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Group centric
• A group-centric criterion considers connections inside a group as whole. 

It is acceptable to have some nodes in the group to have low 
connectivity as long as the group overall satisfies certain requirements.

• One such example is density-based groups

• a complete subgraph H(VH, EH) of G(V, E) where |VH|=nH and |EH|=mH is 
γ-dense are (also called a quasi-clique) if:

𝑚𝐻

𝑛𝐻(𝑛𝐻 − 1)/2
≥ 𝛾

- Clearly, the quasi-clique becomes a clique when γ=1

• Note that this density-based group-centric criterion does not guarantee 
reachability for each node in the group. It allows the degree of a node to 
vary, thus is more suitable for large-scale networks.



Group centric
• Not a trivial task to search for quasi-cliques. Strategies similar to those of 

finding cliques 
• Abello et al. (2002): iterative procedure consists of two steps

• Local search: Sample a sub-network and search for a maximal quasiclique
in it. A greedy approach is to expand a quasi-clique by encompassing those 
high-degree neighboring nodes until the density drops below γ . 

• Heuristic pruning: If we know a γ -dense quasi-clique of size k, then a 
heuristic is to prune those “peelable” nodes and their incident edges. A 
node v is peelable if v and its neighbors all have degree less than kγ
because it is less likely to contribute to a larger quasi-clique. We can start 
from low-degree nodes and recursively remove peelable nodes in the 
original network.

This process is repeated until the network is reduced to a reasonable size 
so that a maximal quasiclique can be found directly.



Network centric

Network-centric community detection has to consider the global 
topology of a network. 

It aims to partition nodes of a network into a number of disjoint 
sets. 

Typically (but not always), network-centric community detection 
aims to optimize a criterion defined over a network partition 
rather than over one group.

A group in this case is not defined independently.



Toy example



Latent Space models

• A latent space model maps nodes in a network into a low-dimensional 
Euclidean space such that the proximity between nodes based on 
network connectivity are kept in the new space

• then the nodes are clustered in the low-dimensional space using 
methods like k-means

• One representative approach is multi-dimensional scaling (MDS)

• MDS requires the input of a dissimilarity or distance matrix P ∈ Rn×n, with 
each entry Pij denoting the distance between a pair of nodes i and j in 
the network.



Latent Space models

• Let S ∈ Rn×k denote the coordinates of nodes in the k-dimensional space 
such that S is column orthogonal. It can be shown that

• where I is the identity matrix, 1 an n-dimensional column vector with 
each entry being 1, and ◦ the element-wise matrix multiplication. 

• Suppose V contains the top k eigenvectors of ෨𝑃 with largest eigenvalues, 
Λ is a diagonal matrix of top k eigenvalues = diag(λ1, λ2, · · · , λk). The 
optimal S is S = V Λ1/2

• the classical k-means algorithm can be applied to S to find community 
partitions.



Latent Space models
Take the network in the toy example:

Let compute ෨𝑃



Latent Space models

Suppose we want to map the original network into a 2-dimensional space; we obtain 

V , Λ, and S:

The network can be visualized in the 2-dimensional space



Latent Space models

Because nodes 1 and 3 are structurally 

equivalent, they are mapped into the same 

position in the latent space. 

So are nodes 5 and 6. 

k-means can be applied to S in order to 

obtain disjoint partitions of the network. 

At the end, we obtain two clusters {1, 2, 3, 

4}, {5, 6, 7, 8, 9},



Modularity optimization

• Modularity (Newman, 2006) measures the strength of a community 
partition for real-world networks by taking into account the degree 
distribution

• For network of n nodes and m edges, the expected number of edges 
between nodes vi and vj is didj/2m, where di and dj are the degrees of 
node vi and vj , respectively.

Considering one edge from node vi connecting to all nodes in the network randomly, it 
lands at node vj with probability dj/2m.

Since vi has di edges, the expected number of connections between the two are didj /2m

For instance our toy example has 9 nodes and 14 edges. The expected number of edges 
between nodes 1 and 2 is 3 × 2/(2 × 14) = 3/14.



Modularity optimization

• So Aij − didj/2m measures how far the observed network interaction 
between nodes i and j (Aij) deviates from the expected random 
connections. 

• Given a group of nodes C, the strength of community effect is defined as

• If network is partitioned into k groups the overall community effect can be 
summed up as:



Modularity optimization

• Modularity can be defined as:

Where 1/2m is introduced to normalize the values between -1/2 and 1 for unweighted and 
undirected graphs

It is positive if the number of edges within groups exceeds the number 
expected on the basis of chance. For a given division of the network's 
vertices into some modules, modularity reflects the concentration of edges 
within modules compared with random distribution of links between all 
nodes regardless of modules

• Modularity calibrates the quality of community partitions thus can be 
used as an objective measure to maximize.



Louvain Method (fast unfolding)
“The Louvain method” is a Heuristic method for greedy modularity optimization and 
allows to obtain a network community structure with high modularity 

The Louvain algorithm is a hierarchical clustering algorithm, that recursively merges 
communities into a single node and executes the modularity clustering on the condensed 
graphs. [Blondel et al. Fast unfolding of communities in large networks. J. Stat. Mech. P10008 (2008)]

Algorithm

• Assign every node to its own community
• Stage 1: Community Reassignments 

• For every node evaluate modularity gain from removing node from its 
community and placing it in the community of its neighbor

• Place node in the community maximizing modularity gain
• repeat until no more improvement (local max of modularity)

• Stage 2: Coarse Graining
• Nodes from communities merged into "super nodes“
• Weight on the links added up

• Repeat until no more changes (max modularity)

http://arxiv.org/abs/0803.0476


Louvain Method (fast unfolding)
“The Louvain method” is agglomerative

The algorithm is based on two steps that are repeated iteratively. 

First phase:
Find a local maximum
1) Give an order to the nodes (0,1,2,3,...., N-1)
2) Initially, each node belongs to its own community (N nodes and N communities)
3) One looks through all the nodes (from 0 to N-1) in an ordered way. The
selected node looks among its neighbours and adopt the community of the
neighbour for which the increase of modularity is maximum (and positive).
4)This step is performed iteratively until a local maximum of modularity is
reached (each node may be considered several times).



Louvain Method (fast unfolding)
Once a local maximum has been attained, second phase:

We build a new network whose nodes are the communities. The weight of the
links between communities is the total weight of the links between the nodes of
these communities.

In typical realizations, the number of nodes diminishes drastically at this step.



The two steps are repeated iteratively, thereby leading to a hierarchical
decomposition of the network. The phase 1 consists in a local optimization (OL), where 
each vertex can join one of its direct neighbors community. The second phase consists in 
a merging of the vertices (AS) 
Multi-scale optimisation: local search first among neighbours, then among
neighbouring communities, etc.





Louvain Method example

Let apply Louvain Method to a "connected caveman” graph

This is a network where you begin with Ncl

fully-connected cliques of M nodes each. Next, 
you arrange these cliques in a circle. Then, you 
take one random link from each clique and 
rewire it so that the clique is connected to its 
nearest clockwise neighbor. You do this once 
for each clique, and you end up with 
something that looks like this:



Louvain Method example

All links in this initial network have unit weight. This is the test network with which 
we'll explore the Louvain Method below. The "intuitive partition" here consists of 
the six communities of five nodes each that we've put in by hand.

At the beginning of the Louvain Method, we assign each node to its own 
community, so in the connected caveman network, there are 30 initial communities, 
each containing one node.



Louvain Method example
Stage 1: Community Reassignments

In the first stage, we iterate through each of the nodes in the network. 

For each node, we consider the change in modularity if we remove the node from 
its current community and place it in the community of one of its neighbors. 

We compute the modularity change for each of the node's neighbors. 

If none of these modularity changes are positive, we keep the node in its current 
community. 

If some of the modularity changes are positive, we move the node into the 
community for which the modularity change is most positive. 

We repeat this process for each node until one pass through all nodes yields no 
community assignment changes.



Louvain Method
Stage 1: Community Reassignments



Louvain Method
Stage 2: Coarse Graining

The next stage in the Louvain Method is to use the communities that were discovered 
in the community reassignment stage to define a new, coarse-grained network. 

In this network, the newly discovered communities are the nodes. The edge weight 
between the nodes representing two communities is just the sum of the edge weights 
between the constituent, lower-level nodes of each community. 

The links within each community generate self-loops in the new, coarse-grained 
network.



Louvain Method
Stage 2: Coarse Graining

In the simple connected caveman network, there's only one, unit-weight link 
connecting neighboring communities, so the links between the coarse-grained 
communities also have unit weight. 

If there were two or more links between communities, the new coarse-grained link 
would have weight equal to the sum of all the lower-level links

Meanwhile, within each community, 
there are (5×4/2)−1=9 unit-weight 
links, so the self-loops have weight 
9. Here's what the coarse-grained 
network will look like:



Louvain Method
Stage 3: Repeated Iteration of Stages 1 and 2

The rest of the Louvain Method consists of repeated application of stages 1 and 2. By 
applying stage 1 (the community reassignment phase) to the coarse-grained graph find 
a second tier of communities of communities of nodes. 

Then, in the next application of stage 2, it defines a new coarse-grained graph at this 
higher-level of the hierarchy. You keep going like this until an application of stage 1 
yields no reassignments. At that point, repeated application of stages 1 and 2 will never 
yield any more modularity-optimizing changes, so the process is complete.

For the connected caveman graph, the process terminates on
the second community reassignment stage.
if we propose a merger of two communities in the coarse-
grained graph above. This would result in a negative
modularity change.



Louvain Method
Real world application

One of the applications reported in the original Louvain Method paper was a study of a 
large Belgian phone call network in which nodes represented customers and weighted 
links represented the number of phone calls between two customers over a six-month 
period. 

The network had 2.6 million nodes and 6.3 million links. The Louvain Method revealed a 
hierarchy of six levels of communities. At the top level of this hierarchy, the 
communities representing more than 10,000 customers were strongly segregated by 
primary language. 

All except one of these communities had an 85% or greater majority of either French or 
Dutch speakers. The sole community with a more equitable distribution was positioned 
at the interface between French and Dutch clusters in the top-level coarse-grained 
network. Here's what the authors had to say about this community





Issues in modularity maximization
The Louvain Method, and modularity optimization algorithms 
more generally, have found wide application across many 
domains. However, fundamental problems with these algorithms 
have also been identified

1) The "resolution" limit: When pass through the community 
modification and coarse-graining stages several of the 
intuitive communities are merged together. This is a general 
problem with modularity optimization algorithms. They have 
trouble detecting small communities in large networks. 

2) The "degeneracy" problem: There are typically an exponentially 
large (in network size) number of community assignments with 
modularities close to the maximum. This can be a severe problem 
because, in the presence of a large number of high modularity 
solutions, it's (a) hard to find the global maximum and (b) difficult 
to determine if the global maximum is truly more scientifically 
important than local maxima that achieve similar modularity.



Issues in modularity based
community detection

At each trial of the modularity-based community detection, 
we obtain a different set of communities (and corresponding 
modularity)

Distribution of modularity and 
number of communities in the 
labour-market network

Community size over 100 
independent trials 
in a LFR reference network. 



Network centric CD – Modal clustering for networks

Method proposed to detect complex shaped communities (e.g. leadership based 

communities)
[Menardi & De Stefano Density-based clustering of social networks JRSS A (2022)]

Idea: different measures of actor centrality account for different node roles

Specificity of modal clusters for network data, while accounting for:

• different strength of relationships
weighted networks

• different kinds of aggregation mechanisms
different measures of centrality of actors (used as density function)

though any function capturing the connectivity of nodes can be used

https://scholar.google.it/citations?view_op=view_citation&hl=it&user=OnZkRN4AAAAJ&sortby=pubdate&citation_for_view=OnZkRN4AAAAJ:eflP2zaiRacC


Network centric CD – Modal clustering for networks



Hierarchy-centric

• Another line of community detection research is to build a hierarchical 
structure of communities based on network topology. 

• This facilitates the examination of communities at different granularity.

• There are mainly two types of hierarchical clustering: divisive, and 
agglomerative.

• One particular divisive clustering algorithm receiving much attention is to 
recursively remove the “weakest” tie in a network until the network is 
separated into two or more components.



Hierarchy-centric

• Newman and Girvan (2004) proposes to find the weak ties based on 
edge betweenness. 

• Edge betweenness is highly related to the betweenness centrality 

• It is defined to be the number of shortest paths that pass along one edge

If two communities are joined by only a few cross-group edges, then all paths through the 

network from nodes in one community to the other community have to pass along one of 
these edges. 

• The number of shortest paths is expected to be large for between-group 
edges.



Girvan-Newman algorithm

• The Girvan–Newman algorithm detects communities by progressively 
removing edges from the original network. The connected components of 
the remaining network are the communities (Newman and Girvan: Finding and evaluating 

community structure in networks, Physical Review E 69, 026113, 2004) 

• the Girvan–Newman algorithm focuses on edges that are most likely 
"between" communities.

• The idea was to find which edges in a network occur most frequently 
between other pairs of nodes by finding edge betweenness. 

• it is likely that edges connecting separate communities have high edge 
betweenness as all the geodesic from one group to another must pass 
through them. 

• So if we gradually remove the edge with the highest edge betweenness
score we will get a hierarchical map (dendrogram) of the graph. The leafs of 
the tree are the individual vertices and the root of the tree represents the 
whole graph.



Girvan-Newman algorithm

We can express Girvan-Newman algorithm in the following 
procedure:

1) Calculate edge betweenness for every edge in the graph.

2) Remove the edge with highest edge betweenness.

3) Calculate edge betweenness for remaining edges.

4) Repeat steps 2–4 until all edges are removed (or we obtain 
connected components at certain level)



Girvan-Newman algorithm

• In order to calculate edge betweenness it is necessary to find all shortest 
paths (geodesic) in the graph. The algorithm starts with one vertex, 
calculates edge weights for paths going through that vertex

• then repeats it for every vertex in the graph and sums the weights for 
every edge.

• The edge betweenness centrality (EBC) can be defined as the number of 
shortest paths that pass through an edge in a network. Each and every 
edge is given an EBC score based on the shortest paths among all the 
nodes in the graph.

• We can compute a score for each edge based on this concept by 
traversing the network from each of the ego perspective and traversing 
back the graph



Girvan-Newman example

• Let’s take an example to find how EBC scores are calculated. 
Consider this graph below with 6 vertices and 7 edges



Girvan-Newman example

First step: Calculate the edge betweenness

find the EBC scores for all the edges is an iterative process and it works taking one 
node at a time and plot the shortest paths to the other nodes from the selected node

Based on the shortest paths, then compute the EBC scores for all the edges

repeat this process for every node in the graph.

Therefore, there will be 6 iterations of this process

This means every edge will get 6 scores. These scores will be added edge-wise

Finally, the total score of each edge will be divided by 2 to get the EBC score



Girvan-Newman example
Iteration 1 (starting from node A)

A is directly connected nodes to node A are nodes 
B and D. So, the shortest paths to B and D from A 
are AB and AD respectively

The shortest paths to nodes C and E from A go 
through B and D

The shortest paths to the last node F from node A, 
pass through nodes B, D, C, and E

The graph above depicts only the shortest paths from node A to all the other nodes.



Girvan-Newman example

Before giving scores to the 
edges, we will assign a score 
to the nodes in the shortest-
path-graph. To assign these 
scores, we will have to 
traverse the graph from the 
root node, i.e., node A to the 
last node (node F)



Girvan-Newman example
Computing Scores for Edges moving in the backward direction, from node F to 
node A

1) We first compute the score for the 
edges FC and FE. 

The edge score for edge FC is the ratio of 
the node scores of C and F, i.e. 1/3 or 0.33. 
Similarly, for FE the edge score is 2/3.

2) calculate the edge score for the edges 
CB, EB, and ED. 
from this level onwards, every node will 
have a default value of 1 and the edge 
scores computed in the previous step will 
be added to this value.
So, the edge score of CB is (1 + 0.33)/1. 
Similarly, edge score EB or ED is (1 + 
0.667)/2. Then we move to the next level 
to calculate the edge scores for BA and 
DA.



Girvan-Newman example

We will have to repeat the same 
steps again from the other 
remaining five nodes. In the end, 
we will get a set of six scores for all 
the edges in the network. 

Since it is an 
undirected graph, we 
will divide these 
scores by two and 
finally, we will get the 
EBC scores:



Girvan-Newman example

According to the Girvan-Newman algorithm, after computing the EBC scores, the edges 
with the highest scores will be taken off till the point the graph ideally splits into different 
components

we can see that the edges AB, BC, DE, and EF have the highest score, i.e., 4. We will strike 

off these edges and it gives us 3 subgraphs that we can call communities



Girvan-Newman (toy example)
You can see GN algorithm as a hierarchical clustering algorithm. 

You compute the EBC after each disaggregation



Overlapping communities

• There are several C.D. methods for the identification of overlapping 
communities

• The motivaton is that in social networks individual actors may participate 
to diverse closed and dense groups

• One community detection algorithm that is aimed at identifying 
overlapping communities is the clique percolation algorithm, which has 

been developed for unweighted undirected networks by Palla, Derényi, 
Farkas, & Vicsek, 2005



Clique percolation

The clique percolation algorithm for unweighted networks proceeds as 
follows:

1) Find out all cliques of size k in the given network;

2) Construct a clique graph. Two cliques are adjacent if they share k − 1 
nodes;

3) Each connected component in the clique graph is a community.



Clique percolation

Take the network in the toy example. 

For k = 3, we can identify all the cliques of size 3 as follows.

Then we have the clique graph where 2 cliques are connected if they 
share k − 1 (2 in our case) nodes.



Clique percolation

In the clique graph, there are two connected components. 

The nodes in each component fall into one community. 

Consequently, we obtain two communities: {1, 2, 3, 4} and {4, 5, 6, 7, 8}. 

Note that node 4 belongs to both communities. In other words, we obtain 
two overlapping communities.

Note that the clique percolation method requires the enumeration of all 
the possible cliques of a fixed size k. 

This can be computational costly for large-scale networks.



Community evaluation
The reason for so many assorted definitions and methods, is that there is 
no clear ground truth information about a community structure in a real 
world network. 

Therefore, different community detection methods are developed from 
various applications of specific needs.

Strategies commonly adopted to evaluate identified communities in order 
to facilitate the comparison of different community detection methods are:

1) Groups with self-consistent structural definitions. 
Some groups like cliques, k-cliques, k-clubs, and k-cores can be examined 
immediately once a community is identified. We can simply check whether 
the extracted communities satisfy the definition.



Community evaluation

2) Networks with ground truth. That is, the community membership for 
each actor is known. Ideal scenario (ex: Karate club network).

In presence of ground truth a way to evaluate community detection results 
is to consider all the possible pairs of nodes and check if they belong to the 
same community. 

It is considered an error if two nodes of the same community are assigned
to different communities, or two nodes of different communities are 
assigned to the same community. 

Let C(vi) denote the community of node vi. We can construct a contingency
table: a, b, c and d are frequencies of each case. 



Community evaluation

For ex.: a is the frequency that two nodes are assigned into the same 
community in the ground truth as well in the CD result. 

Note that the total sum of frequencies is the number of all possible pairs of 
nodes in the network: a + b + c + d = n(n − 1)/2.

Based on the frequencies, the accuracy of CD algorithm can be computed as



Community evaluation
Example result

We have a = 4. Specifically, {1, 3},{4, 5}, {4, 6}, {5, 6} are assigned into the 
same community in the ground truth and CD result. 

Any pair between {1, 2, 3} and {4, 5, 6} are being assigned to different 
communities, thus d = 9.

Consequently, the accuracy of the clustering result is 

(4 + 9)/(6 × 5/2) = 13/15



Community evaluation

3) Networks without ground truth or other information. 

This is the most common situation, yet it requires objective evaluation 
most. Normally, one resorts to some quantitative measure
for network validation. For instance modularity

It can be use a similar procedure as cross validation in classification for 
validation.
It extracts communities from a (training) network and then compares them 
with those of the same network (e.g., constructed from a different date) or 
another related network based on a different type of interaction.

In order to quantify the quality of extracted community structure, a 
common measure being used is modularity.
The method with higher modularity is selected.



Community evaluation

4) Artificial networks benchmark

Existing evaluation tests and benchmarks involves as said Small networks 
with known community structure.

But we can also simulate Artificial graphs with simplified structure.

Planted l-partition model

- Partition the graph with N nodes into N/l Partitions.
- Each node has a probability pin of being

connected to nodes of its group
- and a probability pout of being connected to nodes

of different groups.
- As long as pin≥pout the graph has a community

structure else it’s a Random Graph.



Community evaluation

LFR Benchmark

• A special case of Planted l-partition model, in which groups have different size and 
nodes have different degrees.

• Node degree distribution based on power law with exponent τ1

• Community size also obeys power law distribution with exponent τ2

• Each node receives its degree which remains the same throughout.

• Mixing parameter μ, is the ratio of external degree of a node with respect to  its 
community and the total degree of the node. 

• For simplicity all nodes have the same μ.



Community evaluation

LFR Benchmark

Based on power law distribution with exponent τ2 the sizes of the communities are 
assigned (Sum matches the size N of the network).

Each community is treated as an isolated graph.
Assign degree ki to a node i based on power law distribution with exponent τ1.

Assign internal degree (1- μ) ki to node i.


