Galaxy Clusters and the IntraCluster Medium

credit: SDSS collab.

cluster ?

- Concentration of \sim 10 3 galaxies
- $\sigma_{\sf v}^{\sf \sim}$ 500-1000 km s $^{\sf -1}$
- Size: ~1-2 Mpc
- $-$ Mass: \sim 10¹⁴ Msun

What is a galaxy cluster ?

- Concentration of \sim 10 3 galaxies
- $\sigma_{\sf v}^{\sf \sim}$ 500-1000 km s $^{\sf -1}$
- Size: ~1-2 Mpc
- $-$ Mass: \sim 10¹⁴ Msun
- ICM temperature: T_{χ} ~ 2-10 keV fully ionized plasma;

The Constituents Of Galaxy Cluster

Dark Matter: Accounts for 85\% of cluster mass. Unknown collosionless particles.

Intra-cluster medium: hot, optically thin gas. 85% of baryons. It emits X-ray radiation.

Galaxies: 100s to 1000s galaxies, 15% of baryons.

The Constituents Of Galaxy Cluster

Dark Matter Baryons

In simulations

Cluster Formation

Collapse from initial density fluctuations

The deep gravitational potential wells of clusters lock metals produced by member galaxies: the ICM is a fossil record of the chemical enrichment of the Universe

credit: H. Boehringer

l.

The cluster border is not a well-defi ned quantity: clusters are not closed spheres, however it is convenient to define a cluster as the mass enclosed in a radius corresponding to a fixed Δ .

 Δ is defined as the density contrast with respect to the mean or the critical density of the Universe at the cluster redshift.

The critical density is the value required to have a flat Universe. $\rho c = 3H^2(z)/8\pi G$.

$$
M_{\Delta} = \frac{4\pi}{3} r_{\Delta} \rho_{crit} \Delta_c
$$

In their formation process, galaxy clusters undergo adiabatic compression and shocks providing the primordial heat to the intracluster medium, a hot gas confined by the cluster's gravitational potential well.

Clusters are permeated by this low-density plasma, which strongly emits X-ray radiation:

- free-free: thermal bremsstrahlung \rightarrow continuum
- free-bound: recombination \rightarrow continuum
- bound-bound: de-excitation radiation \rightarrow line emission

Mainly H, He, but with heavy elements (O, Fe, ..)

Main emission processes: thermal Bremsstrahlung radiation and metal emission lines, proportional to the square of the gas density:

$$
\epsilon_{\nu} = \frac{2^4 e^6}{3 m_e \hbar c^2} (\frac{2 \pi k_B T}{m_e c^2})^{1/2} \mu_e n_e^2 g(Z, T, \nu) exp(\frac{h_{PV}}{k_B T})(k_B T)^{-1}
$$

Integrating εν over the X-ray emission energy range and gas distribution,

$$
\epsilon_{\nu}\equiv \frac{dL}{dV d\nu}\qquad L_x=\frac{2^4 e^6}{3\hbar m_e c^2}\left(\frac{2\pi kT}{3m_e c^2}\right)^{1/2} \mu_e \overline{g}(T)\int n_e^2 4\pi r^2 dr,
$$

we obtain $Lx \sim 10^{43}$ -10⁴⁵ erg s-1.

Plasma radiation codes to module the X-ray spectrum

When T increases, bremsstrahlung dominates shape of continuum spectrum

The deep gravitational potential wells of clusters lock metals produced by member galaxies: the ICM is a fossil record of the chemical enrichment of the Universe

Most prominent signature of the metal enrichment is the Fe K-line complex at 6.7 keV (the only accessible line at high-z)

Temperature profile

Pratt et al. 2007

Temperature profile

Vikhlinin introduced a parametric model to describe the distribution of the ICM temperature

$$
x=(r/r_{cool})^{a_{cool}}\;
$$

The model has a "bell" shape

Points: measured temperatures (with Chandra spectra)

Red line: Vikhlinin 3D model

Blue line: projected 3D model fitted to the data

Temperature profile

Gravitational potential for a spherically symmetric object $\Phi(r) = -\frac{GM}{r}$ \overline{r}

Equation of state:

$$
P = nkT = \frac{\rho_{gas}}{\mu m_p} kT
$$

The β-model for the gas distribution

combining the Jeans and hydrostatic equilibrium eqs $M(r) = -\frac{\sigma_r^2 r}{G} \left\{ \frac{d \ln \rho}{d \ln r} \right\} \qquad M(r) = -\frac{k Tr}{G \mu m_p} \left\{ \frac{d \ln \rho_g}{d \ln r} \right\}$ $\frac{\sigma_r^2 \mu m_p}{kT} = \beta$

$$
\frac{\rho_g}{\rho_{g0}} = \left(\frac{\rho}{\rho_0}\right)^{\beta}
$$

Assuming a King profile for the galaxies distribution

$$
0 = \rho_0 \left(1 + \left(\frac{r}{r_c} \right)^2 \right)^{-3/2}
$$

Gas density distribution

$$
\rho_{g} = \rho_{g0} \left(1 + \left(\frac{r}{r_c}\right)^2 \right)^{-3/2\beta}
$$

Cavaliere & Fusco-Femiano 1976

Gas density profile

The shape of cluster density profiles, $\boldsymbol{\mathsf n}_{\rm e}$, is affected by the individual evolution history of the cluster e.g.:

- merging phenomena
- feedbacks in the core
- For this reason the Beta profile introduced by Cavaliere & Fusco Femiano based on simple physical assumptions is not adequate
- Vikhlinin introduced in 2006 a parametric model to account for the variegate cluster population

$$
n_p n_e = n_0^2 \frac{\left(r/r_c\right)^{-\alpha}}{\left(1 + r^2/r_c^2\right)^{3\beta - \alpha/2}} \frac{1}{\left(1 + r^{\gamma}/r_s^{\gamma}\right)^{\varepsilon/\gamma}} + \frac{n_{02}^2}{\left(1 + r^2/r_{c2}^2\right)^{3\beta_2}}.
$$

Term for the outskirts Term accounting for the core

Gas density profile

$$
n_p n_e = n_0^2 \frac{\left(r/r_c\right)^{-\alpha}}{\left(1 + r^2/r_c^2\right)^{3\beta - \alpha/2}} \frac{1}{\left(1 + r^{\gamma}/r_s^{\gamma}\right)^{\varepsilon/\gamma}} + \frac{n_{02}^2}{\left(1 + r^2/r_{c2}^2\right)^{3\beta_2}}.
$$

Remember that

$$
n_e=Zn_p
$$

$$
\rho_{gas}=m_p n_e A/Z
$$

Where:

Z is the average nuclear charge

A is the average nuclear mass

Both computed under some assumptions. Typically A=1.4 and Z=1.2

Gas density profile

Disturbed cluster

Bartalucci et al. 2019

Surface brightness profile

X-ray emission
$$
\varepsilon = n_e^2 \widetilde{\Lambda}(t)
$$

Surface brightness

$$
S_x(R) = \frac{2}{4\pi} \int_R^{\infty} n_e^2 \, \widetilde{\Lambda}(t) \, dz
$$

Proportional to ne² \rightarrow difficult to observe the cluster outskirts In inverse proportion to $(1+z)^4 \rightarrow$ difficult to have high S/N X-ray observations at high redshift

$$
S_x(R) = \frac{n_{e0}^2 \tilde{\Lambda}(t) r_c}{4\pi} \frac{\Gamma(0.5) \Gamma(3\beta - 0.5)}{\Gamma(3\beta)} \left(1 + \left(\frac{R}{r_c}\right)^2\right)^{-3\beta + 1/2} (1 + z)^{-4}
$$

credit: I. Bartalucci

 $\epsilon(\nu) \propto n_e^2$

X-ray emission

Energy (keV)

credit: I. Bartalucci

X-ray emission

Energy (keV)

credit: I. Bartalucci

X-ray observations of high Z clusters suffer from cosmological dimming:

$S_{x} \propto (1+z)^{-4}$

X-ray emission

200 ksec of Chandra observation

Very massive system: $M200=6x10^{14}$ Msun at z=1.39

XMMUJ 2235.3 - 2033

Rosati et al. 2009

X-ray emission

380 ksec of Chandra observation

Very massive system: M200~5x10¹⁴ Msun at z=1.58

XDCP0044

Tozzi et al. 2015

Different method to estimate the cluster mass from X-ray

Systematics in Mass Estimation

5 clusters in different dynamical state have been extracted from simulation and processed to obtain mock Chandra (ACIS-S3) long (1 Ms) observations

Rasia et al 2006

Systematics in Mass Estimation

Ignoring the dynamical state of the cluster

Arnaud et al. 2010

Leccardi et al. 2007

Bartalucci et al. 2019

Credit:J.Santos

X-ray telescops

CHANDRA(NASA) XMM-NEWTON(ESA)

- Angular resolution: \sim 0.5 arcsec
- Energy range: [0.5-9] Kev
- Fov: \sim 16 arcmin
- Angular resolution: \sim 6 arcsec
- Energy range: [0.3-10] Kev
- Fov: \sim 30 arcmin

Instruments comparison

MACS J0717.5+3745 $Z = 0.55$

Cl0016+16 $Z = 0.55$

X-ray event file

Both Chandra and XMM observations are available as a list of events, where an event is a list of informations for each detected photon.

XMM-NEWTON event file

…plus a number of other files necessary for the calibration, sky projection ecc.

Background

X-Ray background is formed by two main components:

Sky

-Local Hot Bubble and Trans absorption emission (e.g. Kuntz & Snowden 2000) modelled with two absorbed thermal emission

-Unresolved X ray point sources modelled with an absorbed power law (e.g. Lumb et al. 2002)

Instrumental

-Emission from telescope itself hit by high energetic particles(e.g. Hickox and Markevitch 2006)

-Particle revealed by the detectors as photons

Source Detection

Remove photons coming from unwanted sources

Source Detection

Remove photons coming from unwanted sources

Background analysis

Cluster **Background**

Spherical symmetry

Surface brightness(Sx) Temperature

Surface brightness

Surface brightness

Temperature fit

Instrumental effects: Temperature

To estimate the temperature we fit data with tabulated spectral emissions in each bin convolved with instrument response, using the maximum likelihood method.

Temperature fit

Temperature fit

The observed emission is due to the superimposition of different radius at different temperatures. Projection effects should also be considered in the de-projection of the 2D temperature profile

Centroid or X-ray peak?

Mass derivation

Credit: M. Arnaud