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1 Introduction 

Electrochemical impedance spectroscopy (EIS) is a suitable and powerful diagnostic method 
for polymer electrolyte membrane water electrolysis cells (PEMWE), anion-exchange 
membrane water electrolysis cells (AEMWE) and alkaline electrolysis cells (AWE) because it 
is non-destructive and provides useful information in-operando on performance and cell 
voltage losses associated with particular components. 

EIS measures the frequency dependence of the impedance, 𝑍, of a water electrolysis (WE) 
cell by applying a small alternating current (AC) in galvanostatic mode as a perturbation 
signal while measuring the alternating cell-voltage response. 

In potentiostatic mode, a small alternating voltage is applied and the AC response is 
measured. The use of small (sinusoidal) signals assumes negligible harmonic content in the 
recorded response. 

A broad frequency range over several decades will enable identification of the 
electrochemical and transport processes (e.g. double layer charging, charge transfer, 
interfacial capacitance, gas diffusion) taking place in the WE cell over a range of different 
time scales (i.e. 10-6 to 103 s). 

The choice of the limits of the frequency range, and in particular its population, requires that 
the anticipated total measurement time is accounted for in order not to compromise the 
stability of the data measured when the cell is operated. 

Particularly in PEMWE cells and AEMWE cells, EIS is principally used to optimise the 
structure of membrane electrode assemblies (MEAs) and to quantify changes in the 
parameters of the elements representative of the cell components in an electrical equivalent 
circuit (EEC) model to simulate cell impedance. 

Analysis by fitting EEC models to the impedance data obtained under different operating 
conditions facilitates determination of the contributions of the different physicochemical 
processes to the overall WE cell impedance in different conditions. 

The main contributions to losses in WE performance (cell-voltage losses) are due to: 

 ohmic resistance, RΩ, associated with proton and electron conduction in the MEA, current 
collector and flow plates and 

 electrode kinetics at the electrode/electrolyte interfaces and mass transport of reactant 
gases resulting collectively in the polarisation resistance, Rp. 

The reaction kinetics could be improved by using advanced catalysts and forming appropriate 
catalyst/electrolyte interfaces. 

Ohmic losses could be reduced by decreasing the hindrance on proton and electron 
movements within the membrane electrolyte, electrodes, monopolar/flow field plates, current 
collectors and their respective interfaces. 

Therefore, EIS measurements in WE cell performance characterisation studies aim to: 

• Identify individual contributions to the total WE cell impedance particularly RΩ and Rp. 

• Estimate other electrochemical parameters (double layer capacitance, Cdl, charge 
transfer resistance, Rct, adsorption resistance, Rad, adsorption inductance, Lad, etc) by 
complex non-linear least square (CNLS) analysis of an appropriate EEC model to 
simulate the measured impedance of the WE cell test set-up. 
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• Provide information that could assist in optimising WE cell components and operating 
conditions. 

The user of this method should also refer to the extensive scientific literature on EIS [1-4]. 
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2 Objective and scope 

This procedure is a general electrochemical characterisation method that is used in the 
research into and development of WE single cells. The test can be used as a baseline 
measurement for the qualification of the performance of a WE cell and its components for a 
given application. 

The aim of the EIS measurements is to record frequency spectra at steady state, from which 
the impedance is determined as a function of the perturbation frequency in order to discern 
the various contributions of the electrochemical and transport processes to the polarisation of 
the WE cell. 

This procedure is primarily addressed at those performing EIS measurements on WE single 
cells. It describes the measurement methodology and provides a graphical presentation of 
the recorded data. It also recommends data validation and analysis methods.  

The user should also refer to the scientific literature for additional, more in-depth analysis. 
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3 Terminology, definitions, and symbols 

3.1 Terminology and definitions 

Galvanostatic/potentiostatic EIS measurement 

A galvanostatic EIS measurement is characterised by an AC perturbation signal applied 
to the operating WE cell. 

A potentiostatic EIS measurement is characterised by an alternating voltage perturbation 
signal imposed on the operating WE cell. 

Frequency response analyser 

A frequency response analyser (FRA) measures the gain and phase response 
characteristics with respect to the frequency of the device or system under test, by 
applying a frequency-swept voltage or current sine wave and examining its response 
signal. 

Sensor 

A sensor is a device that measures a physical quantity and converts it into a signal that is 
transferred to a data-acquisition system. Each sensor (including the complete 
measurement chain) has a specific measurement uncertainty.  

Causality 

The response of the WE cell test set-up must be entirely determined by the applied 
perturbation. The output depends only on the present and past input values. 

Linearity 

The WE cell test set-up is linear when its response to a sum of individual input signals is 
equal to the sum of the individual responses. For linear systems the response is 
independent of the amplitude. 

Stability 

The WE cell test set-up should return to its original state once the perturbation is 
removed. 

Measurement electrode 

A measurement electrode (Working, Counter, Reference/Sense 1 and Reference/Sense 
2) in the test set-up is an electrical conductor (current collector) used to make contact 
between a WE cell and the potentiostat/galvanostat and/or the FRA. These connections 
are made through shielded cables. 

Test bench 

A test bench consists of a set of sensors, actuators, control loops, piping, data-
acquisition systems, etc. that allows operation and testing of a single cell. The DC power 
supply is generally integrated into the test bench. 

More extensive terminology definitions can be found in [8-11]. 

3.2 Symbols 

The symbols used in this document are defined as follows: 
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Table 1. Definition of symbols 

Symbol Description (unit) 

A Geometric electrode* area (m
2
) 

ACS Subscript referring to AC signal sampling (-) 

ACT Subscript referring to AC signal response (-) 

 Arbitrary power exponent (-) 

C Capacitance (F or F.cm
-2

) 

CCPE (QC) Pseudo-capacitance (QC)
 **

 of a capacitive constant phase element (CPE) approximating 
the capacitance of the double layer of a WE cell electrode accounting for the fractal and 

porous nature of the electrode including roughness (F.s
- or F.s

-.cm
-2

) 

Cdl Capacitance of the double layer of a WE cell electrode (F or F.cm
-2

) 

d Thickness of the GDE (m) 

e Electron charge, 1.602 × 10
−19

 (C or F.cm
-2

) 

F Faraday's constant, 96,485 (C.mol
−1

) 

f Perturbation frequency in EIS (Hz) 

fHI High limit of perturbation frequency (Hz) 

fLOW Low limit of perturbation frequency (Hz) 

i Imaginary unit with property (±𝑖)2 = −1 (-) 

𝑖0 Exchange current density (A.cm
-2

) 

IAC, k (f) Galvanostatic method: constant amplitude of AC at f (A) 

Potentiostatic method: AC part of the total current response at f (A) 

IDC, k Direct current (DC) supplied (A) 

k Index to signify the k
th
 steady state of the WE cell where EIS spectra are to be recorded 

(e.g. at a given direct current (DC) or cell voltage) 

kB Boltzmann constant, 1.38 × 10
−23

 (J.K
-1

) 

L Inductance (H) 

Lad Inductance associated with the resistance Rad due to species adsorption / desorption at 
the catalyst surface of a WE cell electrode (H) 

Lc Inductance due the cables/wires used in the WE cell test set-up (H) 
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Symbol Description (unit) 

𝑁𝐴 Avogadro's constant, 6.02 × 10
−23

 (mol
−1

) 

𝑛𝑒 Number of electrons exchanged in the cell reaction (-) 

nk, ACS Number of perturbation cycles at f performed during 𝜏𝐴𝐶𝑇(f) (-) 

nk, ACT Number of perturbation cycles at f performed during 𝜏𝐴𝐶𝑆(f) (-) 

θk(f) Impedance phase (principal argument) at f (°) 

PPD Number of frequency data points per decade of frequency range in EIS (-) 

QC Pseudo-capacitance of a capacitive CPE (F.s
- or F.s

-.cm
-2

)
 **

 

QL Pseudo-inductance of an inductive CPE (H.s or H.s.cm
-2

)
 **

 

QR Pseudo-capacitance of a resistive CPE (Ω.s or Ω.s.cm
-2

)
 **

 

R Resistance (Ω or Ω.cm
2
) 

Rad Resistance associated with the inductance Lad due to species adsorption/desorption at the 
catalyst surface of a WE cell electrode (Ω or Ω.cm

2
) 

Rct Resistance due to charge transfer at a WE cell electrode (Ω or Ω.cm
2
) 

RΩ Ohmic resistance estimated at fHI for lim|𝑓|→𝑓𝐻𝐼
𝑍𝐼𝑀 = 0 in a Nyquist plot (high frequency 

intercept on the real axis) or lim|𝑓|→𝑓𝐻𝐼
𝜃(𝑓) = 0 in a Bode plot (Ω or Ω.cm

2
) 

Rp Polarisation resistance estimated at fLOW for lim|𝑓|→𝑓𝐿𝑂𝑊
𝑍𝐼𝑀 = 0 in a Nyquist plot (low 

frequency intercept on the real axis) or lim|𝑓|→𝑓𝐿𝑂𝑊
𝜃(𝑓) = 0 in a Bode plot (Ω or Ω.cm

2
) as 

the difference of the total measured resistance (real part impedance) to RΩ (Ω or Ω.cm
2
) 

T Absolute temperature of the WE cell (K) 

UAC,k(f) Galvanostatic method: alternating part of the total voltage response at f (V) 

Potentiostatic method: constant amplitude of alternating perturbation voltage at f (V) 

UT Thermal voltage (V) 

Y Measured (potentiostatic perturbation) or calculated (galvanostatic perturbation) WE cell 
admittance (S or S.cm

-2
) 

Z Measured (galvanostatic perturbation) or calculated (potentiostatic perturbation) WE cell 
impedance (Ω or Ω.cm

2
) 

Z* Complex conjugate of the measured WE cell impedance (Ω or Ω.cm
2
) 

ZD Diffusion impedance representing a distributed element in an EEC model (Ω or Ω.cm
2
) 
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Symbol Description (unit) 

ZIM,k(f) Imaginary part of impedance (reactance) at f (Ω or Ω.cm
2
) 

ZRE,k(f) Real part of impedance (resistance) at f (Ω or Ω.cm
2
) 

|𝑍𝑘|(f) Impedance magnitude at f (Ω or Ω.cm
2
) 

ε𝑜 Permittivity of vacuum (free space), 8.85×10
−12

 (F.mol
−1

) 

ε𝑟 Dielectric constant (relative electrical permittivity) of the GDE (-) 

𝜏 Time constant of an EEC model (s) 

𝜏𝐴𝐶𝑆(f) Signal sampling time at f to perform the specified number of perturbation cycles, nACS (s) 
including recording of frequency spectra (s) 

𝜏𝐴𝐶𝑇(f) Transient response time at f to perform the specified number of perturbation cycles, nACT 
without recording frequency spectra (s) 

𝜏𝑎 Time constant for the WE cell anode due to Cdl in parallel with Rct (s) 

𝜏𝑎𝑑 Time constant for adsorption/desorption at the WE anode due to Lad in series with Rad (s) 

𝜏𝑐 Time constant for the WE cell cathode due to Cdl in parallel with Rct (s) 

𝜏𝐷 Time constant for the WE cell cathode due to CCPE in parallel with ZD (s) 

𝜏𝛺 Time constant for a WE cell test set-up due to Lc in series with RΩ (s) 

𝜔 = 2𝜋𝑓 Angular perturbation frequency (Hz) 

(*) The electrode is sometimes referred to as gas diffusion electrode (GDE). 

(**) The admittance of a capacitive CPE, an inductive CPE and resistive CPE has dimension H.s or H.s.cm
2
, F.s

- 

or F.s
-.cm

2
 and S.s

- or S.s
-.cm

-2
, respectively. 
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4 Test equipment and set-up 

A comprehensive EIS experiment requires a combination of equipment: 

 Potentiostat/Galvanostat instrument or electronic load bank capable of amplifying AC 
signals to the required magnitude; 

 Sine waveform generator and AC voltage/current waveform analyser (at least one 
single channel to measure impedance at a time) - usually, both are combined in an 
FRA; 

 DC power supply directly connected to the WE cell anode and cathode and properly 
sized in terms of current and power. 

Note that an alternative to the use of an FRA is to use high frequency sampling (at a level of 
at least twice the maximum perturbation frequency) followed by fast Fourier transformation 
(FFT) on both the (sinusoidal) signal and the response signal to obtain discrete frequency 
spectra via subtraction of the DC contribution. 

The ratio (complex valued proportionality factor) of the fundamentals of the frequency 
spectra of the response (output) and that of the perturbation (input) is the sought impedance, 

𝑍(𝑓) =
𝑈𝐴𝐶(𝑓)

𝐼𝐴𝐶(𝑓)
= |𝑍(𝑓)| ∙ 𝑒𝑖𝜃(𝑓)     (1) 

in a galvanostatic EIS measurement while it is the admittance (inverse of impedance), 

𝑌(𝑓) = 𝑍−1(𝑓) =
𝐼𝐴𝐶(𝑓)

𝑈𝐴𝐶(𝑓)
= |𝑍(𝑓)|−1 ∙ 𝑒−𝑖𝜃(𝑓)    (2) 

for a potentiostatic EIS measurement. 

It is commonly assumed that the contributions from any harmonic of the perturbation 
frequency are sufficiently small in amplitude to be negligible. This presumption may be 
readily verified using an oscilloscope. 

EIS measurement is preferably performed by a classic four electrode measurement 
configuration with a working electrode, a counter electrode and two reference / sense 
electrodes. 

In some configurations each reference electrode is connected to respectively the working 
electrode and the counter electrode (two wire configuration). 

The test set-up should be connected in such a way as to avoid measuring parasitic current 
flowing into the load, which affects the measurement as otherwise artefacts may appear at 
high frequency in the impedance plots. 

The voltage response of the WE, UAC is measured across it. 

The appropriate shunt for the EIS measurement equipment should be selected according to 
a compromise between two mutually opposing effects: (a) it should be as small as possible 
to minimise generation of Joule heat in the shunt and (b) it should be large enough for the 
voltage drop across it to satisfy the range and the resolution requirements of the respective 
AC analyser input. 

The immediate vicinity of the entire test set-up should be free of electromagnetic sources to 
avoid interference with the EIS measurement. 
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Also, a good practice is to use low-inductance cables, i.e. they should be shielded, twisted 
around each other and as short as possible. In addition, the cross sections of the counter 
and working electrodes should be as large as possible. 

Prior to an EIS measurement, the test set-up can be evaluated when the cell is substituted 
with a model (dummy) circuit made up of known elements, for example, resistors and 
capacitors, to determine the accuracy and resolution of the EIS measurement device. 
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5 Test inputs and test outputs 

The test input is a physical quantity that defines the test conditions. 

Two types of test input are described below: static input parameters, which are kept constant 
during EIS measurement and variable input parameters, i.e. those that are varied during EIS 
measurement. 

5.1 Static test inputs 

Static inputs do not vary during the entire duration of the test and depend on the MEA used. 

Static inputs for the galvanostatic EIS measurement and potentiostatic EIS measurement are 
given in Table 2. 

Table 2. Static input parameters and settings for the EIS instrument 

 Test input Symbol Unit Recommended 
value / range 

Number of perturbation frequency 
data per decade of frequency range 

PPD - minimum 3 

 Number of perturbation cycles 
during 𝜏𝐴𝐶𝑇 (𝜏𝐴𝐶𝑇 precedes 𝜏𝐴𝐶𝑆) 

nACT - minimum 2 (
*
) 

 Number of perturbation cycles 
during 𝜏𝐴𝐶𝑆 used to record the EIS 
spectra (𝜏𝐴𝐶𝑆 follows 𝜏𝐴𝐶𝑇) 

nACS - minimum 3 

 Range of perturbation frequencies f Hz 10
-2

–10
+6

 

P
o

te
n

ti
o

s
ta

ti
c
 

m
e

th
o

d
 

load (voltage) perturbation peak-to-
peak amplitude 

UAC V 

typically 5-10 mVrms to be 
less than the thermal 

voltage, UT
 
(e.g. <30 mV 

at 80°C cell temperature) 
(
†
) 

G
a

lv
a

n
o

s
ta

ti
c
 

m
e

th
o

d
 

load (current) perturbation peak-to-
peak amplitude 

IAC A 0.5% – 5% of IDC (
‡
) 

(*) The average of the recorded data is compared to a single cycle or a small number of cycles more likely to 
represent the true impedance for a large number of identical repetitive perturbation cycles as random noise 
is minimised by averaging. This is at the expense of an extended measurement period that would carry the 
risk of the cell drifting to another state during the measurement, thereby invalidating the data recorded. 

(†) Thermal voltage, UT=kBT/e. 
(‡) Subjected to linearity verification, see Sec 6.2 below. 
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Note that a voltage perturbation below the thermal voltage is required to obey linearity. In the 
linear regime it is immaterial whether the EIS measurement is performed in galvanostatic or 
potentiostatic mode [1]. 

However, too low a perturbation amplitude will result in an unacceptable signal-to-noise ratio, 
making it difficult for the FRA to distinguish between the actual response and the noise 
arising from random excitations. 

Note that time-domain noise shows up in the response signal after Fourier transformation to 
the frequency domain, thereby affecting the impedance measurement. 

In addition, the continuous regulation of reactant flow and pressure by the controls of the test 
stand result in fluctuations of these quantities, and ultimately in the WE cell output, whether 
cell voltage or current. These fluctuations are additional sources of excitation that also affect 
the measured impedance. 

An oscilloscope could be used to identify and quantify both the noise level of electromagnetic 
radiation noise level in the vicinity of the tested WE cell and the fluctuations arising from 
regulation by the controls of the test bench. 

As a matter of good practice a root mean square (rms) AC voltage of 10 mVrms is 
recommended as the sinusoidal perturbation in potentiostatic EIS measurements. 

5.2 Variable test inputs 

The variable test inputs are those physical drivers that influence the test object’s behaviour 
and are changed in a user-programmable manner during a single experiment through the 
use of suitable control equipment. 

The main variable input parameter for EIS is the AC signal perturbation frequency, f, 
controlled by the AC generator. 

There are two other variable inputs: the AC signal sampling time, τACS, to record the EIS data 

and the preceding AC response time, τACT, accounting for the decay of the previous 
perturbation signal. 

These input variables are controlled by the AC analyser, where τACS is always linked to f. 

Table 3 gives the details of these two variable inputs, including recommended values/ranges 
and measurement uncertainties. 

Table 3. Variable test input parameters for the EIS measurement 

Input Recommended value / range Measurement uncertainty 

𝜏𝐴𝐶𝑆(f) time required to perform the specified number of 
perturbation cycles 

±1% 

𝜏𝐴𝐶𝑇(f) time required to perform the specified number of 
perturbation cycles 

±1% 
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5.3 Test outputs 

The primary test output parameters are the measurable physical quantities that constitute the 
response of the WE single cell. Table 4 provides details of them. 

Table 4. Test output parameters for the EIS measurement 

Output 
Parameter 

type 
Measurement 
uncertainty 

Sampling rate 
 

UAC,k(f) primary ± 1% ≥ 20 (𝜏𝐴𝐶𝑆(f)/𝜏𝐴𝐶𝑇(f)) Galvanostatic 
method 

IAC,k(f) primary ± 1% ≥ 20 (𝜏𝐴𝐶𝑆(f)/𝜏𝐴𝐶𝑇(f)) Potentiostatic 
method 

ZIM,k(f) secondary – (
*
) – Nyquist plot (

†
) 

ZRE,k(f) secondary – (
*
) – Nyquist plot

 
(
†
) 

|𝑍𝑘|(f) secondary – (
*
) – Bode plot (

‡
) 

θk(f) secondary – (
*
) – Bode plot (

‡
) 

(*) Calculated according to the GUM Guide [9] from UAC and IAC 

(†) Two dimensional plot of negative imaginary part impedance vs. real part impedance 
(‡) Two dimensional plot of impedance magnitude and phase vs. (logarithmic) frequency 
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6 Test procedure 

6.1 Procedure 

For the EIS measurement, whether galvanostatic or potentiostatic, the following 
recommendations apply. 

• Make proper (working, counter and reference) electrode connections. 

• Set and monitor the test conditions including DC current and voltage. 

• When a steady state is reached, set AC or voltage amplitude and monitor all DC and 
AC parameters to record any deviation from a steady state (stability). 

• Set the EIS frequency range. 

• Perform linearity verification starting with low perturbation amplitude (see Section 
6.2). 

• Choose an appropriate number of data points to be recorded per decade of the 
perturbation frequency range (see Table 2). 

• Perform a series of AC perturbations at discrete frequencies, f, from a defined range 
of low to high frequency (or vice versa) with the same sampling governed by the PPD 
parameter (see Table 2). It is recommended that the measurement be carried out 
from high to low frequencies, making it possible for an experienced practitioner to 
quickly ascertain whether the measurement is giving reasonable results. It also 
ensures that a sufficient number of valid data points are recorded for use in a 
subsequent analysis when it is determined that a cell has drifted to another state 
during the measurement. 

6.2 Data validation 

It is recommended that the recorded raw EIS data be subjected to a consistency check to 
eliminate rogue data (outliers, wild points, recorded data coinciding with the electric grid 
frequency and harmonics) and that the validity of the recorded EIS data be verified [13-15]. 

EIS data should satisfy the main principles of linear time-invariant (LTI) systems: causality 
(no effect before its cause), linearity (superposition) and stability (time invariance), in 
addition to continuity (no discontinuities) and boundedness (finite impedance) at all 
frequencies, including at zero and infinity [1,3]. For this reason, the data should be subjected 
to a numerical validation based on the Kramers-Kronig (KK) integral transform relations 
[16,17] for the interrelated real and imaginary parts of the impedance. Invalid data should 
consequently be rejected as not suitable for further analysis. 

This approach might necessitate test repetition with improved control of the test conditions 
and proper selection of parameters, along with comprehensive identification of all potential 
sources of noise in the vicinity of the test set-up, including the measurement equipment. 

EIS data obeying the KK relations within acceptable numerical and experimental error ranges 
(1) (see Table 4) are presumed valid experimental data compliant with the said LTI principles 
[18,19]. 

                                           
(1) The numerical error will depend on the numerical estimation method employed while the experimental error 

will depend on the instrument uncertainty and the measurement uncertainty. 
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At a given steady state (DC or voltage), causality in an EIS measurement should in principle 
be verified experimentally by measuring zero response except noise, or measuring a 
response that rapidly decays to the noise level as soon as the perturbation is switched off. 

Linearity [7] may be experimentally verified by applying a multiple (fraction) of the selected 
AC signal to record the same multiple (fraction) in response, i.e. the recorded EIS spectra 
should coincide within acceptable error ranges. 

Stability [1,3] may be experimentally verified either by performing the same experiment 
through repetitive application of the same input to measure each time within acceptable error 
ranges the same output each time, or by sweeping frequencies back and forth. 

For example, an insignificant hysteresis in the response should be observed when sweeping 
(a) from high frequency to low frequency and then (b) from low frequency to high frequency 
as the EIS spectra should coincide within acceptable error ranges. 

Compromised stability in an EIS measurement of a WE cell is also exhibited by a 
considerable change (drift) in the DC value of the current when the potentiostatic method is 
applied and in the cell voltage when the galvanostatic method is applied. 

The impedances of a WE cell test set-up exhibit capacitive and/or inductive storage losses 
and dissipation (resistance) losses. 

By the very nature of EIS measurements, these impedances are measured generally with 
finite (bounded) magnitude at discrete frequencies within a set range. It makes it impossible 
to know of any impedance unboundedness outside the measured range of frequencies. 

Within this range, impedance singularities (discontinuities) are unfortunately in most cases 
also not directly detectable experimentally. 

This is unless the perturbation frequency is at or near to a system resonance when the 
response to a stimulus is amplified to a level that will eventually saturate the input of the 
measurement instrument. 

Such saturation for a given range of the input reading of the instrumentation would then be 
indicative of the onset of impedance unboundedness. 

6.3 Data representation and analysis 

The Nyquist plot (2) is the most common graphical representation of measured complex 
impedance spectra (Figure 1). 

It is a chart where the (negative) imaginary impedance part (reactance), 

𝑍𝐼𝑀(𝑓) =
𝑍(𝑓) − 𝑍∗(𝑓)

2𝑖
 

is plotted versus the real impedance part (resistance) [7], 

𝑍𝑅𝐸 =
𝑍(𝑓) − 𝑍∗(𝑓)

2
 

where 𝑍(𝑓) = 𝑍𝑅𝐸(𝑓) + 𝑖 𝑍𝐼𝑀(𝑓) and 𝑍∗(𝑓) = 𝑍𝑅𝐸(𝑓) − 𝑖 𝑍𝐼𝑀(𝑓)with 𝑍(−𝑓) = 𝑍∗(𝑓), ∀𝑓 ∈
 ℝ,(3) 𝑍𝑅𝐸 ,  𝑍𝐼𝑀  ∈  ℝ and (±𝑖)2 = −1. 

  

                                           
(2) Sometimes also called the Cole-Cole plot. 
(3) Superscript * denotes complex conjugation. 



 

EU harmonised test procedure: electrochemical impedance 
 spectroscopy for water electrolysis cells

 

 

18 

 

It should be noted that the real impedance part is linked to the imaginary impedance part and 
vice versa by KK principal value (PV) integrals [16,17]: 

𝑍𝑅𝐸(𝜔)−𝑍∞ = 2𝑃𝑉 ∫ 𝑤
𝑍𝐼𝑀(𝑤)

𝜔2−𝑤2

∞

0

𝑑𝑤

𝜋
,

|𝑤|

𝑤
=

𝜔

|𝜔|
,      (3) 

𝑍𝐼𝑀(𝜔) = −2𝑃𝑉 ∫ 𝜔
𝑍𝑅𝐸(𝑤)−𝑍∞

𝜔2−𝑤2

∞

0

𝑑𝑤

𝜋
,   ∀𝜔 ∈  ℝ    (4) 

with |𝑍∞| = lim
𝜔→∞

|𝑍𝑅𝐸(𝜔)| < ∞ and angular perturbation frequency, 𝜔 = 2𝜋𝑓 while noting 

𝑃𝑉 ∫
𝑑𝑤

𝜔2−𝑤2

∞

0
= 0 . 

Figure 1. Example of a Nyquist plot for an EIS measurement of a PEMWE cell 

 

The pair of relations (3) and (4) are also known as linear dispersion relations [1-4] for non-
singular complex valued quantities. 

Such plots usually consist of two or more (depressed (4)) semicircles representing different 
electrochemical and transport processes taking place in the PEMWE such as charge 
transfer, electronic and ionic (proton) conduction in the electrodes, current collectors, 
electrolyte membrane and wires, convection and diffusion of the reactants and electrode 
reactions at the active sites on the catalyst. 

Note that low impedance devices such as WE cells, often exhibit inductance at high 
frequencies, mainly due to the cables used in the measurement process. They also exhibit a 
noisy response at low frequencies. 

                                           
(4) A depressed semicircle has its centre below the real axis in a Nyquist plot having the same scale on the 

abscissa axis and the ordinate axis. 
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Another graphical representation of recorded EIS data is the Bode plot (Figure 2), which is 
composed of two individual charts, often combined. One chart plots the impedance 
magnitude (modulus), 

|𝑍(𝑓)| = √𝑍𝑅𝐸
2 (𝑓) + 𝑍𝐼𝑀

2 (𝑓) 

versus the (logarithmic) perturbation frequency, f. The other chart plots the impedance phase 
(principal argument), 

𝜃(𝑓) = arctan (
𝑍𝐼𝑀(𝑓)

𝑍𝑅𝐸(𝑓)
) , −𝜋 ≤ 𝜃 < 𝜋 

versus the (logarithmic) perturbation frequency, f. 

Figure 2. Example of a Bode plot for the EIS data in Figure 1 

 

Similar to the linking of the real and imaginary impedance parts in equations (3) and (4), 
magnitude and phase are also principally related via principal value integrals known as Bode 
or gain-phase relations [1-4]. In this case, the natural logarithm is shown on the right hand 
side of equation (1). 

𝑍𝑅𝐸(𝑓) and 𝑍𝐼𝑀(𝑓) versus the (logarithmic) perturbation frequency, f, may also be graphed as 

a Bode plot, while 𝜃(𝑓) versus ln|𝑍(𝑓)| may be graphed as a Nyquist plot to represent the 
imaginary part and the real part, respectively. 

Furthermore, Nyquist and Bode plots may also be graphed for the admittance, Y (see 
equation (2)). 

The Bode plot can be used to extract information that cannot be readily obtained from 
Nyquist plots, such as the apparent high and low frequency impedances [1]. 
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In addition, discontinuities and unboundedness in the impedance response may be identified 
more readily in Bode plots. 

In a Nyquist plot, RΩ is taken as the high frequency, fHI intercept of the arc of the measured 
impedance on the 𝑍𝑅𝐸  axis. Rp is the difference to RΩ of the total measured impedance taken 
as the low frequency, fLOW intercept of the arc of the measured impedance with the 𝑍𝑅𝐸  axis 
(see Figure 1). 

These are the limits of the real impedance part respectively at high perturbation frequency, 

lim
|𝑓|→𝑓𝐻𝐼

𝑍𝐼𝑀(𝑓) = 0 

and at low perturbation frequency (Figure 1), 

lim
|𝑓|→𝑓𝐿𝑂𝑊

𝑍𝐼𝑀(𝑓) = 0 

and may approximately be determined at zero phase (Figure 2), 

lim|𝑓|→𝑓𝐿𝑂𝑊
𝜃(𝑓) = lim

|𝑓|→𝑓𝐻𝐼

𝜃(𝑓) = 0 . 

Plots of impedances versus a power of frequency, or at other levels of immittance (e.g., 
complex reactance (5)) may also be used to assist in the further identification of relevant 
electrochemical and transport processes, particularly diffusion and reaction-related 
phenomena in the WE cell and to determine suitable initial values for CNLS analysis of EEC 
fitting the measured data [1-4] (6). 

Note that, prior to any CNLS analysis, numerical inversion of the recorded frequency domain 
data into the time domain by a suitable EEC model, known as distribution of relaxation times 
(DRT) is recommended in order to assist identification of the minimum number of time 

constants, τ , associated with the electrochemical and transport processes taking place in the 

WE cell during the EIS measurement [1]. Time constants are, for example, τ = RC , τ =
L

R
 & 

τ = √LC  where R,C and L stand, respectively, for resistance, capacitance and inductance. 

Once the number of time constants is known a suitable EEC model that accounts for all 
estimated time constants is to be constructed using a priori knowledge of the 
physicochemical behaviour of the WE cell tested during the test set-up employed, and a 
priori knowledge of the operating and test conditions during the EIS measurement. 

The EEC model typically comprises various passive elements(7) (capacitor, inductor and 
resistor) and distributed elements(8) (i.e. Gerischer, Nernst, Warburg, etc.) [1-4], combined 
either in series or in parallel to simulate as closely as possible the impedance of the different 
components of the WE cell test set-up during the EIS measurement [20,21]. 

                                           
(5) Immittance is the general term for these interrelated complex valued quantities [1-4]. It combines the word 

impedance and admittance (Henrik Wade Bode). 
(6) For fitting, software is available: LEVM (downloadable at http://jrossmacdonald.com/levmlevmw), 

EQUIVCRT (downloadable at https://www.utwente.nl/en/tnw/ims/publications/downloads), ZView/Zplot 
(downloadable at http://www.scribner.com/software), EisPy (downloadable at https://goo.gl/5j7VWM), EIS 
Spectrum Analyser (http://www.abc.chemistry.bsu.by/vi/analyser), Elchemea Analytical (downloadable at 
https://www.elchemea.dk) and MEISP (downloadable at http://impedance0.tripod.com) as well as Lin KK 
Tool (downloadable at https://www.iam.kit.edu/wet/english/Lin-KK.php) for KK testing. 

(7) Passive or lumped elements do not exhibit frequency dispersion. In the time domain, they are represented 
by ordinary differential equations of integer order of voltage and current. 

(8) Distributed elements (DE) exhibit frequency dispersions and are conventionally expressed by elementary or 
special functions obtained under simplified assumptions through analytical modelling of partial differential 
equations of arbitrary order of the perturbed species participating in the mass transfer within the WE cell. 

https://www.utwente.nl/en/tnw/ims/publications/downloads
http://www.scribner.com/software
https://goo.gl/5j7VWM
http://impedance0.tripod.com/
https://www.iam.kit.edu/wet/english/Lin-KK.php
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Usually, RΩ represents the resistance of the electrolyte membrane and of the various 
conductors used in the test set-up of the WE cell and is modelled as an ideal resistor in 
series with an ideal inductor, Lc, accounting for the inductance of cables/wires used. 

In the simplest case, the interface at each of the two electrodes is modelled by an ideal 
capacitor representing the double layer charging at the respective electrode interface, 

𝐶𝑑𝑙 = ε𝑜ε𝑟

𝐴

d
 

in parallel with an ideal resistor accounting for Rp, and specifically the charge-transfer 
resistance (Figure 3), 

𝑅𝑐𝑡 =
𝑁𝐴𝑘𝑇

𝑛𝑒F𝑖0

 

where ε𝑜 is the permittivity of vacuum (free space), ε𝑟 is the dielectric constant of the 

electrode, A is its surface area, d is its thickness, 𝑁𝐴 is Avogadro's constant, 𝑛𝑒 is the number 
of electrons exchanged in the cell reaction, F is Faraday's constant and 𝑖0 is the exchange 
current density. 

Figure 3. Example of a simple EEC model to simulate that of a PEMWE test set-up accounting for 
cable/wire inductance, Lc, Ohmic resistance, RΩ, and two electrodes (9) each with double layer 

capacitance, Cdl, and charge transfer resistance, Rct.

 

More elaborate models may, for example, use a constant phase element (CPE), CCPE,(10) 
instead of a capacitor to simulate the fractal and porous nature of the electrodes including 
roughness [34-40], and add a diffusion impedance element, ZD [42], to account for the 
species (reactants and water) transport in the respective layers of the electrode, particularly 
where there is diffusion and/or cell reaction at the catalyst sites, and add, in parallel another 
series combination of an ideal resistor, Rad, and an ideal inductor, Lad, to account for the 
dynamics of species adsorption/desorption on the active sites of electrode on the catalyst 
surfaces. 

Sometimes it may be more appropriate to use circuit models assuming ladder structures to 
simulate the impedance of the WE cell test set-up. 

                                           
(9) Anode and cathode are denoted, respectively, by superscripts, a and c. 
(10) A CPE has impedance, ZCPE(ω)=(Q (iω))- respectively admittance, YCPE(ω)=Q (iω) which can be viewed as 

an imperfect capacitor, Q=QC and 0<≤1, an imperfect inductor, Q=QL and -1≤<0, or an imperfect 
resistor, Q=QR and 0<|i|≤1 exhibiting dispersion in the frequency domain owing to ordinary time 

derivatives of non-integer order of voltage and current. 
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Also, transmission line models (TLM) are sometimes used to supplement EEC models, 
particularly to simulate the reaction impedance in porous electrode structures, such as the 
catalyst layer comprising ionic phases (electrolyte with dissolved oxygen) and an electronic 
phase (metal catalyst on carbon support) and their several interfaces in and along the pores 
(Figure 4). 

Figure 4. Example of a generic transmission line model with N number of series impedances, ZI 
representative of one phase and M number of series impedances, ZIII of the same phase arranged 

in parallel to the former phase and K number of parallel impedances, ZII of another phase. 

 

For example, the series impedances may constitute resistances, 𝑍𝐼 = 𝑅𝐼 for the proton-

conducting electrolyte phase with dissolved oxygen, and 𝑍𝐼𝐼𝐼 = 𝑅𝐼𝐼𝐼 for the electron-
conducting phase of the catalyst while the parallel impedances may constitute parallel RC 

combinations, 𝑍𝐼𝐼 = 𝑅𝐼𝐼(1 + 𝑖𝜔𝑅𝐼𝐼𝐶𝐼𝐼) representing the double-layer capacitance and the 
charge transfer resistance of the interfaces between the two phases [21-26]. 

The fitting of impedance data to EEC models and DRT is discussed extensively elsewhere 
[1-4,17,25-33]. 

Note that methods other than DRT and CNLS may also be used to analyse the measured 
data and to extract relevant information [1-4,43]. 
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