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Abstract Persistent Scatterers Interferometry (PSI) techniques are widely employed in

geosciences to detect and monitor landslides with high accuracy over large areas, but they

also suffer from physical and technological constraints that restrict their field of applica-

tion. These limitations prevent us from collecting information from several critical areas

within the investigated region. In this paper, we present a novel approach that exploits the

results of PSI analysis for the implementation of a statistical model for landslide suscep-

tibility. The attempt is to identify active mass movements by means of PSI and to avoid, as

input data, time-/cost-consuming and seldom updated landslide inventories. The study has

been performed along the northwestern coast of Malta (central Mediterranean Sea), where

the peculiar geological and geomorphological settings favor the occurrence of a series of

extensive slow-moving landslides. Most of these consist in rock spreads, evolving into

block slides, with large limestone blocks characterized by scarce vegetation and proper

inclination, which represent suitable natural radar reflectors for applying PSI. Based on

geomorphometric analyses and geomorphological investigations, a series of landslide

predisposing factors were selected and a susceptibility map created. The result was

validated by means of cross-validation technique, field surveys and global navigation

satellite system in situ monitoring activities. The final outcome shows a good reliability

and could represent an adequate response to the increasing demand for effective and low-

cost tools for landslide susceptibility assessment.

& Matteo Mantovani
matteo.mantovani@irpi.cnr.it

1 Department of Earth, Life and Environment Sciences, University of Urbino, Campus ‘‘E. Mattei’’,
61029 Urbino, Italy

2 Department of Mathematics and Geosciences, University of Trieste, Via Weiss 2, 34127 Trieste,
Italy

3 National Research Council of Italy, Research Institute for Geo-Hydrological Protection (CNR-
IRPI), Padua, Corso Stati Uniti 4, 35127 Padua, Italy

4 Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Largo
S. Eufemia 19, 41121 Modena, Italy

123

Nat Hazards (2015) 78:681–697
DOI 10.1007/s11069-015-1740-8

http://orcid.org/0000-0002-9042-8785
http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-015-1740-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-015-1740-8&amp;domain=pdf


Keywords Landslides � PSI � WoE � Susceptibility � Malta � Mediterranean Sea

1 Introduction

In the last years, the demand for new reliable and cost-effective methods to face natural

events, such as landslides, to improve land-use planning and to reduce risks for the

population has considerably increased. This is especially true for coastal areas affected by

rapid and heavy urbanization and significant growth in population (Soldati et al. 2011;

Martino and Mazzanti 2014). In both land surveillance and emergency management,

monitoring activities are essential, since they contribute to decrease the vulnerability of the

elements at risk. The major role recently played by monitoring systems is strictly con-

nected to the development of innovative and reliable technologies. Among these, the

Persistent Scatterers Interferometry (PSI) technique certainly represents one of the most

recognized methods to measure, with unprecedented accuracy, landslide displacements at a

regional scale (Ferretti et al. 2001; Werner et al. 2003; Costantini et al. 2008). Never-

theless, just like any remotely sensed technique, even PSI analysis cannot cope with some

technical limitations that prevent from collecting measurements in several areas within the

image frame (Raucoules et al. 2007). In these cases, in situ traditional monitoring methods

can be applied. Clearly, it is not possible to monitor all the landslides within a region, yet

we can assess where landslides are likely to occur implementing susceptibility models.

As reported by Cascini (2008), the lack of standard procedures is one of the reasons that

lead to the use of different methods for the production of landslide susceptibility maps: (1)

landslide inventories, (2) heuristic methods, (3) statistical analysis and (4) deterministic

approaches (Guzzetti et al. 1999; Castellanos Abella and van Westen 2008; van Westen

et al. 2008; Piacentini et al. 2012).

Statistical analysis methods allow defining the spatial probabilities of occurrences of a

‘‘supporting evidence,’’ considering the distribution of causal factors. They are funded on

the assumption that future landslides will occur under similar conditions to those con-

tributing to previously occurred landslides and that predisposing factors remain constant

over time (Guzzetti et al. 1999; Cardinali et al. 2002; Lan et al. 2004; Regmi et al. 2010;

Piacentini et al. 2012; Galve et al. 2015).

Generally, the ‘‘supporting evidence’’ is the landslides themselves, mapped in ad hoc

inventories. Unfortunately, detailed landslide inventories are time- and cost-consuming;

hence, they are seldom complete and up-to-date. Consequently, it is quite rare to find

available and reliable data to perform this type of analysis. In the attempt to overcome

this limitation, we have tested the possibility to exploit PSI technique results, accessible

and accurate at a regional scale, as ‘‘supporting evidence’’ to train and validate a

landslide susceptibility model. The use of PSI data for this scope is yet constrained

(Oliveira et al. 2014) being the direct use of PSI generally limited to update landslide

inventories and assess the related hazard (Cigna et al. 2013; Lu et al. 2014; Righini

et al. 2012).

We applied this novel approach to the northwestern coast of Malta (central Mediter-

ranean Sea) that is affected by tens of extensive slow-moving landslides.

The predisposing factors for the statistical analysis were chosen based on geomor-

phological observations reported on published articles (Magri et al. 2008; Devoto et al.

2012) and on a LiDAR-derived DTM. The reliability of the model results was verified

through a cross-validation approach, field surveys and global navigation satellite system

(GNSS) measurement campaigns.
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2 Study area

Malta is the main island of the Maltese archipelago placed in the central Mediterranean Sea

(Fig. 1). The study area comprises the NW coast of Malta and is limited northerly by

Paradise Bay and southerly by an E–W-oriented tectonic discontinuity, named Great Fault,

Fig. 1 Location and simplified geological–geomorphological sketch of the study area (modified from
Devoto et al. 2012)
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which crosses the island and structurally divides it into two sectors (Jongsma et al. 1985;

Dart et al. 1993; Civile et al. 2010). The study area is characterized by a horst and graben

system that generates an alternation of lowlands and plateaus (Illies 1981): the graben

corresponding to valleys and the horst to wide karst plateaus. The latter are made up of

Upper Coralline Limestone Formation (Pedley and Clarke 2002) and limited by cliffs,

which overlie Blue Clay gentle slopes (Alexander 1988; Devoto et al. 2012). Clayey

terrains, partially used for agricultural activities (Cyffka and Bock 2008), are abundant

along the coastline and make up wide portions of Ras Il-Pelegrin promontory, Il-Qarraba

peninsula, Bajda Ridge, Il-Prajjet and western side of Marfa Ridge.

The alternation of resistant limestone over ‘‘plastic’’ clays (Dykes 2002; Pasuto and

Soldati 2013) in addition to the combination of structural and karst processes causes the

occurrence of slow-moving landslides (Fig. 2). Most of these gravitational processes

consist in rock spreads, which often evolve into block slides (Devoto et al. 2013).

The numerous fractures, fissures and joints favored by the different mechanical prop-

erties of limestone and clays enable rainfall infiltration and rock spreading. The presence of

discontinuities favors the detachment of limestone pillars and large blocks, which, once

isolated, slowly lower or topple from the cliff edges, forming wide debris accumulations

(so-called rdum by locals). Rdum is the surface finger prints of extensive deep-seated

landslides, which dislocate limestone blocks toward the sea.

3 Materials and methods

The landslide susceptibility model was implemented by using the statistical method of the

weight of evidence (WoE), which is extensively adopted in geosciences and in landslide

susceptibility mapping (Bonham-Carter et al. 1989; Bonham-Carter 1994; Regmi et al.

Fig. 2 Examples of slow-moving landslides (rock spreads and block slides) occurring in the study area
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2010 and references therein; Piacentini et al. 2012). This method takes into account the

existing relationship between the occurrence of a supporting evidence and the distribution

of causal factors that are believed playing an important role in slope instability processes.

The weight of the relationship between the presence of deformation and the chosen factor

is used to determine the importance of the factor itself. The weighted factors are then

combined to create the final susceptibility map.

The implementation of the landslide susceptibility model, through the use of the GIS

extension ArcSDM (Sawatzky et al. 2009), needed of the following introductory stages:

1. identification of active mass movements within the area of interest;

2. definition of factors contributing to slope instability and creation of related dataset

(including division to appropriate classes).

We used the PSI analysis for the identification of active mass movements (i.e., the

supporting evidence) under the assumptions that: (1) The persistent targets on the coast are

limestone blocks and (2) the state of activity of the blocks is exclusively attributed to mass

movement and no other types of natural or anthropogenic processes.

The objectives of the PSI are as follows: the identification of active block slides, the

training of the model and its final validation.

The identification of both structural discontinuities and main coastal landforms that

allowed the definition of factors contributing to slope instability (e.g., distance from joints,

distance from faults, distance from scarps and distance from coastline) was performed

through multi-temporal aerial photograph analysis and published research outcomes

(Magri et al. 2008, Devoto et al. 2012). Other complementary morphometric factors (e.g.,

slope, curvature and Topographic Position Index) were derived from a 2-m resolution

DTM of the investigated area.

3.1 Identification of active mass movements by means of PSI analysis

The first step in the implementation of the susceptibility model was the identification of the

active landslides within the area of interest. We processed separately 50 ERS and 33

ENVISAT ASAR images acquired on descending orbits. The period of investigation is

comprised between 1992 and 2009 with few gaps due to dysfunctional operability of the

satellites in 1994, 2001 and 2002. The initial selection of point target candidates was

performed based on the low temporal variability of the backscatter radiation (Werner et al.

2003). Beside the expected existence of radar reflectors in urban areas, a good number of

natural targets were isolated along the coast. The presence of rock blocks on the clayey

slopes and the vertical features of cracks in the Upper Coralline Limestone assisted in the

detection of natural point-like reflectors and helped to achieve the minimum number of

candidates necessary for a reliable estimate of the atmospheric phase screen (Ferretti et al.

2001). In the test area, we isolated 1320 natural targets (ERS and ENVISAT). We con-

sidered as active the PSI with a deformation rate higher than ±1 mm/year and non-active

the rest. This threshold was chosen based on the accuracy achieved from the inter-

ferometric analysis and on the characteristics of the investigated phenomena. The 516

active targets (39 % of the total) were afterward divided into subclasses defined by the

slope aspect, since radar sensitivity to displacements considerably differs in the north, east

and vertical component (Colesanti et al. 2003). That is to say that, assuming that limestone

blocks move along the hillside’s maximum steepness direction, every active point target on

the coast was grouped accordingly. Considering the acquisition geometry of European
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Space Agency (ESA) satellites ERS-1/-2 and ENVISAT and the descending orbit, we

isolated all the active targets located over slopes with aspect ranging between 270� and

315�, as they were likely to move along the line of sight of the sensor (i.e., the direction

along which the radar sensor detects deformations). This procedure led to the selection of

115 persistent scatterers (the 22 % of the active PS inside the aspect range). Based on the

assumptions made and on the persistent scatterers selection criteria, we identified 115

active blocks on the test area that were afterward divided into two sets: a training set (60 %

of the total) for the statistical analysis and a validation set (40 % of the total) to evaluate

the predictive skill of the method.

Figure 3 sums up the results of the PSI analysis in terms of color-coded deformation

rates for each persistent scatterer position. As it can be noted, several stretches of the

northwestern coast of Malta are affected by deformations that reach a rate of up to 7 mm/

year (estimated along the line of sight of the sensor).

3.2 Definitions of factors contributing to slope instability

We identified and tested several factors that could be considered as predisposing to

landsliding. Hence, we considered: slope, curvature, the Topographic Position Index (TPI)

and distance from coastline, scarps, faults and joints (Fig. 4). The lithology data have not

been included in the input spatial dataset since the totality of the 115 persistent scatterers,

selected as supporting evidence, accordingly to the above-mentioned assumptions, are

limestone blocks. The slope aspect was discarded for its statistical dependency given by the

target selection criteria defined above.

Fig. 3 PSI analysis results of ERS (left) and ENVISAT (right) dataset superimposed to a Google EarthTM

image
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The slope is the first derivative of the terrain model and represents the maximum rate of

change in value from a cell to its neighbors detecting the steepest path from the cell. The

slope values were subdivided into seven classes following an equal area criteria plus an

eighth class that includes flat areas.

Fig. 4 Maps of the predisposing factors chosen for the statistical analysis
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The curvature is the second derivative of the terrain model calculated for each cell

position with a computational window of 3 9 3. Using class limits indicated in the lit-

erature (e.g., Pereira et al. 2012; Piacentini et al. 2012), the values were divided into three

classes: straight slopes, convex and concave.

The Topographic Position Index (TPI) is defined as the difference between the elevation

of a cell and the average elevation of its neighborhood and is used to describe the relative

position of the cells of the DTM with respect to the surrounding area (Jenness et al. 2011).

Thus, the TPI is highly scale-dependent (i.e., TPI depends on the radius of the neigh-

borhood considered for its calculation) and enables to quantitatively express the mor-

phology of an area. The TPI is a widely accepted parameter; however, it has begun to be

applied in landslide susceptibility modeling (Costanzo et al. 2012; Neuhäuser et al. 2012;

Xu et al. 2012; Leopold et al. 2013; Xu et al. 2013) and at different scales only recently

(Tagil and Jenness 2008; Vorpahl et al. 2012). In this study, three TPI values taking into

account a surrounding area of 3 (TPI3), 5 (TPI5) and 10 (TPI10) m, respectively, were

calculated. The obtained values were subdivided, considering the natural breaks of each

distribution.

The distances from coastline, scarps, faults and joints were calculated buffering each

lineament over the entire study area with an equidistance of 1 m. Values of these

factors were subdivided into different classes, considering the natural breaks of each

distribution.

4 Results

The predisposing factors were elaborated as single layers in order to calculate their specific

weight and evaluate their different contribution to landslide susceptibility. Figure 5 shows

the positive/negative weights and their difference (contrast), resulting from each class of

the considered predisposing factors. Only classes with positive contrast exert influence on

landslide occurrences.

The validation of every single factor was performed by means of prediction rate curve

analysis, considering the cumulative percentage of susceptible areas (starting from the

highest susceptibility value) plotted on the X-axis and the cumulative percentage of

landslide plotted on the Y-axis (Fig. 6).

The higher the value of the area under curve (AUC), the better will be the capability

of the variable to describe the distribution of landslides. The factors showing the

highest values are distance from coastline, distance from joints and distance from scarps

(Table 1).

Considering the results of Table 1, 14 different combinations between predisposing

factors were calculated and prediction rate curves, built for each combination, compared.

The AUC values of the considered combinations are listed in Table 2.

Considering that the best model must simultaneously have good predictive performance

and use conditionally independent variables (Pereira et al. 2012) for each combination, the

Agterberg and Cheng Conditional Independence test (ACCIT) (Agterberg and Cheng

2002) was also performed. According to this statistic test, models with 1 - (ACCIT/100)

below 0.5 have some conditional dependence and below 0.05 should be rejected. Fol-

lowing Pereira et al. (2012), the limit of acceptable conditional independence has been

fixed at 0.4 (Fig. 7).
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The best statistical performance (red diamond in Fig. 7) was showed by combination

no. 7 that takes into account six predisposing factors (distance from joints, distance from

scarps, distance from coastline, TPI3, TPI5 and TPI10). Consequently, only the results

obtained with this combination are here presented.

Fig. 5 Graphs showing weights and contrast of each class of predisposing factors. The classes showing
positive contrast are highlighted in yellow
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5 Susceptibility model implementation and validation

In order to produce a landslide susceptibility map based on the results obtained through the

statistical computation, the values of post-probability were classified by means of the Jenks

natural breaks classification method (Jenks 1967) and four thresholds were selected. These

defined the five classes of susceptibility in the map as shown in Fig. 8.

The outcomes of the statistical analysis were validated considering:

(1) independent information not included in the used dataset (validation set);

(2) field surveys;

(3) GNSS measurements.

The first approach allows the estimation of the degree of match between the predicted

susceptibility and the independent information not included in the dataset used to construct

the model (validation set) (Chung and Fabbri 2003; Guzzetti et al. 2006). The predictive

skill has been verified calculating the prediction rate curves, built for the selected com-

bination (distance from joint, distance from scarps, distance from coast, TPI3, TPI5 and

TPI10). The analysis reports an AUC value of 0.94.

The reliability of the result achieved was then verified through field surveys, and the

comparison with a geomorphological map produced at 1:7500 scale by Devoto et al.

Fig. 6 Prediction rate curves of the predisposing factors: curvature (CU), distance from faults (F), distance
from joints (J), distance from coastline (CO), distance from scarps (SC), slope (SL), TPI3, TPI5 and TPI10

Table 1 AUC values of the
factors for the validation set

Factor AUC

Distance from coastline 0.88

Distance from joints 0.87

Distance from scarps 0.83

Slope 0.78

TPI10 0.73

Distance from faults 0.69

TPI3 0.65

TPI5 0.64

Curvature 0.63
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(2012). In this map, 86 landslides affecting the coastal areas have been outlined and

classified according to Cruden and Varnes (1996) criteria. The geomorphological obser-

vations were compared with the output of the model, with a satisfying fitting between the

inventoried block slides and the spatial distribution of high or very high susceptibility

class. In particular, the active block slides lying in the northern part of Marfa Ridge, at Il-

Prajjet, in the coastal sector between the southern part of Ghadira Bay and Ras Il-Wahx

Table 2 AUC values of the considered combinations between predisposing factors: slope (slope), curvature
(curv), distance from coastline (coast), distance from scarps (scarp), distance from faults (fault), distance
from joints (joint), TPI3, TPI5 and TPI10

Combination number Predisposing factors AUC

1 Joint, scarp, slope 0.90

2 Joint, scarp, coast 0.93

3 Joint, scarp, coast, slope 0.93

4 Joint, scarp, coast, TPI3 0.94

5 Joint, scarp, coast, TPI5 0.94

6 Joint, scarp, coast, TPI10 0.94

7 Joint, scarp, coast, TPI3, TPI5, TPI10 0.95

8 Joint, scarp, coast, TPI3, TPI10 0.94

9 Joint, scarp, coast, TPI3, slope 0.93

10 Joint, scarp, coast, TPI3, TPI5, TPI10, slope 0.93

11 Joint, scarp, coast, TPI3, TPI5, TPI10, curv 0.94

12 Joint, scarp, coast, TPI3, TPI5, TPI10, fault 0.94

13 Joint, scarp, coast, TPI3, TPI5 0.93

14 Joint, scarp, coast, TPI3, TPI10, curv 0.94

Bold is to highlight the combination with the best statistical performance

Fig. 7 Scatter plot between AUC values and Agterberg and Cheng Conditional Independence test values of
the considered combinations. Red diamond shows the selected model. The red line marks the limit of
acceptable conditional independence
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promontory (Fig. 9) and at Il-Qarraba peninsula have been correctly identified by the

model. The inventoried landslide was also used as validation set and the degree of match

with the model calculated, reporting an AUC value of 0.95.

Finally, the model outputs were quantitatively compared with the surface displacements

derived from GNSS campaigns reported in Mantovani et al. (2013). Figure 10 shows the

Fig. 8 Landslide susceptibility map of the northwestern coast of Malta
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location of the benchmarks over blocks sliding in one of the most active sectors of the

study area (Il-Prajjet).

In the histogram below, the normalized susceptibility at each benchmark location is

displayed together with the normalized measured displacements. It can be noticed that

decreasing deformation values correspond to lower susceptibility values (anyway included

in high and very high classes), proving the reliability of the model. There is a clear

quadratic relationship between the variables, meaning that the model overestimates the

susceptibility and that this error increases as a second-order polynomial as the real de-

formations become smaller. In other words, the model is precautionary and works better

when the deformation rate of the landslides increases.

6 Discussion

The use of PSI for the production and updating of landslides inventories that could be used

as input for susceptibility models has been investigated only recently (see Oliveira et al.

2014), but could represent an effective response to the demand for new cost-effective

methods for landslide susceptibility assessment.

The proposed methodology presents the unquestionable advantage that can produce a

reliable susceptibility map without using updated and detailed inventory maps that were

employed just in the validation step.

The successful results achieved by this approach are strictly correlated with the limited

extension of the test site (around 11 km2), the fairly simple geological and lithological

settings and the assumptions on the nature of the radar point targets and on the kinematics

of the gravitational processes.

Fig. 9 An example of satisfying fitting between geomorphological observations, inventoried landslides and
model results
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The procedure we used to implement, test and validate the susceptibility model can be

subdivided into four main steps: (1) identification of PSI representative of active mass

movements; (2) selection of predisposing factors related to that active mass movements;

(3) elaboration of a satisfactory landslide susceptibility model; and (4) independent

validation of the results.

Counting the number of cases correctly classified by the model, the points included in

the validation set are distributed with respect to the susceptibility classes as follows: 0 %

on the very low class, 18.03 % on the low class, 19.67 % on the medium class, 21.31 % on

the high class and 40.98 % on the very high class. It is worth noting that approximately

Fig. 10 a Location of GNSS benchmarks in one of the most active sectors of the study area monitored by
Mantovani et al. (2013) (Il-Prajjet), b histogram showing the normalized susceptibility at each benchmark
location together with the normalized measured displacement
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41 % of the total moving PSI, used as validation set, falls into the very high class, which

occupies only 2 % of the total area.

In spite of inevitable simplifications and generalizations, the model successfully pre-

dicted the active sectors of the coast (e.g., Marfa Ridge, Il-Prajjet, Bajda Ridge and Il-

Qarraba) allowing a rapid and cost-efficient delimitation of the sites affected by slow-

moving landslides.

7 Conclusions

We implemented a new approach that combines the WoE method and PSI analysis to

produce a landslide susceptibility map at a medium scale. We demonstrated the good

statistical performance of the model and the reliability of the results that were verified by

cross-validation, field surveys and GNSS measurements.

Furthermore, the comparable predictive skills achieved with validation set and inven-

toried landslides allow extending, with a good degree of confidence, the applicability of the

model to areas characterized by similar geological and geomorphological settings even if

lacking in inventory map. The susceptibility map obtained is an easy-to-use tool, which can

be considered as a starting point for future implementation of hazard analyses. Moreover, it

can be applied for land management purposes, assist in hazard mitigation and contribute to

decreasing territorial vulnerability. The advantages of using remotely sensed radar datasets

in combination with the WoE analysis are multiple. PSI represents the only existing

technique that can quantitatively assess the state of activity of landslides at a regional scale

with an acceptable cost/efficiency ratio. Compared to the landslide inventories, usually

employed as input factors in the WoE, remotely sensed datasets are more accessible, up-to-

date and have a unique planetary coverage. Moreover, ESA archives, which were used in

this study, span over more than 20 years enabling to perform retrospective researches. The

latest space-borne interferometric missions (e.g., COSMO-SkyMed, TerraSAR-X and

Sentinel) will increase the spatial and temporal coverage, providing datasets with un-

precedented resolution that will certainly favor the implementation of the proposed

approach.
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