Tecniche di programmazione in chimica

computazionale
Optimization and parallelization

Emanuele Coccia

Dipartimento di Scienze Chimiche e Farmaceutiche

E. Coccia (DSCF) Tecniche di programmazione



Optimization

@ Make the program faster and more efficient

E. Coccia (DSCF) Tecniche di programmazione



Optimization

@ Make the program faster and more efficient
@ Compiler options to optimize the program

E. Coccia (DSCF) Tecniche di programmazione



Optimization

@ Make the program faster and more efficient
@ Compiler options to optimize the program
@ User changes of the source code

E. Coccia (DSCF) Tecniche di programmazione



Optimization

@ Make the program faster and more efficient
@ Compiler options to optimize the program

@ User changes of the source code

@ Check the performances (profiling)

E. Coccia (DSCF) Tecniche di programmazione



Optimization options

@ Use optimization options of the compiler: -Ok (k=0,1, 2, 3)
(type man ifort and search “Specifies the code optimization
for applications.”)

@ Automatic optimization improving code performance

@ Example with profiling.f90

@ Compile with -O0, -O1, -O2 and -O3 (n=100 and m=1000 as
input)

@ Run the executable by typing time ./profiling.x

E. Coccia (DSCF) Tecniche di programmazione



Swap indexes in matrices

@ Methods to linearly store multidimensional arrays in RAM
@ Fortran memory management: column-major order

E. Coccia (DSCF) Tecniche di programmazione



Swap indexes in matrices

@ Methods to linearly store multidimensional arrays in RAM
@ Fortran memory management: column-major order
@ User source-code optimization

lll

y

E. Coccia (DSCF) Tecniche di programmazione



Swap indexes in matrices

@ Methods to linearly store multidimensional arrays in RAM
@ Fortran memory management: column-major order
@ User source-code optimization

lll

y

@ Example matrix_swap.f90 (compile using -O0)

E. Coccia (DSCF) Tecniche di programmazione



Profiling

@ Detailed analysis of the code performance

E. Coccia (DSCF) Tecniche di programmazione



Profiling

@ Detailed analysis of the code performance
@ Done using a compiler opfion:
@ ifort -pg -0 code.x code.fo0

E. Coccia (DSCF) Tecniche di programmazione



Profiling

@ Detailed analysis of the code performance
@ Done using a compiler opfion:

@ ifort -pg -0 code.x code.fo0
@ ./codex

E. Coccia (DSCF) Tecniche di programmazione



Profiling

@ Detailed analysis of the code performance
@ Done using a compiler opfion:

@ ifort -pg -0 code.x code.fo0
© ./codex
@ gprof code.x > profile

E. Coccia (DSCF) Tecniche di programmazione



Profiling

@ Detailed analysis of the code performance
@ Done using a compiler opfion:

@ ifort -pg -0 code.x code.fo0
© ./codex
@ gprof code.x > profile

@ Example profiling.f90

E. Coccia (DSCF) Tecniche di programmazione



Parallelization: where

@ RS/6000: Practical MPI Programming

E. Coccia (DSCF) Tecniche di programmazione



Parallelization: where

@ RS/6000: Practical MPI Programming
@ OpenMP Application Program Interface
@ https://www.openmp.org/resources/tutorials-articles/

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

@ MPI: Message Passing Interface protocol

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

@ MPI: Message Passing Interface protocol
@ Goal: reduce the time spent for computation

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

@ MPI: Message Passing Interface protocol
@ Goal: reduce the time spent for computation

@ |deally, the parallel program is p times faster than the serial
one (p being the number of processes)

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

@ MPI: Message Passing Interface protocol
@ Goal: reduce the time spent for computation

@ |deally, the parallel program is p times faster than the serial
one (p being the number of processes)

@ SIMD: single instruction (executable), multiple data

Executable

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

@ MPI: Message Passing Interface protocol
@ Goal: reduce the time spent for computation

@ |deally, the parallel program is p times faster than the serial
one (p being the number of processes)

@ SIMD: single instruction (executable), multiple data

Executable

RRRRRRRRRRRR

@ Each process has a unique identifier (rank)

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

N

A process

1. Read array a() from
the input file

2. Set is=1 and ie=6
3. Process from a(is) to a(ie)

4. Write array a() to the
output file

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

a.out

Process 0

. Read array a() from

the input file

. Get my rank

then is:
then is
then is:

i
o
i

Process from a(is) to a(ie)

. Gather the results

to process

If rank==0 then write array
a() to the output file

o

Process 1

. Read array a() from

the input file

. Get my rank

If ran
If ran
If ran

0 then is=1,
1 then is=3,
2 then is=5, ie=6

Process from a(is) to a(ie)

. Gather the results

to process 0

If rank==0 then write array
a() to the output file

o

Process 2

. Read array a() from

the input file

. Get my rank

If rank
If rank:
If rank:

Process from a(is) to a(ie)

. Gather the results

to process

If rank==0 then write array
a() to the output file

Coccia (DSCF)

Tecniche di programmazione




MPI parallelization

@ Mandatory module mpi

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

@ Mandatory module mpi
@ Compile with mpi compiler, run using mpirun -N ./code.x

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

@ Mandatory module mpi
@ Compile with mpi compiler, run using mpirun -N ./code.x

@ MPI suborutines: collective and point-to-point
communication, environment management,
communicators etc.

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

@ Mandatory module mpi
@ Compile with mpi compiler, run using mpirun -N ./code.x

@ MPI suborutines: collective and point-to-point
communication, environment management,
communicators etc.

@ Example hello_world.f90

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

call mpi_bcast(buffer,count,datatype,root,comm,ierror)

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

call mpi_bcast(buffer,count,datatype,root,comm,ierror)
@ buffer; starting address of the buffer (variable name)

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

call mpi_bcast(buffer,count,datatype,root,comm,ierror)
@ buffer; starting address of the buffer (variable name)
@ count: number of elements of the buffer

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

call mpi_bcast(buffer,count,datatype,root,comm,ierror)
@ buffer; starting address of the buffer (variable name)
@ count: number of elements of the buffer

@ datatype: data type of buffer elements (MPI_INTEGER,
MPI_DOUBLE_PRECISION etc.)

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

call mpi_bcast(buffer,count,datatype,root,comm,ierror)
@ buffer; starting address of the buffer (variable name)
@ count: number of elements of the buffer

@ datatype: data type of buffer elements (MPI_INTEGER,
MPI_DOUBLE_PRECISION etc.)

@ root: rank of the root process

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

call mpi_bcast(buffer,count,datatype,root,comm,ierror)
@ buffer; starting address of the buffer (variable name)
@ count: number of elements of the buffer

@ datatype: data type of buffer elements (MPI_INTEGER,
MPI_DOUBLE_PRECISION etc.)

@ root: rank of the root process
@ comm: communicator (MPI_COMM_WORLD)

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

call mpi_bcast(buffer,count,datatype,root,comm,ierror)
@ buffer; starting address of the buffer (variable name)
@ count: number of elements of the buffer

@ datatype: data type of buffer elements (MPI_INTEGER,
MPI_DOUBLE_PRECISION etc.)

@ root: rank of the root process
@ comm: communicator (MPI_COMM_WORLD)
@ ierror: Fortran return code

E. Coccia (DSCF) Tecniche di programmazione



MPI parallelization

call mpi_bcast(buffer,count,datatype,root,comm,ierror)
@ buffer; starting address of the buffer (variable name)
@ count: number of elements of the buffer

@ datatype: data type of buffer elements (MPI_INTEGER,
MPI_DOUBLE_PRECISION etc.)

@ root: rank of the root process

@ comm: communicator (MPI_COMM_WORLD)
@ ierror: Fortran return code

@ Example: simd.fo0

E. Coccia (DSCF) Tecniche di programmazione



