# Galaxy Clusters and the IntraCluster Medium



credit: SDSS collab.



# What is a galaxy cluster ?

- Concentration of ~10<sup>3</sup> galaxies
- $\sigma_v \sim 500-1000 \text{ km s}^{-1}$
- Size: ~1-2 Mpc
- Mass:  $\sim 10^{14}$  Msun





HS7

# What is a galaxy cluster ?

- Concentration of ~10<sup>3</sup> galaxies
- $\sigma_v$ ~500-1000 km s<sup>-1</sup>
- Size: ~1-2 Mpc
- Mass: ~10<sup>14</sup> Msun
- ICM temperature: T<sub>X</sub> ~ 2-10 keV fully ionized plasma;

## The Constituents Of Galaxy Cluster

Dark Matter: Accounts for 85% of cluster mass. Unknown collosionless particles.

Intra-cluster medium: hot, optically thin gas. 85% of baryons. It emits X-ray radiation.

Galaxies: 100s to 1000s galaxies, 15% of baryons.



# The Constituents Of Galaxy Cluster

### Dark Matter





### In simulations

## **Cluster Formation**

Collapse from initial density fluctuations



The deep gravitational potential wells of clusters lock metals produced by member galaxies: the ICM is a fossil record of the chemical enrichment of the Universe



#### credit: H. Boehringer

The cluster border is not a well-defined quantity: clusters are not closed spheres, however it is convenient to define a cluster as the mass enclosed in a radius corresponding to a fixed  $\Delta$ .

 $\Delta$  is defined as the density contrast with respect to the mean or the critical density of the Universe at the cluster redshift.

The critical density is the value required to have a flat Universe.

 $\rho c \equiv 3H^2(z)/8\pi G.$ 

$$M_{\Delta} = \frac{4\pi}{3} r_{\Delta} \rho_{crit} \Delta_c$$

In their formation process, galaxy clusters undergo adiabatic compression and shocks providing the primordial heat to the intracluster medium, a hot gas confined by the cluster's gravitational potential well.

Clusters are permeated by this low-density plasma, which strongly emits X-ray radiation:

- free-free: thermal bremsstrahlung  $\rightarrow$  continuum
- free-bound: recombination  $\rightarrow$  continuum
- bound-bound: de-excitation radiation  $\rightarrow$  line emission

Mainly H, He, but with heavy elements (O, Fe, ..)

Main emission processes: thermal Bremsstrahlung radiation and metal emission lines, proportional to the square of the gas density:

$$\epsilon_{\nu} = \frac{2^4 e^6}{3m_e \hbar c^2} (\frac{2\pi k_B T}{m_e c^2})^{1/2} \mu_e n_e^2 g(Z, T, \nu) exp(\frac{h_P \nu}{k_B T}) (k_B T)^{-1}$$

Integrating  $\varepsilon v$  over the X-ray emission energy range and gas distribution,

$$\epsilon_{\nu} \equiv \frac{dL}{dVd\nu} \qquad L_x = \frac{2^4 e^6}{3\hbar m_e c^2} \left(\frac{2\pi kT}{3m_e c^2}\right)^{1/2} \mu_e \overline{g}(T) \int n_e^2 4\pi r^2 dr,$$

we obtain  $Lx \sim 10^{43}$ -10<sup>45</sup> erg s-1.





Plasma radiation codes to module the X-ray spectrum



When T increases, bremsstrahlung dominates shape of continuum spectrum

The deep gravitational potential wells of clusters lock metals produced by member galaxies: the ICM is a fossil record of the chemical enrichment of the Universe

Most prominent signature of the metal enrichment is the Fe K-line complex at 6.7 keV (the only accessible line at high-z)



### **Temperature profile**



#### Pratt et al. 2007

### **Temperature profile**

Vikhlinin introduced a parametric model to describe the distribution of the ICM temperature



$$x = (r/r_{cool})^{a_{cool}}$$

The model has a "bell" shape

Points: measured temperatures (with Chandra spectra)

Red line: Vikhlinin 3D model

Blue line: projected 3D model fitted to the data

### Temperature profile



Gravitational potential for a spherically symmetric object  $\Phi(r) = -\frac{GM}{r} \label{eq:phi}$ 

Equation of state:

$$P = nkT = \frac{\rho_{gas}}{\mu m_p} kT$$



### The $\beta$ -model for the gas distribution

combining the Jeans and hydrostatic equilibrium eqs  $M(r) = -\frac{\sigma_r^2 r}{G} \left\{ \frac{d \ln \rho}{d \ln r} \right\} \qquad M(r) = -\frac{kT r}{G\mu m_p} \left\{ \frac{d \ln \rho_g}{d \ln r} \right\} \\ \frac{\sigma_r^2 \mu m_p}{kT} = \beta$ 

$$\frac{\rho_g}{\rho_{g0}} = \left(\frac{\rho}{\rho_0}\right)^{\beta} \quad \text{Assuming a King profile for the} \quad \rho = \rho_0 \left(1 + \left(\frac{r}{r_c}\right)^2\right)^{-3/2}$$
galaxies distribution

Gas density distribution

$$\rho_g = \rho_{g0} \left( 1 + \left(\frac{r}{r_c}\right)^2 \right)^{-3/2\beta}$$

#### Cavaliere & Fusco-Femiano 1976

## Gas density profile

The shape of cluster density profiles,  $n_e^{}$ , is affected by the individual evolution history of the cluster e.g.:

- merging phenomena
- feedbacks in the core
- For this reason the Beta profile introduced by Cavaliere & Fusco Femiano based on simple physical assumptions is not adequate
- Vikhlinin introduced in 2006 a parametric model to account for the variegate cluster population

$$n_p n_e = n_0^2 \frac{\left(r/r_c\right)^{-\alpha}}{\left(1 + r^2/r_c^2\right)^{3\beta - \alpha/2}} \frac{1}{\left(1 + r^{\gamma}/r_s^{\gamma}\right)^{\varepsilon/\gamma}} + \frac{n_{02}^2}{\left(1 + r^2/r_{c2}^2\right)^{3\beta_2}}.$$

Term for the outskirts

Term accounting for the core

### Gas density profile

$$n_p n_e = n_0^2 \frac{\left(r/r_c\right)^{-\alpha}}{\left(1 + r^2/r_c^2\right)^{3\beta - \alpha/2}} \frac{1}{\left(1 + r^\gamma/r_s^{\gamma}\right)^{\varepsilon/\gamma}} + \frac{n_{02}^2}{\left(1 + r^2/r_{c2}^2\right)^{3\beta_2}}.$$

Remember that

$$n_e = Z n_p$$

$$\rho_{gas} = m_p n_e A / Z$$

Where:

Z is the average nuclear charge

A is the average nuclear mass

Both computed under some assumptions. Typically A=1.4 and Z=1.2

## Gas density profile



Disturbed cluster

#### Bartalucci et al. 2019

## Surface brightness profile

X-ray emission 
$$\varepsilon = n_e^2 \widetilde{\Lambda}(t)$$

Surface brightness

$$S_x(R) = \frac{2}{4\pi} \int_R^\infty n_e^2 \widetilde{\Lambda}(t) dz$$

Proportional to  $ne^2 \rightarrow difficult$  to observe the cluster outskirts In inverse proportion to  $(1+z)^4 \rightarrow difficult$  to have high S/N X-ray observations at high redshift

$$S_{x}(R) = \frac{n_{e0}^{2} \widetilde{\Lambda}(t) r_{c}}{4\pi} \frac{\Gamma(0.5) \Gamma(3\beta - 0.5)}{\Gamma(3\beta)} \left(1 + \left(\frac{R}{r_{c}}\right)^{2}\right)^{-3\beta + 1/2} (1+z)^{-4}$$

credit: I. Bartalucci

 $\epsilon(\nu) \propto n_e^2$ 



# X-ray emission



credit: I. Bartalucci

## X-ray emission



Energy (keV)

credit: I. Bartalucci

X-ray observations of high Z clusters suffer from cosmological dimming:

# $S_x \propto (1+z)^{-4}$





# X-ray emission

200 ksec of Chandra observation

Very massive system: M200=6x10<sup>14</sup> Msun at z=1.39



XMMUJ 2235.3 - 2033

Rosati et al. 2009



## X-ray emission

380 ksec of Chandra observation

Very massive system: M200~5x10<sup>14</sup> Msun at z=1.58





#### XDCP0044

Tozzi et al. 2015

## Different method to estimate the cluster mass from X-ray



# Systematics in Mass Estimation

5 clusters in different dynamical state have been extracted from simulation and processed to obtain mock Chandra (ACIS-S3) long (1 Ms) observations



#### Rasia et al 2006

## Systematics in Mass Estimation

Ignoring the dynamical state of the cluster



#### Rasia et al 2006



Arnaud et al. 2010



#### Leccardi et al. 2007





Bartalucci et al. 2019



#### Credit: J.Santos

# X-ray telescops

CHANDRA(NASA)



### XMM-NEWTON(ESA)



- Angular resolution: ~ 0.5 arcsec
- Energy range: [0.5-9] Kev
- Fov: ~ 16 arcmin

- Angular resolution: ~ 6 arcsec
- Energy range: [0.3-10] Kev
- Fov: ~ 30 arcmin

# Instruments comparison



#### MACS J0717.5+3745 Z = 0.55



C|0016+16Z = 0.55

# X-ray event file

Both Chandra and XMM observations are available as a list of *events*, where an event is a list of informations for each detected photon.

#### XMM-NEWTON event file

|       | TIME        | RAWX   | RAWY   | DETX     | DETY  | POS(X) | POS(Y) | PHA    | PI    | FLAG    | PATTERN | CCDNR |
|-------|-------------|--------|--------|----------|-------|--------|--------|--------|-------|---------|---------|-------|
| units | ŝ           | PIXELS | PIXELS | pixel    | pixel | pixel  | pixel  | CHAN   | CHAN  |         |         |       |
| 1     | 395587468.4 | 350    | 119    | 1084     | -3995 | 26064  | 22332  | 3990   | 13069 | 4194304 | 0       | 1     |
| 2     | 395587468.4 | 570    | 164    | 5928     | -3004 | 22021  | 19486  | 3989   | 13095 | 4194304 | 0       | 1     |
| 3     | 395587469.7 | 586    | 216    | 6281     | -1865 | 20950  | 20010  | 3992   | 13118 | 4194304 | 0       | 1     |
| 4     | 395587468.2 | 511    | 242    | 4642     | -1283 | 21650  | 21602  | 120    | 393   | 0       | 0       | 1     |
| 5     | 395587470.0 | 203    | 254    | -2156    | -1015 | 26117  | 26733  | 443    | 1477  | 0       | 0       | 1     |
| 6     | 395587472.1 | 366    | 399    | 1447     | 2175  | 21325  | 26299  | 425    | 1422  | 0       | 4       | 1     |
| 7     | 395587474.8 | 274    | 201    | -592     | -2198 | 25905  | 24784  | 520    | 1771  | 0       | 0       | 1     |
| 8     | 395587474.2 | 190    | 246    | -2425    | -1202 | 26438  | 26801  | 384    | 1274  | 0       | 0       | 1     |
| time  |             |        |        | position |       |        |        | energy |       | pa      | oattern |       |

...plus a number of other files necessary for the calibration, sky projection ecc.

# Background

X-Ray background is formed by two main components:

Sky

-Local Hot Bubble and Trans absorption emission (e.g. Kuntz & Snowden 2000) modelled with two absorbed thermal emission

-Unresolved X ray point sources modelled with an absorbed power law (e.g. Lumb et al. 2002) Instrumental

-Emission from telescope itself hit by high energetic particles(e.g. Hickox and Markevitch 2006)

-Particle revealed by the detectors as photons

# **Source Detection**

### Remove photons coming from unwanted sources



# **Source Detection**

### Remove photons coming from unwanted sources



# **Background analysis**

### Cluster



### Background



# Spherical symmetry

#### Surface brightness(Sx)

#### Temperature





# Surface brightness



# Surface brightness



# Temperature fit



# Instrumental effects: Temperature

To estimate the temperature we fit data with tabulated spectral emissions in each bin convolved with instrument response, using the maximum likelihood method.



# Temperature fit



# **Temperature fit**



The observed emission is due to the superimposition of different radius at different temperatures. Projection effects should also be considered in the de-projection of the 2D temperature profile

# Centroid or X-ray peak?







# Mass derivation



#### Credit: M. Arnaud