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7.1.5 The 9-qubit Shor code

We saw how the 3-qubit bit-flip and phase flip QEC codes can correct respectively bit-flip and phase flip
errors. Here, we show that concatenating these two codes, one can protects for generic single qubit errors.
Indeed, consider the situation of a single qubit initially prepared in the state | i. Suppose it is coupled to
the surrounding enviroment, whose state is initially |ei, and that the latter entangles with the system. Such a
transformation is described as

| i |ei ! c01̂ | i |e0i + c1�̂x | i |e1i + c2�̂y | i |e2i + c3�̂z | i |e3i , (7.25)

where ci are suitable constants, and |eii are states of the environment. Then, the state of the system is trans-
formed via the application of the four Pauli operators. Here, �̂0 = 1̂ does not imply any change in the state, so
no error needs to be corrected. The errors due to �̂x and �̂z are respectively corrected via bit-flip and phase-flip
QEC codes. It remains that due to �̂y. However, one can notice that, since the Pauli matrices form a Lie algebra,
one can express �̂y in terms of �̂x and �̂z. Namely, �̂y = i�̂x�̂z. Then, one needs only to correct two consecutive
errors (phase-flip and then bit-flip) to correct a bit-phase flip. The following QEC code is su�cient to perform
such a correction.

The encoding of the 9-qubit Shore code is given by

|0i ! |0Li =
1p
8

(|000i + |111i) (|000i + |111i) (|000i + |111i) ,

|1i ! |1Li =
1p
8

(|000i � |111i) (|000i � |111i) (|000i � |111i) .
(7.26)

This implies the following encoding for a generic state | i

| i ! ↵p
8

(|000i + |111i) (|000i + |111i) (|000i + |111i) +
�p
8

(|000i � |111i) (|000i � |111i) (|000i � |111i) .

(7.27)
The encoding is implemented via the following circuit
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(7.28)

The action of the first two CNOT gates and three Hadamard in Eq. (7.28) is to map the qubits 1, 4 and 7
as follows:
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| 00i = ↵ |000i + � |100i ,
! ↵ |000i + � |110i ,
! ↵ |000i + � |111i ,
! ↵ |+ + +i + � |� � �i .

(7.29)

Namely, they perform the encoding for the phase-flip QEC code:

|0i ! |+ + +i ,
|1i ! |� � �i .

(7.30)

Then, every |+i and |�i state in these qubits is further encoded with the last CNOT gates. Specifically, one has

|+00i =
1p
2

(|000i + |100i) ,

! 1p
2

(|000i + |110i) ,

! 1p
2

(|000i + |111i) ,

(7.31)

and

|�00i =
1p
2

(|000i � |100i) ,

! 1p
2

(|000i � |110i) ,

! 1p
2

(|000i � |111i) .

(7.32)

These, e↵ectively perform the encoding for the bit-flip QEC code.
Such an encoding combines the phase-flip and the bit-flip encoding. To extract the error syndrome, one

employs a collective measurement, similarly as for the bit-flip. In particular, 8 ancillary qubits are employed to
construct the following circuit
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(7.33)

Here, the outcomes (d0, d1), (d2, d3) and (d4, d5) respectively indicate bit-flip errors within the first, second
and third block of three physical qubits. Specifically, for the first block, one employs exactly what described in
Sec. 7.1.3.

The outcomes (d6, d7) are instead used to detect phase-flip errors of the logical state encoded with the three
blocks. The collective measurements to do this are

�̂(1)
x �̂(2)

x �̂(3)
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x ,
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x �̂(8)
x �̂(9)

x ,
(7.34)

which provide d6 and d7 respectively. If one gets, for example, (d6 = �1, d7 = �1), then a phase flip occurred
in the first block.
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7.1.6 On the redundancy and threshold

As we saw, a fundamental step in the QEC codes is the redundancy of the state. Notably, there is no need in
having exactly 3 copies. It can be extended to any k copies, as long as k > 1 is an odd number. What one wants
is that the probability Pfail that the QEC code fails is smaller than the probability ✏ of an error occurring on a
single physical qubit: Pfail < ✏.

Consider the case of k physical qubits encoding a single logical qubit. Given the probability ✏ of having an
error on one of these qubits, that of having j qubits with errors is given by

p(j) = ✏j(1 � ✏)k�j , (7.35)

and there are ✓
k

j

◆
=

k!

(k � j)!j!
, (7.36)

di↵erent possible combinations. Then, Pfail is given by the sum over these when the faulty qubits are at least
half of the total. This is

Pfail =
kX

j=
(k+1)

2

✓
k

j

◆
✏j(1 � ✏)k�j . (7.37)

Namely, for k = 3, one has

Pfail =
3X

j=
(3+1)

2

✓
3

j

◆
✏j(1 � ✏)3�j = 3✏2(1 � ✏) + ✏3. (7.38)

The behaviour of Pfail for di↵erent values of k is shown in Fig. 7.3.
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Fig. 7.3: Probability of failing Pfail for the single bit channel (dashed red line) with respect to a redundant
encoding with k physical qubits (continuous lines).

However, one can consider an alternative approach. Instead of encoding a logical qubit just once in a large
number of physical qubits, one can concatenate encodings. One encodes the logical qubit in di↵erent levels,
where each level employs a small numeber of qubits. To be more explict, the following is the encoding of a single
physical qubit in a 2 level encoding with three qubits each:

|0i first encoding��������! |000i second encoding����������! |000i |000i |000i , (7.39)
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and similarly for |1i. Now, with this encoding, the actual physical qubit is that in the highest level of encoding,
and this is that directly su↵ering from the noise. Suppose there is a probability ✏ that an error occurs on this
physical qubit. Then, at the level 1, the probability of failing, for example for the bit-flip QEC code, is

Pfail,1 = 3✏2 � 2✏3. (7.40)

This quantity is the probability that the noise corrupts a qubit at the level 1. Thus, when computing the
probability of failing for the qubit at level 0, the actual logical qubit, Pfail,1 needs to be interpreted as the
probability ✏1 that an error occurs on the qubit at the level 1. Then, at level 0, one has that the failing
probability is

Pfail,0 = 3P 2
fail,1 � 2P 3

fail,1,

= 3[3✏2 � 2✏3]2 � 2[3✏2 � 2✏3]3,

= 27✏4 � 36✏5 � 42✏6 + 108✏7 � 72✏8 + 16✏9.

(7.41)

The question is then which is the best encoding. Figure 7.4 compares the failing probabilities Pfail for a single
level encoding with 9 physical qubits (blue line), where Eq. (7.37) gives

Pfail = 126✏5 � 420✏6 + 540✏7 � 315✏8 + 70✏9, (7.42)

and that for a 2 level encoding each with 3 qubits (red line). This is a fair comparison, as both the approaches
are employing the same number of physical qubits, i.e. n = 9.
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Fig. 7.4: Comparison of the failing probabilities Pfail for a single level encoding with 9 physical qubits (blue
line) and that for a 2 level encoding each with 3 qubits (red line).

To keep the discussion more general, suppose p is the probability of failing for a qubit with no encoding (this
is what we called ✏ until now). Then, the failing probability is

P (0)
fail = p. (7.43)

Suppose that after one encoding the failing probability is

P (1)
fail = cp2, (7.44)

where c is some suitable constant. In the case of the 3-qubit encoding, one had
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Pfail = 3p2 � 2p3 ⇠ 3p2, (7.45)

for small values of p. After 2 encodings, one has

P (2)
fail = c(cp2)2 =

1

c
(cp)2

2

. (7.46)

After k encodings, one has

P (k)
fail = pth

✓
p

pth

◆2k

, (7.47)

where we defined the threshold probability as

pth =
1

c
. (7.48)

Such a probability depends on varius parameters, among which the QEC code used, the physical components,
the experimental implementation of the QEC protocol etc.

The threshold probability pth is fundamental due to the following theorem.
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