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Motivating example: lidar data
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LIDAR = light detection and ranging

▶ Is a technique to detect chemical
compounds in the atmosphere

▶ x : distance traveled before re�ection

▶ y : log of the ratio of received light
between two laser sources

▶ We want to estimate

f (x) = E (Y |X = x)

▶ Well known example of non linear relationship where polynomial
regression does non work very well.
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Estimation of f

The linear model

yi = f (xi ) + εi = β1 + β2xi + εi

where εi ∼ IID(N (0, σ2)) clearly does not work
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Naive solution 1: polynomial model

A �rst idea is using a polynomial model, e�ective if the degree is high
enough

f (x ;β) = β1 + β2x + β3x
2 + β4x

3 + β5x
4

however, it has various problems.
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Naive solution 2: piecewise linear model

An alternative might be using a piecewise linear model.
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Linear spline basis: a two-knots example

A more sophisticated but still (piecewise) linear �t is obtained by

yi = β1 + β2xi + β3(xi − κ1)+ + β4(xi − κ2)+ + εi

where

▶ εi ∼ IID(N (0, σ2)),

▶ κ1 and κ2, the knots, are �xed numbers within the range of x

▶ βi are estimated using maximum likelihood, that is,

β̂ = argmin
β

n∑
i=1

(yi − f (xi ;β))
2

where

f (xi ;β) = β1 + β2xi + β3(xi − κ1)+ + β4(xi − κ2)+
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Linear spline basis: a two-knots example
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Linear spline basis: general speci�cation

More generally, we �x K knots

κ1, . . . , κK

and estimate the model (notation changed!)

yi = β1 + β2xi +
K∑

k=1

bk(xi − κk)+ + εi

The spline function is represented as

f (x) = β1 + β2x +
K∑

k=1

bk(x − κk)+

and is smoother the fewer knots are used.
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Linear spline basis: general speci�cation
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Linear spline basis: general speci�cation
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Truncated power basis

An obvious extension of the linear basis is the truncated power basis

yi = β1 + β2xi + . . .+ βp+1x
p +

K∑
k=1

bk(xi − κk)
p
+ + εi

then the spline function is

f (x) = β1 + β2x + . . .+ βp+1x
p +

K∑
k=1

bk(x − κk)
p
+

▶ A spline with degree p has p − 1 continuous derivatives,

▶ p = 3 is su�cient for most purposes (unless we want smooth
derivatives).
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Truncated power basis
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Truncated power basis
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TPB: di�erent degrees
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Smoothness of the spline

Based on what we have seen, the spline as a function is more or less �exible
(less or more smooth) depending on the number of knots and the degree

▶ A higher degree implies more smoothness (however one generally does
not go further than p = 3).

▶ For a �xed degree, smoothness is inversely related to the number of
knots:
▶ no knots means that a linear (polynomial) regression is performed;
▶ knots equal to unique observations leads to a spline that interpolates

observations exactly;

▶ (Also, note that the position of the knots determines in which
subranges the spline is more/less smooth.)

On the other hand, the more the knots (degree) the more the parameters to
be estimated, so more �exibility would lead to higher variance of estimates.
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Smoothness of the spline: bias variance trade o�

Assuming that the degree is �xed (as is usually done), the choice of the
number of knots is analogous to the choice of the bandwidth in kernel
regression in that it implies a bias variance trade o�

▶ more knots ↔ less smoothing ↔ less bias but more variance;

▶ less knots ↔ more smoothing ↔ more bias but less variance.

As for the choice of the bandwidth in kernel regression, choice of the
smoothness of the spline is crucial.

In principle, we may seek for the optimal level of smoothing by choosing
the number of knots by estimating the mean square errors implied by
di�erent choices.

This means we must minimize the MSE with respect to the knots number
and position, which is a di�cult task (although doable, this a legitimate
strategy which is actually pursued).
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Number of knots and bias

Bias is greater with curvature.
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Number of knots and bias

With higher degree splines curvature is less of a problem, however if the
function is complicated few knots lead to a great bias.
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Smoothness of the spline: �xed knots

A di�erent strategy may be used by �rst �xing the knots and then

impose some restriction on the coe�cients such that by changing the
restriction we change the level of smoothing.

or

rather than estimating the coe�cient as the minimum of the sum of
squares, add a penalization to it which favours smoother functions
over wigglier ones.

In this way, the smoothness can be tuned by a number (rather than a
vector of unknown length), which is easier to work with.

The second alternative leads to the idea of penalized sum of squares. (Note
that it is equivalent to the �rst for some choices of constraint/penalization.)
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Smoothness and penalization

We consider penalized splines: instead of minimizing

n∑
i=1

(yi − f (xi ;β,b))
2

we minimize
n∑

i=1

(yi − f (xi ,β,b))
2 + λS(f (x ,β,b))

where

▶ S(f (x ,β,b)) is a measure of the smoothness of f , increasing as the
wiggliness of f increases

▶ λ > 0 is a �xed constant (for now).
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Penalization: ridge type

Di�erent penalizations may be considered, a convenient one for the above
basis is a ridge-type one

S(f (x)) =
K∑
i=1

b2i = bTb

It can be shown that using such a penalization is the same as imposing a
constraint

K∑
i=1

b2i < C

for some value of C .
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Penalization: second derivative

An alternative penalization, more appropriate if the knots are unequally
spaced, and theoretically appealing is

S(f (x)) =

∫
(f (q)(t))2dt

q ≤ spline degree. (Typically, q = 2 for a cubic spline.)
Let B() = (B1(), . . . ,BK ()) be the basis functions, so that

f̂ (x) = bTB(x)

then the above penalization is equal to

bTDb

where

D =

∫ b

a
B(q)(x)[B(q)(x)]Tdx

(Note that approximations are sometimes used.)
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Functions and their second derivative

The second derivative, which is typically used for splines of third degree, is
easily interpreted since it is a measure of the curvature (although not
mathematically precise)
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TPB in matrix form

Let us consider the truncated power basis

f (x) = β1 + β2x + . . .+ βp+1x
p +

K∑
k=1

bk(x − κk)
p
+

and let

θ =



β1
...

βp+1

b1
...
bK


, X =



1 x1 x21 x31 (x1 − κ1)3+ . . . (x1 − κK )
3
+

...
...

...
...

...
. . .

...
1 xi x2i x3i (xi − κ1)3+ . . . (xi − κK )

3
+

...
...

...
...

...
. . .

...
1 xn x2n x3n (xn − κ1)3+ . . . (xn − κK )

3
+



so that f (x) = Xθ and the model can be written as

y = Xθ + ε
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Penalization and TPB

Let the penalization be the ridge type

S(f (x ,θ)) = θTDθ

where D = diag(0p+1, 1K ),

The minimizer of
n∑

i=1

(yi − f (xi ,θ))
2 − λθTDθ

is then
θ̂ = (XTX + λD)−1XT y

So that the spline smoother written as a linear smoother is

ŷ = X (XTX + λD)−1XT y
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How many parameters?

The model has K + p + 1 parameters (and the variance)

However, they are not free because of the penalization.

The e�ective number of parameters is given by the trace of the smoothing
matrix.

trace(X (XTX + λD)−1XT )

(Compare with the LM where the number of parameters is the trace of the
projection matrix.)
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Penalized splines
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Unpenalized and penalized splines
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In the end, how many knots?

Knots can be �xed in advance, but how are they chosen?

▶ The idea is that, using the penalization, the choice of the knots does
not really matter as long as
▶ they are not too few (general recommendation: 20 to 40 knots),
▶ there are observations between knots (as a rule of thumb, 4-5

observations minimum)

▶ One can �x a knot for each observation (smoothing splines), but this
can be computationally not convenient and is generally not needed.

▶ Common strategies for knots choice are
▶ Using quantiles of the edf of x
▶ equispaced knots.

From now on, the knots κ1, . . . , κK are �xed.

Note that we can check if the knots are enough by estimating with more
knots and comparing the results.
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Smoothing splines v. low rank

In order to understand what we might 'loose' (or not) by using regression
splines (few knots) instead of smoothing splines (all knots) consider two
smoothers for 20 points

▶ a smoothing spline (one knot for
each xi ) → LS

▶ a regression spline with 6 knots
(radial basis) → LR

the two are tuned so that the edf are
similar, in particular

tr(LS) = 8.4174605

tr(LR) = 8.1595772
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▶ red: smoothing

▶ blue: regression
We see they give similar results.
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Smoothing splines v. low rank

In order to understand what we might 'loose' (or not) by using regression
splines (few knots) instead of smoothing splines (all knots) consider two
smoothers for 20 points

▶ a smoothing spline (one knot for
each xi ) → LS

▶ a regression spline with 6 knots
(radial basis) → LR

the two are tuned so that the edf are
similar, in particular
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Smoothing splines v. low rank: decomposing L

To appreciate the di�erence more precisely consider an eigenvalue
decomposition of the two matrices LS and LR .
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Smoothing splines v. low rank: decomposing L

To appreciate the di�erence more precisely consider an eigenvalue
decomposition of the two matrices LS and LR .
Note that if λ1, λn and v1, . . . , vn are the eigenvalues and eigenvectors of
L, then

Lvi = λivi ∀i

being v1, . . . , vn a basis for Rn, the respose y can be written as

y =
n∑

i=1

αivi

hence the smoothed ŷ is

ŷ = Ly = L
n∑

i=1

αivi =
n∑

i=1

αiLvi =
n∑

i=1

αiλivi

Francesco Pauli Introduction 27 / 81



• Spline • Pen lik • Why splines • Basis • Multiple • GAM •

Smoothing splines v. low rank: decomposing L

To appreciate the di�erence more precisely consider an eigenvalue
decomposition of the two matrices LS and LR .
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The eigenvalues of both the smoothing spline (red) and the regression
spline (blue) show that only the �rst 9 eigenvectors count (in both), the
following are exactly 0 for the regression spline but are very low for the
smoothing spline, thus they lead to similar smooths.
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Smoothing splines v. low rank: decomposing L

To appreciate the di�erence more precisely consider an eigenvalue
decomposition of the two matrices LS and LR .

Note that the rank of L (the number of non null eigenvalues) is referred to
as rank of the smoother:

▶ the smoothing spline, with (approximately) as many basis functions as
the data points), is a full rank smoother;

▶ the regression spline, with considerably less than n basis functions, are
a low rank smoother.

(see 3.12 RWC)
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Practical: �tting splines without penalization

## Create a sample

x=seq(0,1,length=250) #sort(runif(150,0,1)))

m=m=sin(2*pi*x^3) #(0.5+5*x)*sin(10*pi*x^3)

y=m+rnorm(length(x),0,0.4)
##

## compute the covariate matrix

base=function(x,nodi,p=1){
X=cbind(outer(x,0:p,FUN=function(x,y) x^y),

outer(x,nodi,FUN=function(x,y) ifelse(x-y>0,(x-y)^p,0)))
}
##

## fix knots and degree

nodi=seq(0.1,0.9,by=0.1)
p=3
X=base(x,nodi,p)
##

## If no penalization is required the fit is obtained through

fit=lm(y~X-1)
yt=X %*% fit$coef
##

## or directly

yt1 = X %*% solve(t(X) %*% X) %*% t(X) %*% y
##

## we can plot the results as

plot(x,y)
rug(nodi)
lines(x,m,col="red")
lines(x,yt,lwd=2)
lines(x,yt1,lwd=2,col="green")
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Choice of λ

The role of λ is analogous to that of the bandwidth in kernel regression
and loess.

The same strategy: cross validation, can be used to choose λ.

Note that the spline smoother is a linear smoother, so the results which
simplify the formula for computing CV score avoiding repeating estimation
of model are valid.

Also, the GCV formula can be used.
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Mean summed square error

Let

MSSE(f̂ ()) = E

(
n∑

i=1

(f̂ (xi )− f (xi ))
2

)

=
n∑

i=1

[(E (f̂ (xi ))− f (xi ))
2 + V (f̂ (xi ))]

= (E (Ly)− f )T (E (Ly)− f ) +
n∑

i=1

V (Ly)ii

= f T (L− I )T (L− I )f + trace[V (Ly)]

= f T (L− I )T (L− I )f + trace[LV (y)LT ]

= f T (L− I )T (L− I )f + σ2
ε trace[LL

T ]

In this decomposition, the �rst part represents the squared bias, the second
part is the variance.
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Mean summed square error

Example of MSSE decomposed into bias squared and variance

0.00000 0.00010 0.00020

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

m
ss

e2
(x

)

0.0 0.2 0.4 0.6 0.8 1.0
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

y

Francesco Pauli Introduction 31 / 81



• Spline • Pen lik • Why splines • Basis • Multiple • GAM •

Degrees of freedom and penalization

The coe�cient λ determines the smoothness of the estimated function, it
is relevant to look at the relationship between λ and the degrees of
freedom of the �t: df = tr(L).
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Fitting a spline: gam (mgcv)

There are many packages in R to estimate a spline, one of the most
powerful and versatile is the package gam by Wood.

The functions provided have many options to tune the estimate, we will
look at many of them, �rst, however, we use it in tis simplest form.

fit=gam(y~s(x))

fit.s=summary(fit)

plot(fit)

This performs a �t with GCV choice of the smoothing parameter and
default choice of knots.
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Spline

A spline of order k with knots
κ1, . . . , κk is a continuous piecewise
polynomial with continuous
derivatives up to order k − 1.

The term spline is adopted from the
name of a �exible strip of metal
commonly used by drafters to assist
in drawing curved lines.

A cubic spline is a spline of order 3
(continuous up to the second
derivative).

A spline, or the more modern term �exible
curve, consists of a long strip �xed in
position at a number of points that relaxes
to form and hold a smooth curve passing
through those points for the purpose of
transferring that curve to another material.
(Wikipedia)
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Natural cubic splines are best interpolant

Let

▶ (xi , yi ), i = 1, . . . , n: assume xi < xi+1

▶ g(x) be the natural cubic spline interpolating these points
(natural means g ′′(x1) = g ′′(xn) = 0)

then g() is the smoothest, in the sense of minimizing

J(f ) =

∫ xn

x1

f ′′(x)2dx

among the functions f that interpolate the points, are absolutely
continuous and have �rst derivative continuous.

In other words, the natural cubic spline is the smoothest function
interpolating the points.
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Proof

Let f () interpolate (xi , yi ) and let h = f − g∫ xn

x1

f ′′(x)2dx =

∫ xn

x1

(g ′′(x) + h′′(x))2dx

=

∫ xn

x1

g ′′(x)2dx +

∫ xn

x1

g ′′(x)h′′(x)dx +

∫ xn

x1

h′′(x)2dx
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Proof

Let f () interpolate (xi , yi ) and let h = f − g∫ xn

x1

f ′′(x)2dx =

∫ xn

x1

g ′′(x)2dx +

∫ xn

x1

g ′′(x)h′′(x)dx +

∫ xn

x1

h′′(x)2dx

We also have, integrating by parts∫ xn

x1

g ′′(x)h′′(x)dx = g ′′(xn)h
′(xn)− g ′′(x1)h

′(x1)−
∫ xn

x1

g ′′′(x)h′(x)dx

= −
∫ xn

x1

g ′′′(x)h′(x)dx

= −
n−1∑
i=1

g ′′′(x+i )

∫ xn

x1

h′(x)dx

= −
n−1∑
i=1

g ′′′(x+i )(h(xi+1)− h(xi )) = 0
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Proof

Let f () interpolate (xi , yi ) and let h = f − g∫ xn

x1

f ′′(x)2dx =

∫ xn

x1

g ′′(x)2dx +

∫ xn

x1

g ′′(x)h′′(x)dx +

∫ xn

x1

h′′(x)2dx

We also have, integrating by parts∫ xn

x1

g ′′(x)h′′(x)dx = 0

Hence∫ xn

x1

f ′′(x)2dx =

∫ xn

x1

g ′′(x)2dx +

∫ xn

x1

h′′(x)2dx ≥
∫ xn

x1

g ′′(x)2dx

where equality holds i� h′′(x) = 0 for x1 < x < xn so only if f = g .
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Consequence

The above property also means that if we minimize

n∑
i=1

(yi − f (xi ))
2 + λ

∫
f ′′(x)2dx

among all functions f that are continuous with continuous �rst derivative
on [x1, . . . .xn], then the minimum is a natural cubic spline.

Proof: suppose that f ∗ minimizes the above expression and is not a natural
cubic spline, then take the natural cubic spline which interpolates
(xi , f

∗(xi )), this realizes the same sum of squares but a lower penalization.
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Variance estimation

The variance σ2 of the error may be estimated, by analogy with LM, as

σ̂2 =

∑n
i=1(yi − f̂ (xi ))

2

n − df
=

RSS

n − df

We already de�ned the degrees of freedom of the spline as tr(L).
However, note that

E (RSS) = E ((y − ŷ)T (y − ŷ))

= E (yT (L− I )T (L− I )y)

= fT (L− I )T (L− I )f + σ2tr((L− I )T (L− I ))

= fT (L− I )T (L− I )f + σ2(tr(LLT )− 2tr(L) + n)

thus, assuming the bias is negligible, an unbiased estimator for σ2 is

σ̃2 =
RSS

n − 2tr(L) + tr(LLT )

Francesco Pauli Introduction 39 / 81



• Spline • Pen lik • Why splines • Basis • Multiple • GAM •

Variance estimation

The variance σ2 of the error may be estimated, by analogy with LM, as

σ̂2 =

∑n
i=1(yi − f̂ (xi ))

2

n − df
=

RSS

n − df

We already de�ned the degrees of freedom of the spline as tr(L).
However, note that

E (RSS) = E ((y − ŷ)T (y − ŷ))

= fT (L− I )T (L− I )f + σ2(tr(LLT )− 2tr(L) + n)

thus, assuming the bias is negligible, an unbiased estimator for σ2 is

σ̃2 =
RSS

n − 2tr(L) + tr(LLT )

Note that
▶ n − 2tr(L) + tr(LLT ) are the residual degrees of freedom
▶ 2tr(L)− tr(LLT ) is an alternative measure of the dof of the spline
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Degrees of freedom: the two versions

The two measures of the degrees of freedom of the smoother are di�erent
especially in the mid-range of λ.
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Why are the two equal for no smoothing and in�nite smoothing?
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Alternative basis

We have introduced the truncated power basis, which is the easier to work
with from a theoretical point of view but is quite bad as far as
computational properties.

The main problem is that the design matrix X has strongly correlated
columns, thus leading to numerical instability (example later in discussing
Bayesian estimates).

A number of alternative basis exist, namely

▶ B-splines

▶ P-splines

▶ radial basis

▶ . . .

Note that, in principle, a change of basis does not lead to a change of the
�t.
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B-spline: basis construction

▶ let τ1 < . . . < τK be the internal nodes;

▶ let [a, b] be the range on which we are interested (a < τ1, b > τK );

▶ �x, arbitrarily, ξ1 ≤ . . . ξM ≤ a and νM ≥ . . . ≥ ν1 ≥ b (one can set
ξi = a and νi = b);

▶ we then have a sequence κ1, . . . , κK+2M .

| | | | | | | || | | | | | |
τ1 τ2 ... ... ... τK−1 τKξ1 ... ξM a b ν1 ... νM

κ1 ... κM κK+M+1 ... κK+2MκM+1 κM+2 ... ... ... κM+K−1 κM+K
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B-spline: basis construction (continua)

Let then Bi ,m denote the i-th basis function of order m < M,
i = 1, . . . ,K + 2M −m, this is de�ned recursively by

Bi ,1(x) =

{
1 if κi ≤ x < κi+1

0 otherwise

for i = 1, . . . ,K + 2M − 1 and

Bi ,m(x) =
x − κi

κi+m−1 − κi
Bi ,m−1(x) +

κi+m − x

κi+m − κi+1
Bi+1,m−1(x)

i = 1, . . . ,K + 2M −m.
For M = 4 one obtains K + 4 cubic splines.
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B-splines
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B-spline: penalty matrix

Setting M = 4, the penalty matrix is de�ned as

Ωij =

∫ b

a
B ′′
i (x)B

′′
j (x)dx

Wand and Ormerod (2009) obtained formulas for calculating Ω in practice

Ω = (B̃ ′′)Tdiag(w)B̃ ′′

where
[B̃ ′′]ij = B̃j(x̃i ) ∈M3(K+7)×(K+4)

x̃ =

(
κ1,

κ1 + κ2
2

, κ2, . . . , κK+7,
κK+7 + κK+8

2
, κk+8

)
w =

(
1

6
(∆κ)1,

4

6
(∆κ)1,

1

6
(∆κ)1, . . . ,

1

6
(∆κ)K+7,

4

6
(∆κ)K+7,

1

6
(∆κ)K+7

)
where (∆κ)h = κh+1 − κh.
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P-splines

P-splines are a low rank smoother using

▶ a B-splines basis

▶ a di�erence penalty (see below)

Usually they are de�ned on equally spaced knots (which makes the
di�erence penalty more sensible).
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Penalization: di�erence penalty

The di�erence penalty (joint with B-spline basis, see above, constitutes
the P-splines) given by

K−1∑
i=1

(bi+1 − bi )
2

that is

bT


1 −1 0 · ·
−1 2 −1 · ·
0 −1 2 · ·

· · · · ·
· · · · ·

b

Note that the di�erence penalty is sensible if the knots are equally spaced.
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E�ect of di�erence penalty
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Two spline estimates with a
B-spline bases, left one has

K−1∑
i=1

(bi+1 − bi )
2 = 8.29

while for the right one

K−1∑
i=1

(bi+1 − bi )
2 = 0.83

(Middle panel: basis functions
multiplied by the respective
coe�cients, that is, the �nal
curve is the sum of these.)
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Radial basis

A radial basis of order m with nots κ1, . . . , κK is de�ned as

1, x , . . . , xm,Bk(x) = |x − κk |m
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The penalty matrix having elements

[D]ij = |κi − κj |3
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Fitting with gam, options for s()

In gam(y�s(x) the function s() can take arguments, some of them

x is the covariate of the smooth (can have any name!): some types of
smooth can have several covariates (e.g. tp).

bs is the type of basis-penalty smoother.

k is the basis dimension for the smooth (before imposing any
identi�ability constraints).

id used to allow di�erent smooths to be forced to use the same basis and
smoothing parameter.

sp allows the smoothing parameter to be supplied.

fx if TRUE then the term is unpenalized.

by allows speci�cation of interactions of the smooth with a factor or
metric variable.

m speci�es the penalty order for some bases.
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Built-in bases

Values for the bs argument in s(): s(x,bs="...")

"cr" a penalized cubic regression spline ("cc" for cyclic version).

"ps" Eilers and Marx style P-splines ("cp" for cyclic).

"ad" adaptive smoothers based on "ps".

"tp" Optimal low rank approximation to thin plate spline, any dimension
and permissable penalty order is possible.
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More covariates

Suppose now that observations involve more covariates

xi , zi , ui1, . . . , uiq

Di�erent models may be considered

▶ parametric and non parametric component

yi = βTui + f (xi ) + εi

▶ parametric and multiple non parametric component

yi = βTui + fx(xi ) + fz(zi ) + εi

▶ parametric and non parametric multivariate component

yi = βTui + f (xi , zi ) + εi
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Parametric and non parametric component

Given a representation for the spline f

f (xi ) = b0 + b1xi +
K∑
j=1

Bj(xi )b1+j

with penalty matrix S , the model

yi = βTu+ f (xi ) + εi

is estimated by minimizing the objective function
n∑

i=1

(yi − βTui − f (xi ))
2 + λbTSb

in matrix form
||y − Hθ||2 + λθTS ′θ

where
H = [U X ], θT = (β, b), S ′ =?
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Parametric and multiple non parametric component

Consider a representation for the two splines fx , fz

fx(xi ) = b0 + b1xi +

KB∑
j=1

Bj(xi )b1+j

fz(zi ) = d1zi +

KD∑
j=1

Dj(zi )d1+j

with penalty matrices SB ,SD .
Note that the representation for fz does not involve the intercept to
guarantee identi�ability of the model

yi = βTui + fx(xi ) + fz(zi ) + εi
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Parametric and multiple non parametric component

The model
yi = βTui + fx(xi ) + fz(zi ) + εi

is estimated by minimizing the objective function

n∑
i=1

(yi − βTui − fx(xi )− fz(zi ))
2 + λxb

TSxb+ λzd
TSzd

in matrix form
||y − Hθ||2 + λxb

TSxb+ λzd
TSzd

where
H = [U X Z ], θT = (β, b, d)
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Non parametric multivariate component

Model
yi = βTui + f (xi , zi ) + εi

requires that we de�ne a bivariate spline.

▶ in principle this works the same way

▶ curse of dimensionality
▶ computational burden can increase exponentially with dimension
▶ mean square error, if the sample has size n and the dimension is d then

typically

MSE ≈ c

n4/(4+d)

that is, the sample size required to keep the MSE at a speci�ed level δ
grows exponentially with d

n ≈ (c/δ)d/4
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More covariates: syntax in gam

Suppose now that observations involve more covariates

xi , zi , ui1, . . . , uiq → x, z, u1, ..., uq

Di�erent models may be considered

▶ parametric and non parametric component

yi = βTui + f (xi ) + εi → y�u1+...+uq+s(x)

▶ parametric and multiple non parametric component

yi = βTui + fx(xi ) + fz(zi ) + εi → y�u1+...+uq+s(x)+s(z)

▶ parametric and non parametric multivariate component

yi = βTui + f (xi , zi ) + εi → y�u1+...+uq+s(x,z)
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Interaction with a smooth component: syntax in gam

Suppose that observations involve

▶ a continuous covariate x

▶ a qualitative variable (factor) v

we may consider a model with a di�erent smooth function for each value of
v

yi = fvi (xi ) + εi

which in gam is speci�ed as

y�s(x,by=v)
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Truncated power basis

The truncated power representation (of order 1) for a univariate spline
(note that there are K + 2 parameters)

f (x) = β1 + β2x +
K∑

k=1

bk(x − κk)+

has the natural extension (with 4+ K (x) + K (z) + K (x)K (z) parameters)

f (x , z) = β
(x)
1 + β

(x)
2 x +

K (x)∑
k=1

b
(x)
k (x − κ

(x)
k )+ +

β
(z)
2 z +

K (z)∑
k=1

b
(z)
k (z − κ

(z)
k )+ +

β
(xz)
2 xz +

K (x)∑
k=1

K (z)∑
k=1

b
(xz)
k (x − κ

(x)
k )+(z − κ

(z)
k )+
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Radial basis

Given the knots {κ(x)k ; k = 1, . . . ,K (x)} and {κ(z)k ; k = 1, . . . ,K (z)} a
radial basis function has the form

C

(∥∥∥∥∥
[
x
z

]
−

[
κ
(x)
k

κ
(z)
k ′

]∥∥∥∥∥
)

for k = 1, . . . ,K (x) and k ′ = 1, . . . ,K (z) and for some function
C : R→ R+.

The radial basis has the property of being rotationally invariant.
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Thin plate splines

Consider observations (yi , xi ), xi ∈ Rd and the model

yi = f (xi ) + εi

thin plate splines are de�ned as the function f that minimizes

∥y − f∥+ λJmd(f )

where

Jmd(f ) =

∫
. . .

∫
Rd

∑
v1+...+vd=m

m!

v1! . . . vd !

(
∂mf

∂xv11 . . . ∂xvdd

)2

dx1 . . . dxd

Francesco Pauli Introduction 64 / 81



• Spline • Pen lik • Why splines • Basis • Multiple • GAM •

Thin plate splines

Consider observations (yi , xi ), xi ∈ Rd and the model

yi = f (xi ) + εi

thin plate splines are de�ned as the function f that minimizes

∥y − f∥+ λJmd(f )

where

Jmd(f ) =

∫
. . .

∫
Rd

∑
v1+...+vd=m

m!

v1! . . . vd !

(
∂mf

∂xv11 . . . ∂xvdd

)2

dx1 . . . dxd

In the d = 2 case

J22 =

∫ ∫
R2

(
∂2f

∂x21

)2

+

(
∂2f

∂x1∂x2

)2

+

(
∂2f

∂x22

)2

dx1dx2
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Thin plate splines solution

It can be shown that the minimizer is of the form

f (x) =
n∑

i=1

δiηmd(∥x− xi∥) +
M∑
j=1

αjϕj(x)

where

▶ the ϕj are l.i. and span the space where Jmd is zero

▶ TTδ = 0 where Tij = ϕj(xi )

▶ ηmd(r) =


(−1)m+1+d/2

22m−1πd/2(m−1)!(m−d/2)!
r2m−d log(r) d even

Γ(d/2−m)

22mπd/2(m−1)!
r2m−d d odd

and α, δ are the solution of

min∥y − Eδ − Tα∥2 + λδTEδ s.t.TTδ = 0

where Eij = ηmd(∥xi − xj∥).
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Thin plate regression splines

The above basis has dimension n, low rank thin plate regression splines can
be obtained in two ways

▶ making an eigen decomposition of E and keeping the �rst eigenvalues
(note that an approximate decomposition must be used to keep tprs
computationally convenient)
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Thin plate regression splines

The above basis has dimension n, low rank thin plate regression splines can
be obtained in two ways

▶ knot based approximations: we let

f (x) =
K∑
i=1

δiηmd(∥x− κi∥) +
M∑
j=1

αjϕj(x)

and minimize
∥y − Xβ∥+ λβTSβ s.t.Cβ = 0

where

β =

[
δ
α

]
Xij =

{
ηmd(∥x− κj∥) j ≤ K

ϕj−k(xi ) j > K

Cij =

{
ϕi (κj) j ≤ K

0 j > K
Sij =

{
ηmd(∥x− κj∥) j ≤ K

0 j > K
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Properties of thin plate regression splines

Properties of thin plate regression splines

▶ avoid the problem of knot placement if the �rst option is used

▶ cheap to compute

▶ de�ned for any dimension

▶ rotationally invariant (isotropy)

▶ approximate thin plate splines (which are optimal in the sense given
above)

Note that the penalization is such that wiggliness in any direction is
weighted the same.

This may be a desirable property whenever the covariates have the same
weight, for instance when they are geographic coordinates.

If this is not the case then standardization is usually performed.
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Tensor product basis

The tensor product basis is a way to build a multivariate basis from
univariate ones, suppose that

fx(x) =
K (x)∑
i=1

β
(x)
i B

(x)
i (x)

and analogous for fz(z) and fv (v).
A smooth function of (x , z) can be obtained by letting fx to vary

smoothly with z , that is, we let the coe�cients β(x) vary smoothly with z
by de�ning

β
(x)
i (z) =

K (z)∑
j=1

β
(xz)
ij B

(z)
j (z)

so that

fxz(x , z) =
K (x)∑
i=1

K (z)∑
j=1

β
(xz)
ij B

(z)
j (z)B

(x)
i (x)
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Tensor product basis

The tensor product basis is a way to build a multivariate basis from
univariate ones, suppose that

fx(x) =
K (x)∑
i=1

β
(x)
i B

(x)
i (x)

and analogous for fz(z) and fv (v).
Proceeding the same way one obtains

fxzv (x , z , v) =
K (x)∑
i=1

K (z)∑
j=1

K (v)∑
k=1

β
(xzv)
ijk B

(v)
k (v)B

(z)
j (z)B

(x)
i (x)

where if Xx ,Xy ,Xz are the matrices containing the basis functions
evaluated at observations for each of the univariate spline, then the matrix
corresponding to the tensor product basis is their Kronecker product

X = Xx ⊗ Xy ⊗ Xv
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Penalty for tensor product basis

If J(f•) represent the univariate penalty, then it is natural to choose as a
penalty for fxzv

J(f ) = λx

∫
Jx(fx |zv )dzdv + λz

∫
Jz(fz|xv )dxdv + λv

∫
Jv (fv |xz)dxdz

for example with the usual square of second derivative penalty one would
get

J(f ) =

∫
λx

(
∂2f

∂x2

)2

+ λz

(
∂2f

∂z2

)2

+ λv

(
∂2f

∂v2

)2

dxdzdv

It can be shown that this can be written as a quadratic form (sometimes
approximation may be used since this involve numerical integrations)
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Multivariate spline in gam

A multivariate spline is speci�ed as either an

▶ isotropic spline s(x,z) appropriate if the variables are on the same
scale

▶ tensor product te(x,z,bs=c("cr","cc"),d=c(2,1),k=(20,5)), so
that the smooth has a di�erent penalty for each marginal basis, which
can be speci�ed
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Generalized additive models

The generalization to non gaussian data works pretty similarly as the
extension of lm to glm.

LM → GLM
Yi ∼ N (µi , σ

2) Yi ∼ Expon(θi , ϕi )
E (Yi ) = ηi g(E (Yi )) = ηi

ηi = µi = xiβ ηi = xiβ

AM → GAM
Yi ∼ N (µi , σ

2) Yi ∼ Expon(θi , ϕi )
E (Yi ) = ηi g(E (Yi )) = ηi

ηi = µi = f (xi ) ηi = f (xi )

where

ℓ(β, b, ϕ) =
n∑

i=1

log(p(yi ; θi )) =
n∑

i=1

(yiθi − ri (θi )))/ϕ+ c(ϕ; yi )

Francesco Pauli Introduction 72 / 81



• Spline • Pen lik • Why splines • Basis • Multiple • GAM •

Generalized additive models

The generalization to non gaussian data works pretty similarly as the
extension of lm to glm. Given a representation for the spline

f (x) = β1 + β2x +
K∑
j=1

β1+jBj(x)

the penalized least squares criterion
n∑

i=1

(yi − f (xi ))
2 + λS(f (x))

is substituted by the penalized likelihood

ℓ(β, b, ϕ)− λS(f (x))

where

ℓ(β, b, ϕ) =
n∑

i=1

log(p(yi ; θi )) =
n∑

i=1

(yiθi − ri (θi )))/ϕ+ c(ϕ; yi )
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P-IRLS

In order to �t a GLM one uses the IRLS algorithm, whose k-th step is

1 compute pseudodata

z
[k]
i = g ′(µ

[k]
i )(yi − µ

[k]
i ) + η

[k]
i

and the diagonal weighting matrix

W
[k]
ii =

1

V (µ
[k]
i )g ′(µ

[k]
i )2

2 set

β[k+1] ← argmin
β

∥∥∥√W [k](z[k] − Xβ)
∥∥∥2

In an AM the objective function in the second step is replaced by

β[k+1] ← argmin
β

∥∥∥√W [k](z[k] − Xβ)
∥∥∥2 + λβTSβ
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Non gaussian models in gam

We specify it as gam(y x,family=...), possible values for family are

▶ gaussian (default) is useful for real valued response data.

▶ Gamma is useful for strictly positive real valued data.

▶ poisson is useful when the response is count data of some sort.

▶ binomial

▶ inverse.gaussian is for strictly positive real response variables: useful
for various time to event data.

▶ quasi does not de�ne a full distribution, but allows inference when
only the mean variance relationship can be well approximated.
quasipoisson and quasibinomial are special cases. Not useable with
likelihood based smoothness selection.

▶ Tweedie

▶ negbin is useful for overdispersed count data, but computation is slow.
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Inference

We can employ a Bayesian approach, assume that the penalization can be
written as

S(f (x)) = θTSθ

for some matrix S where θ = (β, b), then the likelihood is

ℓ(θ, ϕ)− λθTSθ

which is proportional to a Bayesian posterior assuming the following prior

π(θ) ∝ exp

(
−1
2
λθTSθ

)
then approximately (for large samples) the posterior is

β|y ∼ N
(
β̂, (XTWX + λS)−1ϕ

)
which can be used to obtain credibility intervals with good frequentist
properties (see Wood)
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Smoothness selection,

The following approaches can be used

→ gam(method=...)

▶ minimize prediction error

→ method=GCV.Cp

▶ to use GCV for unknown scale parameter and
▶ Mallows' Cp/UBRE/AIC for known scale

▶ treat smooths as random e�ect in a Bayesian model and estimate λ
through marginal likelihood
▶ REML estimation, including of unknown scale

→ method=REML

▶ ML estimation, including of unknown scale

→ method=ML

▶ estimate a full Bayesian model
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Smoothness selection,

The following approaches can be used → gam(method=...)

▶ minimize prediction error → method=GCV.Cp
▶ to use GCV for unknown scale parameter and
▶ Mallows' Cp/UBRE/AIC for known scale

▶ treat smooths as random e�ect in a Bayesian model and estimate λ
through marginal likelihood
▶ REML estimation, including of unknown scale → method=REML

▶ ML estimation, including of unknown scale → method=ML

▶ estimate a full Bayesian model
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Prediction error with non Gaussian data

With Gaussian data, choice of λ has been based on estimation of the error

n∑
i=1

(f̂ (xi )− yi )
2

performed by CV which leads to the GCV criterion because of the linearity
of the splines as smoothers.

The same strategy can in principle be used with non Gaussian data, but
the smoother is not a linear smoother for the yi anymore, hence GCV is not
available and also theoretical derivations do not apply.
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GCV score for GAM

The GAM �tting objective can be written in terms of the deviance

D(β) = 2(ℓ(βmax)− ℓ(β))

as

D(β) +
d∑

j=1

λjβ
TSjβ

whose quadratic approximation is, for a �xed λ,

∥∥∥√W (z− Xβ)
∥∥∥2 + d∑

j=1

λjβ
TSjβ
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GCV score for GAM

The GAM �tting objective can be written as

D(β) +
d∑

j=1

λjβ
TSjβ

whose quadratic approximation is, for a �xed λ,∥∥∥√W (z− Xβ)
∥∥∥2 + d∑

j=1

λjβ
TSjβ

from which one could compute the GCV score (valid locally)

and then the
globally applicable GCV score

n
∥∥∥√W (z− Xβ)

∥∥∥2
n − tr(L)
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GCV score for GAM

The GAM �tting objective can be written as

D(β) +
d∑

j=1

λjβ
TSjβ

whose quadratic approximation is, for a �xed λ,∥∥∥√W (z− Xβ)
∥∥∥2 + d∑

j=1

λjβ
TSjβ

from which one could compute the GCV score (valid locally) and then the
globally applicable GCV score

n
∥∥∥√W (z− Xβ)

∥∥∥2
n − tr(L)

→ nD(β̂)

n − tr(L)
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UBRE

Recall that the idea of CV arises from estimation of the predictive risk,
E ((m(x)− m̂(x))2), that is

E
(
∥µ− Ly∥2

)
=

1

n
E
(
∥y − Ly∥2

)
− σ2 + 2tr(L)

σ2

n

when the scale parameter σ2 is known this can be done by minimizing the
UBRE (Unbiased Risk Estimator)

1

n
∥y − Ly∥2 − σ2 + 2tr(L)

σ2

n

which is equal to Mallow's Cp.

The GCV arises as an alternative in the Gaussian case since typically σ2

must be estimated and if this is the case then the above criterion is not
suitable.

UBRE is appropriate for GAM where the scale parameter is known.
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UBRE computation

Based again on

D(β) +
d∑

j=1

λjβ
TSjβ

and the quadratic approximation

∥∥∥√W (z− Xβ)
∥∥∥2 + d∑

j=1

λjβ
TSjβ

we obtain the UBRE criterion

1

n

∥∥∥√W (z− Xβ)
∥∥∥2 − σ2 +

2σ2

n
tr(L)

1

n
D(β̂)− σ2 +

2σ2

n
tr(L)
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