 dense
subgroups

The last suggests a more
interconnected system

 Crossings minimization

If too many edges cross each other, the human eye can not easily find out which nodes are connected.
If a graph can be drawn without edge crossings (such graphs are called planar) is often better

 Folds / curves minimization

human eye can much more easily follow an edge with none or only a few bends. This is

 Graph area minimization
a picture looks much better if the nodes and edges fill the space with homogenous density.

 Angle maximization
It is important that edges are as far apart as possible for visual clarity especially in low resolution

pictures.

 Edges length minimization

Length of the segments representing edges should be minimized

 Symmetry

If graphs contain symmetrical substructures then it is important to show this symmetry in its layout.

 Clustering

Especially in large networks is necessary to cluster the nodes to reveal some insights on the graph
structures

Layout: Aesthetics criteria

Mapping networks (Krempel, 2009)

 Nodes position may reflects some network properties

A possible classification (Correa & Ma, 2011)

 Structural
Nodes-ties representation
 Spring Embedders

 Property Based Layout

 Statistical Layout

 (socio)Matrix-form

 Statistics

 Temporal or Dynamic methods

Visualizing Social Networks 309

(a) Structural (b) Semantic

(c) Statistical (d) Temporal

Figure 11.1. Example of different types of visualization (a) Structural, typically a node-link

diagram. (b) Semantic, where nodes and links can represent different aspects of the social

network. (c) Statistical, useful for depicting the distribution of social network metrics and (d)

Temporal, a particular case of a semantic diagram that uses time as the main attribute.

2. A Taxonomy of Visualizations

We can classify the visualization of social networks in four main groups,

depending on the main focus of the predominant visual task for which the

visualization metaphor is envisioned. These are: structural, the most common

representation thus far, semantic, which emphasizes the meaning of the entities

and relationships over their structure, temporal and statistical.

2.1 Structural Visualization

A structural visualization of the social networks focuses precisely on that,

its structure. The structure can be thought of as the topology of a graph that

represents the actors and relationships in a social network. There are two

predominant approaches to structural visualization: node-link diagrams and

matrix-oriented methods. While node-link diagrams are easy to interpret and

depict explicitly the links between nodes, matrix-oriented representations usu-

ally make a better use of limited display area, critical for today’s availability

of visualizations in a multitude of devices. In the recent years, we have seen

efforts to combine the best of the two types into a series of hybrid representa-

tions.

Nodes-ties structural
representations
SPRING EMBEDDERS

structural representations of networks
A structural visualization of the social networks focuses precisely on that, its structure.

 The structure can be thought of as the topology of a graph represented only by nodes and

edges in a social network.

 2 predominant approaches to structural visualization:

1. node-link diagrams

2. matrix-oriented methods

structural representations of networks

Node-link diagrams are easy to interpret and depict explicitly the links

between nodes (the most common representation of networks)

As social networks grow in complexity and size, finding a good layout

becomes increasingly challenging

Some of the most flexible algorithms for calculating layouts of simple
undirected graphs belong to a class known as force-directed algorithms,
also known as spring embedders

Force-directed and Energy- Based Layout
(spring embedders)

A class of methods applicable to general
graphs, without prior knowledge of any
structural properties, rather than relying on
domain-specific knowledge.

Comparing the graph to a system of
interacting physical objects, i.e. the springs
and rods that link the spheres

The underlying assumption being that
relaxed (energy-minimal) states of suitably
defined systems correspond to readable
layouts.

4. Drawing on Physical Analogies 73

→

↓ “ let go”

←

F ig. 4.1. The spring analogy.

spring embedder , implements the analogy described in the previous sect ion.

It is defined using repelling forces

f rep(pu , pv) =
cϱ

∥pv − pu∥2
· −−→pu pv

between every pair of non-adjacent vert ices u, v ∈ V , where cϱ is a repulsion

constant . Complementary spring forces between adjacent vert ices u, v ∈ V

shall keep these sufficient ly apart , yet close to each other. However, instead

of more realist ic forces according to Hooke’s law, (imaginary) logarit hmic

springs which exert weaker forces on far apart vert ices are employed. They

yield forces

f spring(pu , pv) = cσ · log
∥pu − pv∥

l
· −−→pv pu ,

so that the direct ion depends on whether the actual distance is less or greater

than a natural length l of the spring. Constant cσ is a parameter controlling

the strength of the spring. Figure 4.2 gives a qualitat ive impression of the

forces a vertex u exerts on vertex v, depending on the distance between the

Force-directed and Energy- Based Layout

In general, these methods consist of two
components:

1) a model consisting of physical objects
(representing the elements of the graph)
and interactions between these objects, and

2) an algorithm that (approximately)
computes an equilibrium configuration of
the system.

4. Drawing on Physical Analogies 73

→

↓ “ let go”

←

F ig. 4.1. The spring analogy.

spring embedder , implements the analogy described in the previous sect ion.

It is defined using repelling forces

f rep(pu , pv) =
cϱ

∥pv − pu∥2
· −−→pu pv

between every pair of non-adjacent vert ices u, v ∈ V , where cϱ is a repulsion

constant . Complementary spring forces between adjacent vert ices u, v ∈ V

shall keep these sufficient ly apart , yet close to each other. However, instead

of more realist ic forces according to Hooke’s law, (imaginary) logarit hmic

springs which exert weaker forces on far apart vert ices are employed. They

yield forces

f spring(pu , pv) = cσ · log
∥pu − pv∥

l
· −−→pv pu ,

so that the direct ion depends on whether the actual distance is less or greater

than a natural length l of the spring. Constant cσ is a parameter controlling

the strength of the spring. Figure 4.2 gives a qualitat ive impression of the

forces a vertex u exerts on vertex v, depending on the distance between the

Force-directed and Energy- Based Layout
In these algorithms models employ the
physical analogies  springs and rods that
link spheres.

The attraction and repulsion forces that
produce the final layout are designed to

1.Distribute the vertices evenly in the frame.

2. Minimize edge crossings.

3. Make edge lengths uniform.

4. Reflect inherent symmetry.

5. Conform to the frame

4. Drawing on Physical Analogies 73

→

↓ “ let go”

←

F ig. 4.1. The spring analogy.

spring embedder , implements the analogy described in the previous sect ion.

It is defined using repelling forces

f rep(pu , pv) =
cϱ

∥pv − pu∥2
· −−→pu pv

between every pair of non-adjacent vert ices u, v ∈ V , where cϱ is a repulsion

constant . Complementary spring forces between adjacent vert ices u, v ∈ V

shall keep these sufficient ly apart , yet close to each other. However, instead

of more realist ic forces according to Hooke’s law, (imaginary) logarit hmic

springs which exert weaker forces on far apart vert ices are employed. They

yield forces

f spring(pu , pv) = cσ · log
∥pu − pv∥

l
· −−→pv pu ,

so that the direct ion depends on whether the actual distance is less or greater

than a natural length l of the spring. Constant cσ is a parameter controlling

the strength of the spring. Figure 4.2 gives a qualitat ive impression of the

forces a vertex u exerts on vertex v, depending on the distance between the

Spring Embedders Force-directed (Eades 1984)

4. Drawing on Physical Analogies 73

→

↓ “ let go”

←

Fig. 4.1. The spring analogy.

spring embedder , implements the analogy described in the previous sect ion.

It is defined using repelling forces

f rep(pu , pv) =
cϱ

∥pv − pu∥2
· −−→pu pv

between every pair of non-adjacent vert ices u, v ∈ V , where cϱ is a repulsion

constant . Complementary spring forces between adjacent vert ices u, v ∈ V

shall keep these sufficient ly apart , yet close to each other. However, instead

of more realist ic forces according to Hooke’s law, (imaginary) logarit hmic

springs which exert weaker forces on far apart vert ices are employed. They

yield forces

f spring(pu , pv) = cσ · log
∥pu − pv∥

l
· −−→pvpu ,

so that the direct ion depends on whether the actual distance is less or greater

than a natural length l of the spring. Constant cσ is a parameter controlling

the strength of the spring. Figure 4.2 gives a qualitat ive impression of the

forces a vertex u exerts on vertex v, depending on the distance between the

4. Drawing on Physical Analogies 73

→

↓ “ let go”

←

Fig. 4.1. The spring analogy.

spring embedder , implements the analogy described in the previous sect ion.

It is defined using repelling forces

f rep(pu , pv) =
cϱ

∥pv − pu∥2
· −−→pu pv

between every pair of non-adjacent vert ices u, v ∈ V , where cϱ is a repulsion

constant . Complementary spring forces between adjacent vert ices u, v ∈ V

shall keep these sufficient ly apart , yet close to each other. However, instead

of more realist ic forces according to Hooke’s law, (imaginary) logarit hmic

springs which exert weaker forces on far apart vert ices are employed. They

yield forces

f spring(pu , pv) = cσ · log
∥pu − pv∥

l
· −−→pv pu ,

so that the direct ion depends on whether the actual distance is less or greater

than a natural length l of the spring. Constant cσ is a parameter controlling

the strength of the spring. Figure 4.2 gives a qualitat ive impression of the

forces a vertex u exerts on vertex v, depending on the distance between the

Given a graph G(V,E) and a vector of coordinates of a node v in the plane.

the attraction and repulsion forces can be defined as follows:

with

the Euclidean distance between the position of two nodes u and v

the unit vector of the direction from pv to pu

repulsion constant

spring force (attraction constant)

the length of the springs

),(vvv yxp 

uv pp 

uv pp

c

c

l

Spring Embedders Force-directed (Eades 1984)
The question is how to obtain an equilibrium configuration.

The Spring embedders algorithm works as follows:

 Node positions not corresponding to a system at equilibrium imply positive internal stress.

 The system reaches the equilibrium when the forces acting on each node are balanced.

 To relax a stressed system, vertices are iteratively moved, at time t, according to a net force
vector Fv 𝑡

which is the sum of all repulsion and spring forces acting on a node v.

After computing Fv 𝑡 for all v ∈ V , each node is moved a constant δ times this vector.

 By iteratively computing the forces on all nodes and updating positions accordingly, the

system approaches a stable state, in which no local improvement is possible.

Spring Embedders Force-directed (Eades 1984)

Spring Embedders Force-Directed
Fructherman & Reingold (1991)

To simplify calculations and to make the graph more readable, Fructherman
and Reingold (1991) modified the repulsion and attraction forces
computation as follows:

The force of the spring between two adjacent vertices is given by the sum of
the repulsion and attraction forces.

4. Drawing on Physical Analogies 75

Despite its simplicit y, the spring embedder produces sat isfactory output

in many cases. To even out some shortcomings of the method, several refine-

ments have been developed. These refinements mainly aim at faster compu-

tat ion, but somet imes also at improved quality of the layout.

A number of heurist ics is used by Fruchterman and Reingold (1991) to

speed up many aspects of layout computat ion. First ly, the forces are modified

to allow faster evaluat ion. Repelling forces

f rep(pu , pv) =
l2

∥pu − pv∥
· −−→pupv

are used between every pair of vert ices, and addit ional at t ract ing forces

f at tr(pu , pv) =
∥pu − pv∥2

l
· −−→pv pu

are used between adjacent vert ices. The combinat ion of at t ract ion and re-

pulsion between adjacent vert ices yields a spring-like force f spring(pu , pv) =

f at tr(pu , pv) + f rep(pu , pv), similar in effect to the force used by Eades (1984).

Since its magnitude increasesmore than proport ionally with the distance (see

Figure 4.3 for a comparison), one may also hope for faster convergence.

l

f at t r

− f rep

f spring = f at tr − f rep

Fig. 4.3. Modified forces by Fruchterman and Reingold (1991).

A second heurist ic to speed up computat ion does not change the objec-

t ive funct ion, but the precision of evaluat ion. Since repulsion from far away

vert ices does not contribute much to the displacement vector, such irrelevant

vert ices are omit ted in the sum of repulsive forces using a grid technique.

Only vert ices lying in grid cells close to the cell of v are considered, and only

4. Drawing on Physical Analogies 75

Despite its simplicit y, the spring embedder produces sat isfactory output

in many cases. To even out some shortcomings of the method, several refine-

ments have been developed. These refinements mainly aim at faster compu-

tat ion, but somet imes also at improved quality of the layout.

A number of heurist ics is used by Fruchterman and Reingold (1991) to

speed up many aspects of layout computat ion. First ly, the forces aremodified

to allow faster evaluat ion. Repelling forces

f rep(pu , pv) =
l2

∥pu − pv∥
· −−→pu pv

are used between every pair of vert ices, and addit ional at t ract ing forces

f attr(pu , pv) =
∥pu − pv∥2

l
· −−→pv pu

are used between adjacent vert ices. The combinat ion of at t ract ion and re-

pulsion between adjacent vert ices yields a spring-like force f spring(pu , pv) =

f at t r(pu , pv) + f rep(pu , pv), similar in effect to the force used by Eades (1984).

Since its magnitude increases more than proport ionally with the distance (see

Figure 4.3 for a comparison), one may also hope for faster convergence.

l

f at t r

− f rep

f spring = f at t r − f rep

Fig. 4.3. Modified forces by Fruchterman and Reingold (1991).

A second heurist ic to speed up computat ion does not change the objec-

t ive funct ion, but the precision of evaluat ion. Since repulsion from far away

vert ices does not contribute much to the displacement vector, such irrelevant

vert ices are omit ted in the sum of repulsive forces using a grid technique.

Only vert ices lying in grid cells close to the cell of v are considered, and only

Spring Embedders Force-Directed
Fructherman & Reingold (1991)

From the paper of Fruchterman and Reingold (1991):

“Eades modelled a graph as a physical system of rings and springs, but his
implementation did not reflect Hooke’s law; rather, he chose his own
formula for the forces exerted by the springs.”

Only two principles for graph drawing:

1. Vertices connected by an edge should be drawn near each other.

2. Vertices should not be drawn too close to each other.

How close vertices should be placed depends on how many there are and
how much space is available

Spring Embedders Force-Directed
Fructherman & Reingold (1991)

The attractive and repulsive forces are redefined as:

in terms of the distance d between two vertices and the optimal distance
between vertices

k defined as

Spring Embedders Force-Directed
Fructherman & Reingold (1991)

The Eades algorithm was also modified by introducing other correction factors:

76 Ulrik Brandes

if their distance is below a fixed threshold, a repulsive force is calculated and

included in the sum of forces. See Figure 4.4(a).

Two other modificat ions with respect to Algorithm 6 are concerned with

the displacement vector. Instead of applying a constant damping factor δ

to the net force vector, the net force vector is clipped at a t ime-dependent

maximum displacement δ(t) to prevent excessive changes, especially in later

stages of the iterat ion when the placement is close to a stable state. The sec-

ond modificat ion to the displacement ensures that the graph is laid out inside

of a given rectangular area, like a screen or a sheet of paper. If the displace-

ment would posit ion a vertex beyond a fixed boundary, the corresponding

coordinate of the displacement vector is clipped.

v

(a) neglect ing weak repulsive forces (b) coordinate clipping

F ig. 4.4. Spring embedder modificat ions of Fruchterman and Reingold (1991).

Another notable refinement of the basic spring embedder is described

in Frick et al. (1995). Again, both forces and iterat ion scheme are modified

to speed up the algorithm and to improve layout quality (under the same

criteria). Repulsive and at t ract ive forces are defined so that no square root

has to be taken,

f rep(pu , pv) =
l2

∥pu − pv∥2
· (pu − pv),

f at tr(pu , pv) =
∥pu − pv∥2

l2 ·Φ(v)
· (pv − pu),

and all computat ions are performed using integer arithmet ic. The denomina-

tor in the at t ract ive force is defined asΦ(v) = 1+
dG (v)

2
and effect ively slows

down high-degree vert ices. However, a new gravitat ional force is int roduced,

dragging each vertex towards the barycenter ζ =
w∈V

pw of all vert ices by

f grav(pu , pv) = Φ(v) · γ ·
ζ

|V |
− pv ,

(a) Since repulsion from far
away vertices does not
contribute much to the
displacement vector, a grid
is established and the
repulsion force is calculated
only for nodes within the
same grid cell.

(b) The displacement
ensures that the graph is
laid out inside a rectangular
area, like a screen. If the
displacement positions a
vertex beyond a fixed
boundary, the coordinate of
the displacement vector is
clipped.

Fructherman & Reingold (1991) – GRID
VARIANT

76 Ulrik Brandes

if their distance is below a fixed threshold, a repulsive force is calculated and

included in the sum of forces. See Figure 4.4(a).

Two other modificat ions with respect to Algorithm 6 are concerned with

the displacement vector. Instead of applying a constant damping factor δ

to the net force vector, the net force vector is clipped at a t ime-dependent

maximum displacement δ(t) to prevent excessive changes, especially in later

stages of the iterat ion when the placement is close to a stable state. The sec-

ond modificat ion to the displacement ensures that the graph is laid out inside

of a given rectangular area, like a screen or a sheet of paper. If the displace-

ment would posit ion a vertex beyond a fixed boundary, the corresponding

coordinate of the displacement vector is clipped.

v

(a) neglect ing weak repulsive forces (b) coordinate clipping

F ig. 4.4. Spring embedder modificat ions of Fruchterman and Reingold (1991).

Another notable refinement of the basic spring embedder is described

in Frick et al. (1995). Again, both forces and iterat ion scheme are modified

to speed up the algorithm and to improve layout quality (under the same

criteria). Repulsive and at t ract ive forces are defined so that no square root

has to be taken,

f rep(pu , pv) =
l2

∥pu − pv∥2
· (pu − pv),

f at tr(pu , pv) =
∥pu − pv∥2

l2 ·Φ(v)
· (pv − pu),

and all computat ions are performed using integer arithmet ic. The denomina-

tor in the at t ract ive force is defined asΦ(v) = 1+
dG (v)

2
and effect ively slows

down high-degree vert ices. However, a new gravitat ional force is int roduced,

dragging each vertex towards the barycenter ζ =
w∈V

pw of all vert ices by

f grav(pu , pv) = Φ(v) · γ ·
ζ

|V |
− pv ,

The parameter defining the maximum length of the shift is modify at each iteration so that
when the system is reaching the equilibrium the shifts are smaller.

The direction of movement is constrained with respect to a rectangular area (the screen or
sheet of paper) and when the node move close the edge of the area, the moving vector
proceeds along the border/margin.

)(t

Spring Embedders Force-Directed
Fructherman & Reingold (1991)

Spring Embedders Force-Directed
Fructherman & Reingold (1991)

Spring Embedders Energy-based
Kamada and Kawai (1989)

78 Ulrik Brandes

4.3 Energy-Based Placement

Forces defined in the spring embedder variants described above indicate in

which direct ion a vertex can be moved to reduce the forces act ing on it , and

thus an implicit internal energy of the physical system. Instead of displacing

vert ices according to these forces, one might as well at tempt to minimize this

energy direct ly. A spring of natural length l and of strength cσ with actual

length d (assumed to be within reasonable limits) has a potential energy of

Uspring(d) = cσ · (d − l)2,

Kamada and Kawai (1989) avoid a second potent ial for repulsion by using

springs of different length and strength between every pair of vert ices. Their

specific choiceof springsisgoverned by theassumption that the ideal distance

between two vert ices is the length of a shortest path between them, mult iplied

by the ideal length of a single edge, i.e. every path in the graph is best

represented by a straight line. The natural length of the spring connect ing

vert ices u, v ∈ V is therefore chosen proport ional to dG (u, v), which denotes

the length of a shortest path between them. Clearly, perfect relaxat ion of all

springs is impossible for most graphs, so local distances are rendered more

important by using springs of strength inverse to their length. The result ing

object ive funct ion is the sum over the potent ial energies of all n · (n − 1)/ 2

springs,

UKK(p) =

u,v∈V

c

dG (pu , pv)2
· (∥pu − pv∥ − l · dG (u, v))

2
,

where c is a scaling constant , and l is the ideal length of a single edge.

To obtain a local minimum of this object ive funct ion, a modified Newton-

Raphson method is applied. In a local minimum, all part ial derivat ivesof UKK

arezero. This condit ion can beexpressed in a system of dependent non-linear

equat ions. Similar to Quinn and Breuer (1979), theNewton-Raphson method

is modified in that the coordinates of a single vertex are updated while all

others are fixed. In each iterat ion, the vertex with the longest gradient is

picked and moved several t imes unt il itsgradient fallsbelow a given threshold.

It is interest ing to note that the physically inspired object ive funct ion

UKK is closely related to the object ive funct ion

UMDS(p) =
1

u,v∈V

dG (u, v)2
·

u,v∈V

(∥pu − pv∥ − l · dG (u, v))
2

of mult idimensional scaling defined in (Kruskal and Wish, 1978). The family

Sk (p) =
1

u,v∈V

l2− k
u,v

·

u,v∈V

1

lk
u,v

· (∥pu − pv∥ − lu,v)
2

Force-directed algorithms that minimize the force acting on each node have the implicit goal of
minimizing the overall energy of the system (given by the sum of the forces not in equilibrium).

Energy-based algorithms try to minimize the energy of the system directly.

Given a spring of force , natural length and real length d, the spring will have a potential
energy equal to:

c l

K&K assume that:

 The spring ideal length between two nodes is given by the minimum path, geodesic distance ,
multiplied for the edge length

 The best paths in the graph are linear (as if they were Euclidean distances among the positions)

Under these assumptions the objective function that results is as follows:

.

Spring Embedders Energy-based
Kamada and Kawai (1989)

),(vudG

78 Ulrik Brandes

4.3 Energy-Based Placement

Forces defined in the spring embedder variants described above indicate in

which direct ion a vertex can be moved to reduce the forces act ing on it , and

thus an implicit internal energy of the physical system. Instead of displacing

vert ices according to these forces, one might as well at tempt to minimize this

energy direct ly. A spring of natural length l and of strength cσ with actual

length d (assumed to be within reasonable limits) has a potential energy of

Uspring(d) = cσ · (d − l)2,

Kamada and Kawai (1989) avoid a second potent ial for repulsion by using

springs of different length and strength between every pair of vert ices. Their

specific choiceof springs isgoverned by theassumpt ion that the ideal distance

between two vert ices is the length of a shortest path between them, mult iplied

by the ideal length of a single edge, i.e. every path in the graph is best

represented by a st raight line. The natural length of the spring connect ing

vert ices u, v ∈ V is therefore chosen proport ional to dG (u, v), which denotes

the length of a shortest path between them. Clearly, perfect relaxat ion of all

springs is impossible for most graphs, so local distances are rendered more

important by using springs of strength inverse to their length. The result ing

object ive funct ion is the sum over the potent ial energies of all n · (n − 1)/ 2

springs,

UKK(p) =

u,v∈V

c

dG (pu , pv)2
· (∥pu − pv∥ − l · dG (u, v))

2
,

where c is a scaling constant , and l is the ideal length of a single edge.

To obtain a local minimum of this object ive funct ion, a modified Newton-

Raphson method is applied. In a local minimum, all part ial derivat ivesof UKK

are zero. This condit ion can be expressed in a system of dependent non-linear

equat ions. Similar to Quinn and Breuer (1979), the Newton-Raphson method

is modified in that the coordinates of a single vertex are updated while all

others are fixed. In each iterat ion, the vertex with the longest gradient is

picked and moved several t imes unt il its gradient fallsbelow a given threshold.

It is interest ing to note that the physically inspired object ive funct ion

UKK is closely related to the object ive funct ion

UMDS(p) =
1

u,v∈V

dG (u, v)2
·

u,v∈V

(∥pu − pv∥ − l · dG (u, v))
2

of mult idimensional scaling defined in (Kruskal and Wish, 1978). The family

Sk (p) =
1

u,v∈V

l2− k
u,v

·

u,v∈V

1

lk
u,v

· (∥pu − pv∥ − lu,v)
2

∈

In this model there are no separate attractive and repulsive forces between pairs of vertices, but instead if a
pair of vertices is (geometrically) closer/farther than their corresponding graph distance the vertices
repel/attract each other.

The goal of the algorithm is to find values for the variables that minimize the objective function (energy
function)

At local minimum all the partial derivatives are 0 and this corresponds to solving a number of
simultaneous non linear equations (2*number of vertices)

KK computes the position of one vertex at time viewing U as function of only pu and pv

The objective function then can be minimized through a modified Newton-Raphson algorithm, where
(from time to time) the node with the highest gradient moves.

Spring Embedders Energy-based
Kamada and Kawai (1989)

The 1989 algorithm of Kamada and Kawai introduced a different way of thinking about “good” graph layouts.

-the algorithms of Eades and Fruchterman-Reingold aim to keep adjacent vertices close to each other while

ensuring that vertices are not too close to each other, Kamada and Kawai take graph theoretic approach.

In this model, the “perfect” drawing of a graph would be one in which the pair-wise geometric distances
between the drawn vertices match the graph theoretic pairwise distances and there are no separate attractive
and repulsive forces between pairs of vertices, but instead if a pair of vertices is (geometrically) closer/farther
than their corresponding graph distance the vertices repel/attract each other.

Spring Embedders Energy-based
Kamada and Kawai (1989)

Spring Embedders Energy-based
Kamada and Kawai (1989)

Spring Embedders for
2-mode networks
In the case of a 2-mode network is not possible to apply directly the spring embedding
algorithms to the network but it is necessary data transformation.

If I is the incidence matrix actors for events is possible:

 To apply the spring embedding algorithms after the use of projection approach: Calculating the
two weighed adjacency matrices actors x actors (I x I’) or events x events (‘I x I)
In this way we get two separate networks

To apply the spring embedding algorithms to a block matrix constructed as follows
In this way we get a single networks











0I

I0
B

'

Spring Embedders for
2-mode networks

Deep South Women (Davis,Gadner and Gadner, 1941)

[Forthcoming in Encyclopedia of Complexity and System Science]

participation in 14 events, such as a meeting of a social club, a church event, a party, and

so on. Their original figure is shown in Figure 1.

Figure 1. DGG women-by-events matrix.

DGG used the data to investigate the extent to which social relations tended to occur

within social classes.

3. Basic Concepts

A typical data matrix has two dimensions or ways, corresponding to the rows and

columns of the matrix. The number of ways in a matrix X can be thought of as the

number of subscripts needed to represent a particular datum, as in xij. If we stack together

a number of similarly sized 2-dimensional matrices, we can think of the result as a 3-

dimensional or 3-way matrix.

The modes of a matrix correspond to the distinct sets of entities indexed by the ways. In

the DGG dataset described above, the rows correspond to women and the columns to a

different class of entities, namely events. Hence, the matrix has two modes in addition to

two ways; it is 2-way, 2-mode. In contrast, a persons-by-persons matrix A, in which aij =

1 if person i is friends with person j, is a 2-way, 1-mode matrix, because both ways point

to the same set of entities.

In a sense, what constitutes different modes is up to the researcher. If we collect romantic

ties among a group of people of both genders, we could construct a 2-mode men-by-

women matrix X in which xij = 1 if a romantic tie was observed between man i and

woman j, and xij = 0 otherwise. Or, one could construct a larger 1-mode person-by-person

matrix B also consisting of 1s and 0s in which it just happens that 1s only occur in cells

where the row and column correspond to persons of different gender. Use of the men-by-

women matrix would imply that same-gender relations were impossible, whereas use of

Spring Embedders for 2-mode networks
(Borgatti)

[Forthcoming in Encyclopedia of Complexity and System Science]

on just one of the modes. Consider, for example, the case of a person by group matrix X

in which xij = 1 if person i belongs to group j. Let us assume that the groups are small and

everyone in a group knows everyone else. In that case, we could try to infer an

acquaintance network by constructing a 1-mode matrix A such that aij = 1 if person i is in

at least one group with person j. Better yet, we can construct a valued matrix A such that

aij gives the number of groups that i and j are both members of. In other words,

jk

k

ikij xxa ∑ or A = XX' Equation 1

We might regard aij as a proxy for the social proximity of i and j, or perhaps as a rough

indicator of the potential for information flow between them. In this approach, we

analyze each mode of the data separately. Figure 2 shows the values of A for the 2-mode

data shown in Figure 2.

EVE LAU THE BRE CHA FRA ELE PEA RUT VER MYR KAT SYL NOR HEL DOR OLI FLO

EVELYN 8 6 7 6 3 4 3 3 3 2 2 2 2 2 1 2 1 1

LAURA 6 7 6 6 3 4 4 2 3 2 1 1 2 2 2 1 0 0

THERESA 7 6 8 6 4 4 4 3 4 3 2 2 3 3 2 2 1 1

BRENDA 6 6 6 7 4 4 4 2 3 2 1 1 2 2 2 1 0 0

CHARLOTTE 3 3 4 4 4 2 2 0 2 1 0 0 1 1 1 0 0 0

FRANCES 4 4 4 4 2 4 3 2 2 1 1 1 1 1 1 1 0 0

ELEANOR 3 4 4 4 2 3 4 2 3 2 1 1 2 2 2 1 0 0

PEARL 3 2 3 2 0 2 2 3 2 2 2 2 2 2 1 2 1 1

RUTH 3 3 4 3 2 2 3 2 4 3 2 2 3 2 2 2 1 1

VERNE 2 2 3 2 1 1 2 2 3 4 3 3 4 3 3 2 1 1

MYRNA 2 1 2 1 0 1 1 2 2 3 4 4 4 3 3 2 1 1

KATHERINE 2 1 2 1 0 1 1 2 2 3 4 6 6 5 3 2 1 1

SYLVIA 2 2 3 2 1 1 2 2 3 4 4 6 7 6 4 2 1 1

NORA 2 2 3 2 1 1 2 2 2 3 3 5 6 8 4 1 2 2

HELEN 1 2 2 2 1 1 2 1 2 3 3 3 4 4 5 1 1 1

DOROTHY 2 1 2 1 0 1 1 2 2 2 2 2 2 1 1 2 1 1

OLIVIA 1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2

FLORA 1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2
Figure 2. Women-by-women matrix of overlaps across events.

It should be noted that A can be seen as a matrix of profile similarities or correlations

among pairs of rows in X. For example, the matrix of Pearson correlations among rows of

X is defined as follows:

ji

jijk

k

ik

ij
ss

uuxx
m

r

∑


∑

1

Equation 2

Where ui is the mean of row i and si is the standard deviation of row i. It is evident that

the correlation r ij is essentially aij corrected for the number of groups that each belongs

to. This kind of correction seems eminently desirable, but of course there are many ways

of doing this. For example, consider a cross-tabulation T of row i and row j, such that tuv

gives the number of columns k of X for which xik = u and xjk = v, as follows:

[Forthcoming in Encyclopedia of Complexity and System Science]

Alternatively, one can use a standard graph layout algorithm (GLA) to draw the graph

induced by dichotomizing the Jaccard similarity matrix. For example, define Evu ∑),(if

and only if (iff) 4.0>ijc . Compared to multidimensional scaling representations, GLAs

have the disadvantage that distances between points cannot strictly be interpreted, but this

property also means that nodes need not obscure each other. Figure 6 shows the results of

applying a spring-embedding (Kamada and Kawai, 1989) GLA to the dichotomized data.

EVELYN

LAURA

THERESA

BRENDA

CHARLOTTE

FRANCES

ELEANOR

PEARL

RUTH

VERNE

MYRNA

KATHERINE

SYLVIA

NORA HELEN

DOROTHY

OLIVIAFLORA

Figure 6. Spring-embedding representation of Jaccard similarities dichotomized at > 0.4

A similar analysis can be carried out on the events rather than the women. Applying

Equation 3 to the columns of the 2-mode matrix in Figure 1 yields a matrix of Jaccard

coefficients which can be visualized using the same methods used for the women. Figure

7 shows events with Jaccard overlaps greater than 0.35.

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12E13

E14

Figure 7. Spring-embedding representation of “ties” among events (35.0>ijc).

5.2 Unimodal Analysis of 2-Mode Data

In general, analysis of 2-mode data transformed into valued 1-mode networks proceeds

like any other valued network. As with visualization, this often means generating a graph

from the valued data via some rule such as (u,v) ∑ E iff aij > q, where q is chosen by the

researcher. Typically, there is no theoretical reason for choosing any particular value of

q; hence a series of different values is generally chosen and the analysis repeated for

each.

Weighed adjacent matrices actors x actors (I x I’)

Spring Embedders for 2-mode networks
(Borgatti)

[Forthcoming in Encyclopedia of Complexity and System Science]

6.1 Bimodal Visualization of 2-Mode Data

All of the standard ways to visualize networks, such as MDS and GLAs, apply to

bipartite graphs. For example, Figure 9 shows a spring-embedding layout of the bipartite

graph represented by the matrix in Figure 8.

EVELYN

LAURA

THERESA

BRENDA

CHARLOTTE

FRANCES

ELEANOR

PEARL

RUTH

VERNE

MYRNA

KATHERINE

SYLVIA

NORA

HELEN

DOROTHY

OLIVIA

FLORA

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

Figure 9. Spring-embedding representation of bipartite graph.

In the representation, two nodes are near each other roughly to the extent that the

geodesic distance between them is short. Thus, events are near each other if they are

attended by the same women (distance 2), and women are near each other if they attend

the same events. In this example, the representation makes clear that there is a set of

women on the left (Mryna, Helen, Katherine, Nora, Silvia, etc) that attend a set of events

exclusive to them (events 10 through 13), and another set of women (Evelyn, Theresa,

Laura, Brenda, etc) that have their own events (E1 through E4), and finally a set of events

that both “circles” of women attend (events E6 through E9).

For small datasets, this bimodal visualization is often extremely effective for transmitting

a holistic understanding of the whole dataset.

It is worth noting that there is a simple mathematical relationship between pairwise

overlaps as aij as defined in Equation 1 and path lengths in the bipartite graph.

Specifically, the number of 2-step paths between any pair of women i and j in the

bipartite graph is equal to aij, the number of events they attended in common. Of course,

the number of 2-step paths is simply the matrix product BB, the bipartite adjacency

matrix multiplied by itself. As shown in Figure 10, the top left block and bottom right

[Forthcoming in Encyclopedia of Complexity and System Science]

There are, however, a few consequences that stem from the 2-mode origin of the data. By

their very nature, many commonly used measures of similarity and dissimilarity satisfy

triangle inequality laws. For example, for Euclidean distance, every triple of nodes i, j, k

satisfy the following rule:

jkijik ddd +∑ Equation 5

As a result, the 1-mode data (especially if not dichotomized) artifactually exhibit a certain

level of transitivity that may be higher than baseline models built on simple sociometric

choice data would expect. Statistics based on transitivity, such as structural holes and

clustering coefficients, must similarly be interpreted with some caution in such data.

6. Bimodal Approaches to 2-Mode Data

Another approach to working with 2-mode data seeks to analyze both modes

simultaneously. The data are seen to represent relations between two sets of nodes,

forming a bipartite graph GB(V1+V2,E) in which, or all u and v, (u,v) ∑ E if and only if u

and v belong to different vertex sets. In other words, all ties are between vertex sets and

none are within-group. The matrix representation of such a graph can be a rectangular

incidence matrix X (as in Figure 1) or a square bipartite adjacency matrix B with n=n1+n2

rows representing both modes, and an equal number of columns, also representing both

modes. In the latter case, the original matrix X forms a submatrix of the larger adjacency

matrix B in which both rows and columns index the V1+V2 entities. The matrix B is

composed of four blocks, two of which are empty, as shown in Figure 8. Note that the

original matrix X forms the top right quadrant of B, and its transpose forms the bottom

left quadrant.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0

0 1 1 1 0 1 0 0 0 0 0 0 0

0 1 0 1 1 0 1 0 0 0 0 0 0

0 1 1 1 1 0 0 0 0 0 0

0 1 0 1 1 0 0 0 0 0

0 1 0 1 1 1 0 0 0 0 0

0 1 1 1 0 0 1 0 0

0 1 1 1 0 1 0 0

0 1 1 1 0 1 1 1

0 1 1 1 1 0 1 1 1

0 1 1 0 1 1 1 1 1 1

0 1 1 0 1 1 1 0 0

0 1 1 0 0 0 0 0

0 1 0 1 0 0 0

0 1 0 1 0 0 0

1 1 0 1 0

1 1 1 0

1 1 1 1 1 1 0

1 0 1 1 1 0

1 1 1 1 1 1 1 0 1 0

1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8. Bipartite adjacency matrix B created from the original

DGG 2-mode matrix X.

Block matrix 









0I

I0
B

'

Advantages of Spring Embedders
 Produce very readable graphs for networks that are not excessively large

 Distribute the nodes uniformly and try to have similar edge length

 Visualization is often more effective in 3D and if supported by graphing interaction tools (manual
correction)

 They are very useful if you want to proceed to a classification and grouping: spring embedders
bring out the dense subgraphs very well

 If you add vertices that represent clusters, the representation becomes even more effective

 There are numerous variations in literature that represent ties with curved line and introduce
constraints on representation and orientation

Disadvantages of Spring Embedders

They are not able to represent

 Structural aspects

 Roles

 Positions

 Attributes

They can have very high computational costs

They depend on the starting position
(random)

They consider symmetric matrices

Often they end up reproducing the ‘hairball
effect’

Nodes-ties structural
representations

Multidimensional Scaling (MDS)
The MDS is a statistical method that starts from a matrix of distances or dissimilarities
among n objects trying to reconstruct a coordinate system (not known) of n objects.

The MDS minimizes a objective function called STRESS that represents the difference
among the observed distances 𝐷𝑖 and the distance obtained with the coordinates of
objects 𝐱 and 𝐱𝑗:

The vector size 𝐱 is usually equal to 2 or 3 to get planar or spatial representations.

Given a 1-mode graph 𝐺(𝑉, 𝐸), we construct the matrix of the geodesic distances 𝐷 the layout with the
MDS is obtained by solving the minimization problem:

That can also be modified to be a spring embedder using a weighting factor is used to either emphasize or
dampen the importance of certain pairs

It is interesting to note that this objective function resembles that of Kamada and Kawai where c=1.

Originally Kruskal minimizes the STRESS function using gradient descent but one can follow the KK approach
(Newton-Raphson method)

MDS for social networks

  
21

,

2
, 













 

Vvu

vuG ppvudSTRESS

MDS for social networks

MDS for social networks
Possible alternatives

 Apply the MDS algorithm to a modified adjacency matrix

𝐀* = 𝟏-𝐀

 Apply the MDS algorithm to a distance or similarity matrix other than geodesic

(for example, similarity in terms of structural equivalence)

MDS for social networks
MDS on Adjacency Matrix MDS on Structural equivalence

Correspondence Analysis
Correspondence Analysis (CA) is a statistical method used to analyze and represent the association structure
present in a contingency table.

o Let 𝐍 a contingency table 𝐼 × 𝐽 rows for columns of elements 𝑛𝑖𝑗;

o Let 𝐏 the contingency table of elements 𝑛𝑖𝑗 / 𝑛 of the relative frequencies;

o Let S be the standardized residue table under the hypothesis of independence

AC consists of decomposition in singular values of matrix 𝐒

Where 𝐔 and 𝐕 are the matrices of the right and left singular vectors and Λ is the diagonal matrix of the
singular values

 
jijiijij crcrps 

  UΛΛDrc-PDS 2
1

2
1

C

T

r 


CA and networks
Correspondence analysis has been widely used in 2-mode networks analysis.

This method is specifically indicated in the case of weighted networks in which the link
represents the number of times the actor participated in the event, or the number of times an
author mentions a magazine, or in all those cases in which the value of the tie is a positive
number of count.

CA was also used to analyze affiliation matrices, that is, those where the link is binary (0/1),
raising some criticisms.

For the mathematical structure of CA unrelated actors or events (that is, with a low degree)
weigh heavily (sometimes excessively) in the analysis by obscuring the main structures.

CA and networks: reading criteria

The reading criteria are different from those of nodes-arcs representations.

The CA highlights the similarity among the actors or among the events and their association
in terms of structural similarity.

Two actors close to the factorial plane are structurally similar, i.e. participate in the same
events.

Two events close on the factorial plane are structurally similar, i.e. the same actors
participate.

It is possible to represent jointly actors and events.

The relation between actors and events should be read in terms of angles and not distance.

CA: reading criteria

CA and networks: reading criteria

Multiple
Correspondence Analysis

Multiple Correspondence Analysis (MCA) is a statistical method used to analyze and represent
the association structure present in several qualitative variables.

There are numerous formulations. We refer to the case in which there are individuals (actors) on
the rows and categorical variables on the columns (participation in events)

o Let F a matrix that encodes the affiliation matrix (we treat it as individuals for variables);

o Let 𝐙 the table in complete disjunctive coding ;

o Let S the standardized residue table under the hypothesis of independence will be

o MCA is the decomposition in singular values of 𝐒

 -F|FZ
+

Multiple
Correspondence Analysis

Nodes-ties structural
representations
DIFFERENT LAYOUTS

Some comparisons

Bipartite Graph
The bipartite graph is the simplest layout
for 2-mode networks.

The two modes of the network are
represented with different symbols and
colors aligned one face to the other

Arcs or segments from one mode to
another connect the nodes of the two
sets.

Visual alphabet of nodes-ties representations

 Dimensions

 Forms and simbols

 Lines

 Colors

Visual alphabet of nodes-ties representations

Dimensions

 The size of the nodes is one of the main
stimuli of node-tie representation.

 Too small nodes or too large nodes can
produce misleading representations.

Visual alphabet of nodes-ties representations

Forms and Symbols
The basic shape for the node is the circle or the

sphere, but many other shapes and symbols can be
used.

Is relevant that they are meaningful, that is
consistent: for example homogeneous groups must
be represented by similar symbols.

Visual alphabet of nodes-ties representations

Lines

 It is possible to choose whether the ties are
segments, curves, arcs.

 It is possible to change the thickness of the
lines, the color of the lines.

 For large and dense networks it is good to use
transparency.

Visual alphabet of nodes-ties representations

Colors

 The colors must create a distinguishable and
orderly visualization.

 The colors have an aesthetic value, but they
also depend on culture and can generate
different psychological reactions.

 Tone, brightness and saturation.

Nodes-ties structural
representations
INCORPORATE GRAPH PROPERTIES

Show attributes and roles and positions
Dimensions, shapes and symbols, lines and colors can be used to encode additional information
within the nodes-ties representation

Examples:

Actors attributes: categorical variables or group memberships can be encoded with different
shapes, symbols, or colors.

Centralization measures: Continuous variables can be related to the size of the symbols or the
color saturation level.

Ties attributes: can be encoded with different line or with different colors.

Transparency and saturation reveals the dense and sparse areas of the graph.

SOCIOMATRICES
Representation

Sociomatrices representation
An alternative way of representing social networks such as graphs is the direct representation of
sociomatices.

The matrix is represented as a square or rectangle and divided into as many squares as the cells
of the sociomatrix.

Each square is filled if the tie is present (if the network is weighed it is possible to fill the square
with a color of varying intensity as the weight changes).

Even in this case the basic problem is sorting rows and columns, which in general is a problem

𝑁𝑃-𝐻𝑎𝑟𝑑.

The main goal is to show clusters and groups and so it is very much used after clustering,
community detection, or blockmodeling.

Sociomatrices representation

Sociomatrices representation

Representations: final consideration
 Many possible layouts

 Many possible aspects to highlight

 Many choices possible for size, shape, color, lines

It follows that there are so many possible representations for
the same network and making a good representation is a

matter of "artistic craftsmanship" and experience

