
Block 3.3

Logistic regression
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Now we focus on a regression model 

particularly useful to evaluate data 

obtained from a case-control study 

design.

The purpose of this design is to assess the 

magnitude of the association between an 

exposure and a specific disease or health-

related event.

This is the most cost-effective study design 

and is recommended when the 

incidence of the disease or condition of 

interest is rare or has a long latency.

The aim could be both on explaining

effects, or making predictions, for 

example prediction of diagnosis could be 

a target.
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Specific Objectives (mostly related to explanatory/causal purposes):

• Define the concepts of crude and adjusted odds ratios (ORs) to assess the magnitude of the 

association between an exposure and a specific disease

• Assess confounding and effect modification [interaction]

Remember: in a standard case-control study 

design, it is not possible to estimate disease 

incidence in those who are exposed and those 

who are unexposed, since participants are 

selected according to the disease status, not on 

the basis of their exposure status. 

However, it is possible to calculate the odds of 

exposure among cases and controls, and then 

the exposure/disease odds ratio.  
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Confounding Assessment (explanatory setting)

To evaluate the effect of potential confounding variables in a case-control study, it is necessary to 

compare the estimate of the crude odds ratio ෢𝑂𝑅𝑐𝑟𝑢𝑑𝑒 with the estimate of the adjusted odds ratio 
෢𝑂𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

In general, if the ෢𝑂𝑅𝑐𝑟𝑢𝑑𝑒 is similar to ෢𝑂𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 we can think that the confounding variables have no effect 

in the magnitude of the association of interest.

Otherwise, it is recommended to determine if the ෢𝑂𝑅𝑐𝑟𝑢𝑑𝑒 over-estimates or under-estimates the 

association using as a reference the ෢𝑂𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
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The multivariable logistic regression model allows us to estimate the OR (crude and adjusted) to assess 

the magnitude of the association between the exposure of interest and the disease under study taking 

into account multiple confounders with different scales of measurements.

LR estimates* the probability of disease in the exposed and unexposed groups as follows:

𝑂𝑅 =
൯Τ𝑃𝑒𝑥𝑝𝑜𝑠𝑒𝑑 ( 1 − 𝑃𝑒𝑥𝑝𝑜𝑠𝑒𝑑

൯Τ𝑃𝑢𝑛𝑒𝑥𝑝𝑜𝑠𝑒𝑑 ( 1 − 𝑃𝑢𝑛𝑒𝑥𝑝𝑜𝑠𝑒𝑑

𝑝𝑖 =
1

1 + 𝑒
− 𝛽0+𝛽𝐸𝐸𝑖+σ𝑗=1

𝐽
𝛽𝑗𝐶𝑖𝑗

𝑝𝑖

𝐸𝑖

𝐶𝑖𝑗𝛽𝐸

𝛽𝑗

probability of having the disease for the subject i

exposure for the subject i (quantitative or categorical). 

If dichotomous, defined by an indicator variable(dummy 

variable)1=present and 0=absent.

Confounding** variable for subject i, for j=1,….m

coefficient of the exposure

coefficient of the j-th confounding** variable

*estimate β by maximising the likelihood, i.e. probabilities to observe the data in hand get maximal. 

**or independent predictor
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The probability of observing a control (non diseased person) through the LR model is:

1 − 𝑝𝑖 = 1 −
1

1 + 𝑒
− 𝛽0+𝛽𝐸𝐸𝑖+σ𝑗=1

𝐽
𝛽𝑗𝐶𝑖𝑗

As a result, the odds of disease can be defined by:

𝑝𝑖
1 − 𝑝𝑖

= 𝑒
𝛽0+𝛽𝐸𝐸𝑖+σ𝑗=1

𝐽
𝛽𝑗𝐶𝑖𝑗

On a logarithmic scale, the odds of disease would be:

𝑙𝑜𝑔
𝑝𝑖

1 − 𝑝𝑖
= 𝛽0 + 𝛽𝐸𝐸𝑖 +෍

𝑗=1

𝐽

𝛽𝑗𝐶𝑖𝑗

Logit function [link function]

On the logit scale we come back to a linear model
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OR ‘crude’ (univariable analysis):

To obtain the OR ‘crude’ in the LR model (i.e. when only one predictor is in the model, the exposure) 

assuming that the exposure factor is a dichotomous variable (0,1) the odds would be:

𝑂𝑑𝑑𝑠1 =
𝑝1

1 − 𝑝1
= 𝑒𝛽0+𝛽𝐸

𝑂𝑑𝑑𝑠0 =
𝑝0

1 − 𝑝0
= 𝑒𝛽0

𝑂𝑅𝑐𝑟𝑢𝑑𝑒 =
𝑂𝑑𝑑𝑠1
𝑂𝑑𝑑𝑠0

= 𝑒𝛽𝐸

Role of stem cell renewal factor BMI-1 in primary and metastatic melanoma: binary covariates

Y=presence of metastasis
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CASE 

(Y=1)

CONTROL

(Y=0)

E (X=1) P(Y|X=1) 1-P(Y|X=1)

Not E (X=0) P(Y|X=0) 1-P(Y|X=0)

CASE

(Y=1)

CONTROL

(Y=0)

E (X=1) 𝑒𝑥𝑝 𝛼 + 𝛽

1 + 𝑒𝑥𝑝 𝛼 + 𝛽

1

1 + 𝑒𝑥𝑝 𝛼 + 𝛽

Not E (X=0) 𝑒𝑥𝑝 𝛼

1 + 𝑒𝑥𝑝 𝛼

1

1 + 𝑒𝑥𝑝 𝛼

𝑒𝑥𝑝 𝛼 + 𝛽
1 + 𝑒𝑥𝑝 𝛼 + 𝛽

∗
1

1 + 𝑒𝑥𝑝 𝛼

𝑒𝑥𝑝 𝛼
1 + 𝑒𝑥𝑝 𝛼

∗
1

1 + 𝑒𝑥𝑝 𝛼 + 𝛽

=
𝑒𝑥𝑝 𝛼 + 𝛽

𝑒𝑥𝑝 𝛼
= 𝑒𝑥𝑝 𝛽

Here we denote with a the 

intercept of the model

The intercept a in the model is the log-odds of disease (i.e. to be a case) in the 

unexposed. 

Interpretation of the LR coefficients [binary covariates]
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Interpretation of the LR coefficients [continuous exposure/covariates]

In linear regression: If x changes by one unit, the mean of y is expected to change by b1 units.

Relation between p(x)=P(y=1|x) and x is linear in logits:

𝑔 𝑥 = 𝑙𝑜𝑔
𝑝 𝑥

1 − 𝑝 𝑥
= 𝛽0 + 𝛽1𝑥

Thus: change in x by one unit change in logit of p(x) by b1 units

odds ratio = exp(b1) is a measure for an increase in risk (in odds) when x changes by one unit.

logit-increase when x changes by k units: 𝑙𝑜𝑔 𝑂𝑅 = 𝛽0 + 𝛽1 𝑥 + 𝑘 − 𝛽0 + 𝛽1𝑥

OR for change of x by k units: 𝑒𝑥𝑝 𝑘𝛽1 = 𝑒𝑥𝑝 𝛽1
𝑘 = 𝑂𝑅𝑘
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OR when phosphatase changes by a factor of 2:

𝑒𝑥𝑝 2.4198 = 11.24

OR for a change by a factor of 1.5:

1.5 = 20.585

𝑂𝑅 = 11.240.585 = 4.1

Example: a study on prostate cancer

Increasing levels of phosphatase are related to the presence of nodal metastases?

Interpretation of the 

intercept is quite theoretical: 

log-odds of disease when

log2(Phosphatase)=0, i.e

when Phosphatase =1  

log(1.5,base=2)=0.585

The normal range for serum

Phosphatase level is 20 to 

140 IU/L
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Interpretation of the LR coefficients [categorical covariates]

For categorical or ordinal X one has to introduce binary dummy variables, with a category as reference.

X categorical with 3 levels (A, B, C):

log 𝑂𝑑𝑑𝑠 = 𝛽0 + 𝛽𝐵(𝑋 = 𝐵) + 𝛽𝐶(𝑋 = 𝐶)

With three parameters: 𝛽0, 𝛽𝐵 and 𝛽𝐶, and X = A (reference)

Then:
If X=A: 𝒍𝒐𝒈 𝑶𝒅𝒅𝒔 = 𝜷𝟎

If X=B: log 𝑂𝑑𝑑𝑠 = 𝛽0 + 𝛽𝐵
If X=C: log 𝑂𝑑𝑑𝑠 = 𝛽0 + 𝛽𝐶

If the reference coding is changed (X=C is reference) a new model is formulated:

log 𝑂𝑑𝑑𝑠 = 𝛽0,𝑛𝑒𝑤 + 𝛽𝐴,𝑛𝑒𝑤(𝑋 = 𝐴) + 𝛽𝐵,𝑛𝑒𝑤(𝑋 = 𝐵)

Where:  X = C (reference) and:

If X=A: log 𝑂𝑑𝑑𝑠 = 𝛽0,𝑛𝑒𝑤 + 𝛽𝐴,𝑛𝑒𝑤
If X=B: log 𝑂𝑑𝑑𝑠 = 𝛽0,𝑛𝑒𝑤 + 𝛽𝐵,𝑛𝑒𝑤

If X=C: 𝒍𝒐𝒈 𝑶𝒅𝒅𝒔 = 𝜷𝟎,𝒏𝒆𝒘
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The new model parameters and the old model parameters are related:

𝛽0,𝑛𝑒𝑤 = 𝛽0 + 𝛽𝐶 and   𝛽𝐴,𝑛𝑒𝑤 = −𝛽𝑐

we have:  𝛽0,𝑛𝑒𝑤 + 𝛽𝐴,𝑛𝑒𝑤 = 𝛽0 which is: 𝛽0 + 𝛽𝐶 + 𝛽𝐴,𝑛𝑒𝑤 = 𝛽0

𝛽𝐵,𝑛𝑒𝑤 = 𝛽𝐵 − 𝛽𝐶 and we have: 𝛽0,𝑛𝑒𝑤 + 𝛽𝐵,𝑛𝑒𝑤 = 𝛽0 + 𝛽𝐵 which is:   𝛽0 + 𝛽𝐶 + 𝛽𝐵,𝑛𝑒𝑤 = 𝛽0 + 𝛽𝐵

Relationship between CHD (coronary

heart disease) and body weight.

Body weight in 4 groups:

<= 155 pounds [reference]

(155 – 170] pounds

(170 – 182] pounds

(182 – 320] pounds
Each class is compared to the reference class:

(155 – 170] pounds vs <= 155 pounds -> OR 1.53

(170 – 182] pounds vs <= 155 pounds -> OR 2.47

(182 – 320] pounds vs <= 155 pounds -> OR 1.98
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Estimating the ‘adjusted’ OR:

To obtain the adjusted OR in the presence of potential J confounding variables C in the LR model:

Assuming here that the exposure factor E is a dichotomous variable (0,1):

𝑂𝑑𝑑𝑠1 =
𝑝1

1 − 𝑝1
= 𝑒

𝛽0+𝛽𝐸+σ𝑗=1
𝐽

𝛽𝑗𝐶𝑗

𝑂𝑑𝑑𝑠0 =
𝑝0

1 − 𝑝0
= 𝑒

𝛽0+σ𝑗=1
𝐽

𝛽𝑗𝐶𝑗
′

𝑂𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
𝑂𝑑𝑑𝑠1
𝑂𝑑𝑑𝑠0

= 𝑒
𝛽𝐸+σ𝑗=1

𝐽
ቁ𝛽𝑗൫𝐶𝑗−𝐶𝑗
′

To ensure the validity of the OR 

adjusted, it is necessary to check 

that there is no interaction effect 

between the confounding variables 

and the exposure factor

The adjusted OR is obtained under the assumption 𝐶𝑗 = 𝐶𝑗
′: 𝑂𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑒𝛽𝐸

0.9 <
෢𝑂𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
෢𝑂𝑅𝑐𝑟𝑢𝑑𝑒

< 1.1

No confounding effect

(data-driven…)
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Interaction again… [epi jargon: effect modification] 

To correctly estimate the adjusted OR, it could be necessary to verify if there are interactions between 

the exposure and potential confounding variables. If any significant interaction terms are found, the OR 

will depend also on the coefficient associated with the interaction term.

𝑙𝑜𝑔
𝑝

1 − 𝑝
= 𝛽0 + 𝛽𝐸𝐸 + 𝛽𝐶𝐶 + 𝛾 𝐸 ∗ 𝐶

Simplest case (E binary exposure): 

log 𝑂𝑑𝑑𝑠1 = 𝛽0 + 𝛽𝐸 + 𝛽𝐶𝐶 + 𝛾𝐶

log 𝑂𝑑𝑑𝑠0 = 𝛽0 + 𝛽𝐶𝐶′
𝑂𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =

𝑂𝑑𝑑𝑠1
𝑂𝑑𝑑𝑠0

= 𝑒𝛽𝐸+𝛽𝐶 𝐶−𝐶′ +𝛾𝐶

Depending on the possible combinations of C and C’ we obtain

different values for the adjusted OR

Usually, a first model is fitted with the interaction 

terms and compared to a second model without it 

by means of a likelihood ratio test

If we assume C=C’: 𝑂𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑒𝛽𝐸+𝛾𝐶
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Renal artery stenosis is a rare cause of hypertension. 

The reference standard for diagnosing renal artery stenosis, renal angiography, is invasive and costly. 

Aim: develop a prediction rule for renal artery stenosis from clinical characteristics.

The rule might then be used to select patients for renal angiography.

Logistic regression analysis performed with data from 477 hypertensive patients who underwent renal 

angiography. A simplified prediction rule was derived from the regression model for use in clinical 

practice. 

Age, sex, atherosclerotic vascular disease, recent onset of hypertension, smoking history, body mass 

index, presence of an abdominal bruit, serum creatinine concentration, and serum cholesterol level were 

selected as predictors. 

Diagnostic accuracy of the regression model was similar to that of renal scintigraphy. The conclusion was that this 

clinical prediction model can help to pre-select patients for renal angiography in an efficient manner by reducing the 
number of angiographic procedures without the risk of missing many renal artery stenosis. 

Krijnen et al., A clinical prediction rule for renal artery stenosis. 
Annals of Internal Medicine(1998)

Example of logistic regression as a diagnostic model 
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45-year-old male with recent onset of 

hypertension. 

The sum score was 11, the estimated probability 

or renal artery stenosis was 28% [95% confidence 

interval 17–43%].

The area under the ROC curve was 0.84 on the full data set and

0.82 after a boostrap procedure
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Poisson regression
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Remind: Population based / Cohort Studies / [RCTs]

In a pop.based/cohort/[RCT] study, a population is selected on the basis of their exposure/treatment

and followed over a period of time to determine the occurrence of a disease or any other health-

related event. 

The incidence of disease could then compared in exposed and unexposed groups.
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In the explanatory setting the main goal is to estimate disease incidence 

among exposed and unexposed individuals and then quantifying the 

magnitude of the association between exposure and disease. 

Advantages of the pop.based/cohort study/[RCTs]: 

• Temporal sequence between the exposure under study and the disease or any other health-related 

event can be established 

• Determination of disease incidence in each exposure group and investigation of the effect of the 

exposure of interest on possible multiple outcomes (not all a-priori defined) 

In the prognosis/prediction setting the main goal is to estimate the probability 

to develop the outcome in a certain time interval, according to subject’s 

characteristics. 
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Disadvantages

• Susceptibility to (differential) loss of 

subjects during follow up, which 

may introduce selection bias and 

thus affect the internal validity of 

the study 

• Comparability of subjects who 

remain in the study and those who 

are lost, by exposure status, must 

be determined in order to assess 

potential confounders/bias

• Expensive (time/costs)[if primary

data collection]

• Not suitable for rare diseases
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Recap: person-years & Incidence rate 

Person-years computation using a hypothetical 

cohort of 12 subjects observed for a period of 10 

years.

3 developed the disease (4,6, and 7). 

Total person-years (66 p-years) : sum of the 

individual time at risk of all subjects. 

𝐼𝑅 =
3

3 + 8 +⋯+ 3
=

3

66 𝑝𝑒𝑟𝑠𝑜𝑛 − 𝑦𝑒𝑎𝑟𝑠
= 4.54 𝑥 100 𝑝𝑦

𝐼𝑅 =
𝑎

𝐿
=
# 𝑛𝑒𝑤 𝑐𝑎𝑠𝑒𝑠

σ𝑖=1
𝑛 ∆𝑡𝑖

∆𝑡𝑖 observation time subject i

L total accumulated p-years
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# of new cases p-years IR

E a1 L1 IR1=a1/L1

Not E a0 L0 IR0=a0/L0

𝐼𝑅𝑅 =
𝐼𝑅1
𝐼𝑅0

=
Τ𝑎1 𝐿1
Τ𝑎0 𝐿0

Hypothetical data on the association between 

smoking and cardiovascular disease

For every 1000 smokers observed in a year, there were 59.1 cases of cardiovascular disease

For every 1000 nonsmokers observed in a year, there were 28.6 new cases of cardiovascular disease

෢𝐼𝑅𝑅 =
59.1

28.6
= 2.06

Incidence Rate Ratio
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Recap: Cumulative Incidence

When the period of observation of each subject in the cohort study is [approximately] constant (Δti=t) 

(and we observe a fixed/closed cohort) the occurrence of an event could be estimated with the 

cumulative incidence:

𝐶𝐼 =
# 𝑛𝑒𝑤 𝑐𝑎𝑠𝑒𝑠

𝑛

n = population at risk at the start of the study

# of new cases Total CI

E a1 n1 CI1=a1/n1

Not E a0 n0 CI0=a0/n0

𝑅𝑅 =
𝐶𝐼1
𝐶𝐼0

=
Τ𝑎1 𝑛1
Τ𝑎0 𝑛0

Hypothetical study on obesity 

of mothers and complications 

during childbirth
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A regression model for counts/rates  

The Poisson regression model estimates the incidence of a disease or health-related event under different 

conditions. 

To determine the incidence, it is necessary to compute the number of new cases during the observation 

period and identify the initial conditions of the study, such as the type of exposure at baseline and 

specific values of the potential confounding variables. 

The Poisson model establishes a relationship/[makes a prediction] between the expected number of 

cases and the exposure while controlling for potential confounders.

Recap: 

The Poisson probability distribution can be used when the random variable represents the number of 

cases (successes) under 3 conditions:

• in a very large number of independent Bernoulli trials [when the constant probability of success is small] 

• for a unit of time (e.g., day, month, or year)

• on a unit area (e.g., square meter, square kilometer, or square mile) or volume (e.g., cubic meter or 

cubic centimeter)
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The Poisson regression model establishes a relationship between the expected number of cases and the 

exposure [while controlling for potential confounders/indep.pred.]:

𝜇𝑖 expected value of new cases in condition i : a combination of the values of the covariates. 

[We assume that the number of new cases is a RV that has a Poisson distribution]

population in the i-th group of exposure 𝑃𝑖

𝐸𝑖 Exposure variable

j-th confounding variable𝐶𝑖𝑗

Intercept of the model. Exp(𝛽0) : expected incidence of the number of new cases when 

the exposure and the confounding variables take the value of zero.
𝛽0

𝜇𝑖 = 𝑃𝑖𝑒
𝛽0+𝛽𝐸𝐸𝑖+σ𝑗=1

𝐽
𝛽𝑗𝐶𝑖𝑗

Person-time units

Population at baseline

Incidence rate

Cumulative incidence

[or general predictors]
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We are assuming that the response variable is a count of events occurring independently among different 

subgroups [number of newly diagnosed cases of kidney cancer at different hospitals every year] and that 

this random variable follows a Poisson distribution.

We also assuming that μ is linked to the exponential of a linear function of the candidate predictors; so 

the changes in the incidence resulting from the combined effects of the exposure and the confounding 

variables are multiplicative. 

𝑙𝑛 𝜇𝑖 = 𝑙𝑛 𝑃𝑖 + 𝛽0 + 𝛽𝐸𝐸𝑖 +෍

𝑗=1

𝐽

𝛽𝑗𝐶𝑖𝑗
Since the model contains the variable 𝑙𝑛 𝑃𝑖
there is no need to estimate the coefficient for 

this variable, referred to as an offset

𝜇𝑖
𝑃𝑖
= 𝑒

𝛽0+𝛽𝐸𝐸𝑖+σ𝑗=1
𝐽

𝛽𝑗𝐶𝑖𝑗

[incidence of events] 
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When the exposure E is a dichotomous variable coded as 1 (presence) and 0 as absence of the factor, 

the incidence of events in the two groups is estimated by the following expressions:

𝐼1 =
𝜇1
𝑃1

= 𝑒
𝛽0+𝛽𝐸+σ𝑗=1

𝐽
𝛽𝑗𝐶𝑗

𝐼0 =
𝜇0
𝑃0

= 𝑒
𝛽0+σ𝑗=1

𝐽
𝛽𝑗𝐶𝑗

exposed

unexposed

𝑅𝑅 =
𝐼1
𝐼0
= 𝑒

𝛽𝐸+σ𝑗=1
𝐽

𝛽𝑗 𝐶𝑗−𝐶𝑗
′

The adjusted relative risk is obtained under the assumption 𝐶𝑗 = 𝐶𝑗
′: ෢𝑅𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝒆𝜷𝑬

0.9 <
෢𝑅𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
෢𝑅𝑅𝑐𝑟𝑢𝑑𝑒

< 1.1

No confounding effect

(data-driven…)
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Again, to estimate the adjusted RR, it is necessary to verify that there are no interactions between the 

exposure and potential confounding variables. 

If any significant interaction terms are found, the RR will depend on the coefficient associated with the 

interaction term.

𝐼𝑖 =
𝜇𝑖
𝑃𝑖
= 𝑒𝛽0+𝛽𝐸𝐸+𝛽𝐶𝐶+𝛾 𝐸∗𝐶

𝐼1 =
𝜇1
𝑃1

= 𝑒𝛽0+𝛽𝐸+𝛽𝐶𝐶+𝛾𝐶

𝐼0 =
𝜇0
𝑃0

= 𝑒𝛽0+𝛽𝐶𝐶
′

𝑅𝑅 =
𝐼1
𝐼0
= 𝑒𝛽𝐸+𝛽𝐶 𝐶−𝐶′ +𝛾𝐶

If we assume that 𝐶𝑗 = 𝐶𝑗
′: 𝑅𝑅 = 𝑒𝛽𝐸+𝛾𝐶
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Poisson regression take into account a crucial issue not faced by 

other regression techniques (linear/logistic). 

From the data design, different subjects may have different person-

times of exposure. 

Analysing risk factors while ignoring differences in person-times is 

wrong. 

Note that logistic regression completely ignores this aspect 

[difference: cohort vs case-control]. Observation time is not 

accounted for in the evaluation of the probability of the event. 
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Supplementary Materials
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Interpreting the output of a Poisson regression model 

We are interested in the effect of smoking on death rate, adjusting for age (treated as categorical, 5 levels): 

𝑙𝑛 𝐷𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒 = −7.92 + 0.35 ∗ 𝑆𝑚𝑜𝑘𝑒 + 1.48 ∗ 𝐴𝑔𝑒𝐵 + 2.63 ∗ 𝐴𝑔𝑒𝐶 + 3.35 ∗ 𝐴𝑔𝑒𝐷 + 3.70 ∗ 𝐴𝑔𝑒𝐸

-7.92 = log death rate for Age category A (reference) and non-Smokers

0.35 = difference in the log death rates for Smokers compared to non-Smokers (at the same age!)  

Note that we do not have anything estimated for the offset term, we use it only for the interpretation

𝑙𝑛 𝜇𝑖 = 𝑙𝑛 𝑃𝑖 + 𝛽0 + 𝛽𝐸𝐸𝑖 +෍

𝑗=1

𝐽

𝛽𝑗𝐶𝑖𝑗

[In this dataset we had person-years as time-dimension] 
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𝑙𝑛 𝐷𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒 = −7.92 + 0.35 ∗ 𝑆𝑚𝑜𝑘𝑒 + 1.48 ∗ 𝐴𝑔𝑒𝐵 + 2.63 ∗ 𝐴𝑔𝑒𝐶 + 3.35 ∗ 𝐴𝑔𝑒𝐷 + 3.70 ∗ 𝐴𝑔𝑒𝐸

How would we compare the death rate for smokers vs not-smokers ?

𝑒𝛽𝐸 = 𝑒0.35 = 1.42 Smokers have 1.42 times the death rate of non-smokers (at the same age!) 

How would we calculate the expected death rate for a smoker in AgeC ?

𝑙𝑛 𝐷𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒 = −7.92 + 0.35 ∗ 𝑆𝑚𝑜𝑘𝑒 + 2.63 ∗ 𝐴𝑔𝑒𝐶

𝑙𝑛 𝐷𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒 = −4.94

𝐷𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒 = 𝑒−4.94 𝐷𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒 = 0.00717 𝑝𝑒𝑟 𝑝𝑒𝑟𝑠𝑜𝑛 − 𝑦𝑒𝑎𝑟

𝐷𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒 = 715 𝑝𝑒𝑟 100.000 𝑝𝑒𝑟𝑠𝑜𝑛 − 𝑦𝑒𝑎𝑟𝑠
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𝑙𝑛 𝐷𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒
= −7.92 + 0.35 ∗ 𝑆𝑚𝑜𝑘𝑒 + 1.48 ∗ 𝐴𝑔𝑒𝐵 + 2.63 ∗ 𝐴𝑔𝑒𝐶 + 3.35 ∗ 𝐴𝑔𝑒𝐷 + 3.70 ∗ 𝐴𝑔𝑒𝐸

We follow a group of 9783 non-smokers in AgeD for 25 years. 

Based on the model we have fit, how many deaths would we expect? 

𝜇𝑖
𝑃𝑖
=

)𝐸𝑥𝑝(𝐷𝑒𝑎𝑡ℎ𝑠

9783 ∗ 25
= 𝑒−7.92+3.35

)𝐸𝑥𝑝(𝐷𝑒𝑎𝑡ℎ𝑠

244575
= 𝑒−4.57

𝐸𝑥𝑝 𝐷𝑒𝑎𝑡ℎ𝑠 = 0.010 ∗ 244575 = 2446


