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Proposed problem

Description

Following Homework 1 - AA. 2023-24, consider a cylindrical (pin) fin, as shown in figure 1,
which is made with a uniform, isotropic material with a thermal conductivity value of k = 40
W/(m K). The fin has a length L and a diameter d.

The fin is cooled only by convection with a convective heat transfer coefficient h =400
W/(m2 K), and the temperature of the surrounding fluid is T∞ = 25 °C. The temperature of
the base of the fin is maintained at a temperature Tb = 200 °C, while also the tip of the fin
contributes, with the same heat transfer coefficient, to the overall heat flux.

Figure 1: Axisymmetrical cylindrical (pin) fin.

In this case, disregard the usual assumption of 1D temperature distribution (see [1, 2]), i.e.

T ≈ T (z)

and consider a full 2D, axisymmetric temperature distribution

T = T (z, r)

The governing equation

The general heat (conduction) equation for an isotropic material in cylindrical coordinates
(z, r, ϕ) is
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which, under the assumption of steady, 2D axisymmetric temperature field with no heat gen-
eration, reduces to
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The problem
Using MATLAB, or any other language of choice, develop a 2D axisymmetric steady numer-
ical model for the fin and, using an adequate number of finite volumes, compute the heat flux
qFV 2D [W] and plot a contour map of the temperature field for the same cases considered in
Homework 1 - AA. 2023-24

1. L = 30 mm and d = 3 mm.

2. L = 30 mm and d = 20 mm.

Compare the result with that obtained with the 1D model of Homework 1. What is the %
error using the 1D assumption?

The detailed description of the 2D axisymmetric model and the derivation of the dis-
cretized equations are given in the Appendix.

Optional problem
Using the MATLAB PDE Toolbox, develop a 2D axisymmetric steady numerical model for
the fin and, using an adequate number of finite elements, compute the heat flux qFE2D [W]
and plot a contour map of the temperature field. Compare the result with that obtained with
the 1D model of Homework 1 and the 2D axisymmetric FV model.
Do the results compare well with those from the 2D axisymmetric FV model?
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Appendix
For the present axisymmetric heat conduction problem, the computational domain is illus-
trated in figure 2.

Figure 2: Computational domain.

A possible way to derive the discrete equation is to integrate, for the generic Finite Volume
depicted in figure 3, equation (2). One should note that, while for Cartesian 2D problems the
generic cell has a volume V = ∆x∆y 1, in the axisymmetric case the volume (see figure 4)
is V = ∆z∆r rP 1

Figure 3: Axisymmetric Finite Volume.

Figure 4: 2D axisymmetric grid.
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Reordering the integrals so that exact differentials are integrated first, and using the mean
value theorem it results
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Integrating once more

([
kr

∂T

∂r

]
n

−
[
kr

∂T

∂r

]
s

)
∆z +

([
k
∂T

∂z

]
e

−
[
k
∂T

∂z

]
w

)
r2n − r2s

2
= 0 (5)

The quantity (r2n − r2s)/2 may be written as (rn − rs)(rn + rs)/2 which, for a uniform mesh,
reduces to ∆r rP .
Invoking, as usual for the diffusion term, the CDS scheme, equation (5) becames
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Reordering and assuming, for simplicity, constant value of the thermal conductivity, we have

AP TP + AE TE + AW TW + AN TN + AS TS = 0 (7)

where
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and
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For the cells at the axis, we have rs = 0, and therefore the corresponding term in the equation
vanishes and no boundary conditions are necessary for the axis.
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