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Network Cohesion

• Many questions in network analysis (not only social networks) boil down 
to questions involving network cohesion, the extent to which subsets of 
nodes are cohesive wrt the relation defining edges in the network

- Do friends of a given actor in a social network tend to be friends of one another as well? 
- What collections of proteins in a cell appear to work closely together?
- Does the structure of the pages in the World Wide Web tend to separate with respect to distinct 

types of content?

• There are many ways that we can define network cohesion

• Definitions differ, for example, in scale, ranging from local (e.g., 
triads) to global (e.g., giant components)

• and also in the extent to which they are specified explicitly (e.g., 
cliques) versus implicitly (e.g., ‘clusters’).

• More generally we will call these aggregations of nodes as 
communities



Network Cohesion

• Social networks of various kinds demonstrate a strong community effect. 
Actors in a network tend to form closely-knit groups.

• groups are also called communities, clusters, cohesive subgroups or modules

• Generally speaking, individuals interact more frequently with members 
within group than outside 

• Detecting cohesive groups in a social network (i.e., community detection) 
remains a core problem in explorative network analysis. 

• Many approaches. These approaches can be separated into four categories: 
node-centric, group-centric, network-centric, and hierarchy-centric



Node centric
• Many notions of coherent network structure are based on the principle 

that a coherent subset of nodes should be locally ‘dense’ (often maximal 
dense)

• The most obvious concept to employ in this regard is that of a clique – a 
complete subgraph H of G. 

- Cliques are subsets of vertices that are fully cohesive, in the sense that all vertices within 
the subset are connected

- A case of common practical interest, particularly in social network analysis, is that of 3-
cliques (i.e., triangles).

- In practice, large cliques are relatively rare, as they necessarily require that G itself be 
fairly dense.

• cliques tend to be an overly restrictive definition of network cohesion

• weakened versions of this idea tend to be more practical



Node centric



Node centric

• An ideal cohesive subgroup is a clique. It is a maximum complete 
subgraph in which all nodes are adjacent to each other. 

• Typically, cliques of larger sizes are of much more interest. However, the 
search for the maximum cliques in a graph is an NP-hard problem.

• One brute-force approach is to traverse all nodes in a network. For each 
node, check whether there is any clique of a specified size that contains 
the node. 



Node centric: brute force

Suppose we now look at node vC. We can maintain a queue of cliques. It is 
initialized with a clique of one single node {vC}. 

Then we perform the following:



Node centric: brute force



Node centric: Pruning

• The exhaustive search above works for small-scale networks

• impractical for large-scale networks

• If the goal is to find out a maximum clique, then a strategy is to 
effectively prune those nodes and edges that are unlikely to be contained 
in the maximum clique. 

• For a clique of size k, each node in the clique should maintain at least 
degree k − 1. 

• Hence, those nodes with degree less than k − 1 cannot be included in the 
maximum clique, thus can be pruned



Node centric: Pruning
We can recursively apply the pruning procedure below to a given network:

• A sub-network is sampled from the given network. A clique in the sub-
network can be found in a greedy manner, e.g., expanding a clique by 
adding an adjacent node with the highest degree.

• The maximum clique found on the sub-network (say, it contains k nodes) 
serves as the lower bound for pruning. That is, the maximum clique in the 
original network should contain at least k members. 

Hence, in order to find a clique of size larger than k, subgraph composed of the nodes with degree less 
than or equal to k − 1 and their connections can be removed from future consideration. 

As real social networks follow a power law distribution for node degrees, i.e., the majority of nodes 
have a low degree, this pruning strategy can reduce the network size significantly.



Node centric: Pruning



Node centric: Rechability

• This type of community considers the reachability among actors. In the 
extreme case, two nodes can be considered as belonging to one 
community if there exists a path between the two nodes.

Thus in principle each connected component is a community if we follow 
the reachability approach

• In real-world networks, a giant component tends to form while many 
others are singletons and minor communities. 

• Conceptually, there should be a short path between any two nodes in a 
group. 



Node centric: Rechability
• Some structures based on rechability approach are the following:

1. k-clique is a maximal subgraph in which the largest geodesic distance 
between any two nodes is no greater than k. The largest geodesic is 
computed on the original network. So that:

where Vs is the set of nodes in the subgraph

2. k-club restricts the geodesic distance within the group to be no 
greater than k. It is a maximal substructure of diameter k. 

The definition of k-club is more strict than that of k-clique. 
A k-club is often a subset of a k-clique. 



Node centric: Rechability

{1, 2, 3, 4, 5} form a 2-clique. But the geodesic distance between 
nodes 4 and 5 within the group is 3.

The 2-clique structure {1, 2, 3, 4, 5} contains two 2-clubs, {1, 2, 3, 4} 
and {1, 2, 3, 5}.



k-core decomposition has been at the heart of a number of 
proposals for the representation of large
Networks (see section 3.5.2.3 of the textbook)

• Maximal subgraph C such that each vertex is adjacent to at least
k other vertices in the subgraph (k integer greater or equal to 0)

• In C all vertex degrees are at least k, and no other subgraph 
obeying the same condition contains it (i.e., it is maximal in 
this property)

• k-cores are one natural way to look at group structure across a 
graph G.

Node centric: k-cores



Node centric: k-cores



Nodes are all adjacent to each other or we use a 
relaxation based on geodesic/degree

δint(C) = 1
• Local definition

• Triangles are frequent; larger cliques are rare.

•    Communities do not necessarily correspond to complete 

subgraphs, as many of their nodes do not link directly to each 

other.

• Among the others the notion of k-clubs and k-core is rather 

important

Brief summary



What about communities in 

social networks for example?

Disjoint communities (i.e., groups of friends who

don't know each other) e.g. my American friends

and my Australian friends

Overlapping communities (i.e., groups with some 

intersection) e.g. my friends and my girlfriend's 

friends

Intuition:

There are more edges inside a community than edges 
connected with the rest of the network



Two types of communities:

-Explicit Groups: formed by user

subscriptions

- Implicit Groups: implicitly formed by social

interactions

generally the concept of community in 

community detection  is a relaxation of the 

communities found in the nodal-based approach  

Types of communities



COMMUNITY DETECTION

Basic definition: 

DISCOVERING IMPLICIT COMMUNITIES

COMPUTE SETS OF NODES BASED ON 

THEIR CONNECTIVITY



Real networks are 

not random. Weak 

ties seem to bridge 

groups of tightly 

coupled nodes 

(communities)

A simple graph with three communities, 

enclosed by the dashed circles
Source: S. Fortunato / Physics Reports 486 (2010) 75-174

Examples of communities



• Edges are placed between 

scientists that have published at 

least one paper together.

• The colors indicate high level 

communities and correspond to 

research divisions of the institute

Agent-based

Models

Structure of RNA

• Collaboration network between 

scientists working at the Santa Fe 

Institute. 

Collaboration networks



Political networks

Separating networks into disjoint subsets seems to make sense when communities

are somehow “adversarial”



Zachary observed 34 

members of a karate club 

over two years. Edges 

connect individuals who 

were observed to interact 

outside the activities of the 

club.

Zachary karate club example

During the course of the observation, the club members split into 2 groups because

of the disagreement between the administrator of the club and the club's instructor

(nodes 1 and 34), and the members of one group left to start their own club



Network scientists with Karate 
Trophies



Hypotheses



Connectedness

In contrast to a local perspective, and the search for small-scale 
subsets of cohesive vertices, we may also find it useful in some 
contexts to take a larger, global perspective.

A basic question of interest is whether a given graph separates 
into distinct subgraphs. If it does not, we might seek to quantify 
how close to being able to do so it is. Intimately related to such 
issues are questions associated with the flow of ‘information’ in 
the network.



Vertex/Edge-Connectivity

Somewhat more refined notion of connectivity derives from asking 

questions like, “If an arbitrary subset of k vertices (edges) is removed 

from a graph, is the remaining subgraph connected?” 

Extreme case where G consists of two cliques joined by a single edge 

between a vertex in each. 

We would be inclined to think of G as consisting of ‘nearly two 

components.’ 

The concepts of vertex- and edge-connectivity, and the related concepts 
of vertex- and edge-cuts, help to make these notions precise.



Vertex/Edge-Connectivity

If the removal of a particular set of vertices (edges) in G actually 

disconnects the graph, that set is called a vertex-cut (edge-cut). 

Cut Edge (Bridge) A bridge 
is a single edge whose removal 
disconnects a graph. Therefore, 
edge bc or bd is a bridge.

The graph can be disconnected 
by removing a single edge, cd. 
Therefore, edge cd is a bridge



Vertex/Edge-Connectivity

Cut Set: A cut set of a connected 
graph G is a set S of edges with 
the following properties

- The removal of all edges in S 
disconnects G.
- The removal of some (but not 
all) of edges in S does not 
disconnects G.

We can disconnect G by removing the three edges bd, be, and ce, but 

we cannot disconnect it by removing just two of these edges. Note that 

a cut set is a set of edges in which no edge is redundant.



Vertex/Edge-Connectivity
Cut Vertex: A cut-vertex is a single vertex whose removal disconnects a graph.

This definition breaks down if G is a complete graph, since we cannot then disconnects G 
by removing vertices.

Vertex-Cut set
A vertex-cut set of a
connected graph G is a set S
of vertices with the
following properties.
- the removal of all the
vertices in S disconnects G.
- the removal of some (but
not all) of vertices in S does
not disconnects G

We can disconnects the graph by removing the two 

vertices b and e, but we cannot disconnect it by 

removing just one of these vertices. the vertex-

cutset of G is {b, e}.



Density based

we can define a measure of local density and then characterize 
the extent to which subsets of vertices are dense, according to 
this measure. 

Such measures are commonly based on ratios of the number of 
edges among a subset of vertices to the total number of possible
edges.

Similarly it is possible to use the notion of internal and external
node or overall degrees



Density-based


