
GRAPH PARTITIONING AND

COMMUNITY DETECTION

Slides based on chapter 3 of the Tang and Liu
book

Group centric
• A group-centric criterion considers connections inside a group as whole.

It is acceptable to have some nodes in the group to have low
connectivity as long as the group overall satisfies certain requirements.

• One such example is density-based groups

• a complete subgraph H(VH, EH) of G(V, E) where |VH|=nH and |EH|=mH is
γ-dense are (also called a quasi-clique) if:

𝑚𝐻

𝑛𝐻(𝑛𝐻 − 1)/2
≥ 𝛾

- Clearly, the quasi-clique becomes a clique when γ=1

• Note that this density-based group-centric criterion does not guarantee
reachability for each node in the group. It allows the degree of a node to
vary, thus is more suitable for large-scale networks.

Group centric
• Not a trivial task to search for quasi-cliques. Strategies similar to those of

finding cliques
• Abello et al. (2002): iterative procedure consists of two steps

• Local search: Sample a sub-network and search for a maximal quasiclique
in it. A greedy approach is to expand a quasi-clique by encompassing those
high-degree neighboring nodes until the density drops below γ .

• Heuristic pruning: If we know a γ -dense quasi-clique of size k, then a
heuristic is to prune those “peelable” nodes and their incident edges. A
node v is peelable if v and its neighbors all have degree less than kγ
because it is less likely to contribute to a larger quasi-clique. We can start
from low-degree nodes and recursively remove peelable nodes in the
original network.

This process is repeated until the network is reduced to a reasonable size
so that a maximal quasiclique can be found directly.

Network centric

Network-centric community detection has to consider the global
topology of a network.

It aims to partition nodes of a network into a number of disjoint
sets.

Typically (but not always), network-centric community detection
aims to optimize a criterion defined over a network partition
rather than over one group.

A group in this case is not defined independently.

Toy example

Latent Space models

• A latent space model maps nodes in a network into a low-dimensional
Euclidean space such that the proximity between nodes based on
network connectivity are kept in the new space

• then the nodes are clustered in the low-dimensional space using
methods like k-means

• One representative approach is multi-dimensional scaling (MDS)

• MDS requires the input of a dissimilarity or distance matrix P ∈ Rn×n, with
each entry Pij denoting the distance between a pair of nodes i and j in
the network.

Latent Space models

• Let S ∈ Rn×k denote the coordinates of nodes in the k-dimensional space
such that S is column orthogonal. It can be shown that

• where I is the identity matrix, 1 an n-dimensional column vector with
each entry being 1, and ◦ the element-wise matrix multiplication.

• Suppose V contains the top k eigenvectors of ෨𝑃 with largest eigenvalues,
Λ is a diagonal matrix of top k eigenvalues = diag(λ1, λ2, · · · , λk). The
optimal S is S = V Λ1/2

• the classical k-means algorithm can be applied to S to find community
partitions.

Latent Space models
Take the network in the toy example:

Let compute ෨𝑃

Latent Space models

Suppose we want to map the original network into a 2-dimensional space; we obtain

V , Λ, and S:

The network can be visualized in the 2-dimensional space

Latent Space models

Because nodes 1 and 3 are structurally

equivalent, they are mapped into the same

position in the latent space.

So are nodes 5 and 6.

k-means can be applied to S in order to

obtain disjoint partitions of the network.

At the end, we obtain two clusters {1, 2, 3,

4}, {5, 6, 7, 8, 9},

Modularity optimization

• Modularity (Newman, 2006) measures the strength of a community
partition for real-world networks by taking into account the degree
distribution

• For network of n nodes and m edges, the expected number of edges
between nodes vi and vj is didj/2m, where di and dj are the degrees of
node vi and vj , respectively.

Considering one edge from node vi connecting to all nodes in the network randomly, it
lands at node vj with probability dj/2m.

Since vi has di edges, the expected number of connections between the two are didj /2m

For instance our toy example has 9 nodes and 14 edges. The expected number of edges
between nodes 1 and 2 is 3 × 2/(2 × 14) = 3/14.

Modularity optimization

• So Aij − didj/2m measures how far the observed network interaction
between nodes i and j (Aij) deviates from the expected random
connections.

• Given a group of nodes C, the strength of community effect is defined as

• If network is partitioned into k groups the overall community effect can be
summed up as:

Modularity optimization

• Modularity can be defined as:

Where 1/2m is introduced to normalize the values between -1/2 and 1 for unweighted and
undirected graphs

It is positive if the number of edges within groups exceeds the number
expected on the basis of chance. For a given division of the network's
vertices into some modules, modularity reflects the concentration of edges
within modules compared with random distribution of links between all
nodes regardless of modules

• Modularity calibrates the quality of community partitions thus can be
used as an objective measure to maximize.

Louvain Method (fast unfolding)
“The Louvain method” is a Heuristic method for greedy modularity optimization and
allows to obtain a network community structure with high modularity

The Louvain algorithm is a hierarchical clustering algorithm, that recursively merges
communities into a single node and executes the modularity clustering on the condensed
graphs. [Blondel et al. Fast unfolding of communities in large networks. J. Stat. Mech. P10008 (2008)]

Algorithm

• Assign every node to its own community
• Stage 1: Community Reassignments

• For every node evaluate modularity gain from removing node from its
community and placing it in the community of its neighbor

• Place node in the community maximizing modularity gain
• repeat until no more improvement (local max of modularity)

• Stage 2: Coarse Graining
• Nodes from communities merged into "super nodes“
• Weight on the links added up

• Repeat until no more changes (max modularity)

http://arxiv.org/abs/0803.0476

Louvain Method (fast unfolding)
“The Louvain method” is agglomerative

The algorithm is based on two steps that are repeated iteratively.

First phase:
Find a local maximum
1) Give an order to the nodes (0,1,2,3,...., N-1)
2) Initially, each node belongs to its own community (N nodes and N communities)
3) One looks through all the nodes (from 0 to N-1) in an ordered way. The
selected node looks among its neighbours and adopt the community of the
neighbour for which the increase of modularity is maximum (and positive).
4)This step is performed iteratively until a local maximum of modularity is
reached (each node may be considered several times).

Louvain Method (fast unfolding)
Once a local maximum has been attained, second phase:

We build a new network whose nodes are the communities. The weight of the
links between communities is the total weight of the links between the nodes of
these communities.

In typical realizations, the number of nodes diminishes drastically at this step.

The two steps are repeated iteratively, thereby leading to a hierarchical
decomposition of the network. The phase 1 consists in a local optimization (OL), where
each vertex can join one of its direct neighbors community. The second phase consists in
a merging of the vertices (AS)
Multi-scale optimisation: local search first among neighbours, then among
neighbouring communities, etc.

Louvain Method example

Let apply Louvain Method to a "connected caveman” graph

This is a network where you begin with Ncl

fully-connected cliques of M nodes each. Next,
you arrange these cliques in a circle. Then, you
take one random link from each clique and
rewire it so that the clique is connected to its
nearest clockwise neighbor. You do this once
for each clique, and you end up with
something that looks like this:

Louvain Method example

All links in this initial network have unit weight. This is the test network with which
we'll explore the Louvain Method below. The "intuitive partition" here consists of
the six communities of five nodes each that we've put in by hand.

At the beginning of the Louvain Method, we assign each node to its own
community, so in the connected caveman network, there are 30 initial communities,
each containing one node.

Louvain Method example
Stage 1: Community Reassignments

In the first stage, we iterate through each of the nodes in the network.

For each node, we consider the change in modularity if we remove the node from
its current community and place it in the community of one of its neighbors.

We compute the modularity change for each of the node's neighbors.

If none of these modularity changes are positive, we keep the node in its current
community.

If some of the modularity changes are positive, we move the node into the
community for which the modularity change is most positive.

We repeat this process for each node until one pass through all nodes yields no
community assignment changes.

Louvain Method
Stage 1: Community Reassignments

Louvain Method
Stage 2: Coarse Graining

The next stage in the Louvain Method is to use the communities that were discovered
in the community reassignment stage to define a new, coarse-grained network.

In this network, the newly discovered communities are the nodes. The edge weight
between the nodes representing two communities is just the sum of the edge weights
between the constituent, lower-level nodes of each community.

The links within each community generate self-loops in the new, coarse-grained
network.

Louvain Method
Stage 2: Coarse Graining

In the simple connected caveman network, there's only one, unit-weight link
connecting neighboring communities, so the links between the coarse-grained
communities also have unit weight.

If there were two or more links between communities, the new coarse-grained link
would have weight equal to the sum of all the lower-level links

Meanwhile, within each community,
there are (5×4/2)−1=9 unit-weight
links, so the self-loops have weight
9. Here's what the coarse-grained
network will look like:

Louvain Method
Stage 3: Repeated Iteration of Stages 1 and 2

The rest of the Louvain Method consists of repeated application of stages 1 and 2. By
applying stage 1 (the community reassignment phase) to the coarse-grained graph find
a second tier of communities of communities of nodes.

Then, in the next application of stage 2, it defines a new coarse-grained graph at this
higher-level of the hierarchy. You keep going like this until an application of stage 1
yields no reassignments. At that point, repeated application of stages 1 and 2 will never
yield any more modularity-optimizing changes, so the process is complete.

For the connected caveman graph, the process terminates on
the second community reassignment stage.
if we propose a merger of two communities in the coarse-
grained graph above. This would result in a negative
modularity change.

Louvain Method
Real world application

One of the applications reported in the original Louvain Method paper was a study of a
large Belgian phone call network in which nodes represented customers and weighted
links represented the number of phone calls between two customers over a six-month
period.

The network had 2.6 million nodes and 6.3 million links. The Louvain Method revealed a
hierarchy of six levels of communities. At the top level of this hierarchy, the
communities representing more than 10,000 customers were strongly segregated by
primary language.

All except one of these communities had an 85% or greater majority of either French or
Dutch speakers. The sole community with a more equitable distribution was positioned
at the interface between French and Dutch clusters in the top-level coarse-grained
network. Here's what the authors had to say about this community

Issues in modularity maximization
The Louvain Method, and modularity optimization algorithms
more generally, have found wide application across many
domains. However, fundamental problems with these algorithms
have also been identified

1) The "resolution" limit: When pass through the community
modification and coarse-graining stages several of the
intuitive communities are merged together. This is a general
problem with modularity optimization algorithms. They have
trouble detecting small communities in large networks.

2) The "degeneracy" problem: There are typically an exponentially
large (in network size) number of community assignments with
modularities close to the maximum. This can be a severe problem
because, in the presence of a large number of high modularity
solutions, it's (a) hard to find the global maximum and (b) difficult
to determine if the global maximum is truly more scientifically
important than local maxima that achieve similar modularity.

Issues in modularity based
community detection

At each trial of the modularity-based community detection,
we obtain a different set of communities (and corresponding
modularity)

Distribution of modularity and
number of communities in the
labour-market network

Community size over 100
independent trials
in a LFR reference network.

Network centric CD – Modal clustering for networks

Method proposed to detect complex shaped communities (e.g. leadership based

communities)
[Menardi & De Stefano Density-based clustering of social networks JRSS A (2022)]

Idea: different measures of actor centrality account for different node roles

Specificity of modal clusters for network data, while accounting for:

• different strength of relationships
weighted networks

• different kinds of aggregation mechanisms
different measures of centrality of actors (used as density function)

though any function capturing the connectivity of nodes can be used

https://scholar.google.it/citations?view_op=view_citation&hl=it&user=OnZkRN4AAAAJ&sortby=pubdate&citation_for_view=OnZkRN4AAAAJ:eflP2zaiRacC

Network centric CD – Modal clustering for networks

Hierarchy-centric

• Another line of community detection research is to build a hierarchical
structure of communities based on network topology.

• This facilitates the examination of communities at different granularity.

• There are mainly two types of hierarchical clustering: divisive, and
agglomerative.

• One particular divisive clustering algorithm receiving much attention is to
recursively remove the “weakest” tie in a network until the network is
separated into two or more components.

Hierarchy-centric

• Newman and Girvan (2004) proposes to find the weak ties based on
edge betweenness.

• Edge betweenness is highly related to the betweenness centrality

• It is defined to be the number of shortest paths that pass along one edge

If two communities are joined by only a few cross-group edges, then all paths through the

network from nodes in one community to the other community have to pass along one of
these edges.

• The number of shortest paths is expected to be large for between-group
edges.

Girvan-Newman algorithm

• The Girvan–Newman algorithm detects communities by progressively
removing edges from the original network. The connected components of
the remaining network are the communities (Newman and Girvan: Finding and evaluating

community structure in networks, Physical Review E 69, 026113, 2004)

• the Girvan–Newman algorithm focuses on edges that are most likely
"between" communities.

• The idea was to find which edges in a network occur most frequently
between other pairs of nodes by finding edge betweenness.

• it is likely that edges connecting separate communities have high edge
betweenness as all the geodesic from one group to another must pass
through them.

• So if we gradually remove the edge with the highest edge betweenness
score we will get a hierarchical map (dendrogram) of the graph. The leafs of
the tree are the individual vertices and the root of the tree represents the
whole graph.

Girvan-Newman algorithm

We can express Girvan-Newman algorithm in the following
procedure:

1) Calculate edge betweenness for every edge in the graph.

2) Remove the edge with highest edge betweenness.

3) Calculate edge betweenness for remaining edges.

4) Repeat steps 2–4 until all edges are removed (or we obtain
connected components at certain level)

Girvan-Newman algorithm

• In order to calculate edge betweenness it is necessary to find all shortest
paths (geodesic) in the graph. The algorithm starts with one vertex,
calculates edge weights for paths going through that vertex

• then repeats it for every vertex in the graph and sums the weights for
every edge.

• The edge betweenness centrality (EBC) can be defined as the number of
shortest paths that pass through an edge in a network. Each and every
edge is given an EBC score based on the shortest paths among all the
nodes in the graph.

• We can compute a score for each edge based on this concept by
traversing the network from each of the ego perspective and traversing
back the graph

Girvan-Newman example

• Let’s take an example to find how EBC scores are calculated.
Consider this graph below with 6 vertices and 7 edges

Girvan-Newman example

First step: Calculate the edge betweenness

find the EBC scores for all the edges is an iterative process and it works taking one
node at a time and plot the shortest paths to the other nodes from the selected node

Based on the shortest paths, then compute the EBC scores for all the edges

repeat this process for every node in the graph.

Therefore, there will be 6 iterations of this process

This means every edge will get 6 scores. These scores will be added edge-wise

Finally, the total score of each edge will be divided by 2 to get the EBC score

Girvan-Newman example
Iteration 1 (starting from node A)

A is directly connected nodes to node A are nodes
B and D. So, the shortest paths to B and D from A
are AB and AD respectively

The shortest paths to nodes C and E from A go
through B and D

The shortest paths to the last node F from node A,
pass through nodes B, D, C, and E

The graph above depicts only the shortest paths from node A to all the other nodes.

Girvan-Newman example

Before giving scores to the
edges, we will assign a score
to the nodes in the shortest-
path-graph. To assign these
scores, we will have to
traverse the graph from the
root node, i.e., node A to the
last node (node F)

Girvan-Newman example
Computing Scores for Edges moving in the backward direction, from node F to
node A

1) We first compute the score for the
edges FC and FE.

The edge score for edge FC is the ratio of
the node scores of C and F, i.e. 1/3 or 0.33.
Similarly, for FE the edge score is 2/3.

2) calculate the edge score for the edges
CB, EB, and ED.
from this level onwards, every node will
have a default value of 1 and the edge
scores computed in the previous step will
be added to this value.
So, the edge score of CB is (1 + 0.33)/1.
Similarly, edge score EB or ED is (1 +
0.667)/2. Then we move to the next level
to calculate the edge scores for BA and
DA.

Girvan-Newman example

We will have to repeat the same
steps again from the other
remaining five nodes. In the end,
we will get a set of six scores for all
the edges in the network.

Since it is an
undirected graph, we
will divide these
scores by two and
finally, we will get the
EBC scores:

Girvan-Newman example

According to the Girvan-Newman algorithm, after computing the EBC scores, the edges
with the highest scores will be taken off till the point the graph ideally splits into different
components

we can see that the edges AB, BC, DE, and EF have the highest score, i.e., 4. We will strike

off these edges and it gives us 3 subgraphs that we can call communities

Girvan-Newman (toy example)
You can see GN algorithm as a hierarchical clustering algorithm.

You compute the EBC after each disaggregation

Overlapping communities

• There are several C.D. methods for the identification of overlapping
communities

• The motivaton is that in social networks individual actors may participate
to diverse closed and dense groups

• One community detection algorithm that is aimed at identifying
overlapping communities is the clique percolation algorithm, which has

been developed for unweighted undirected networks by Palla, Derényi,
Farkas, & Vicsek, 2005

Clique percolation

The clique percolation algorithm for unweighted networks proceeds as
follows:

1) Find out all cliques of size k in the given network;

2) Construct a clique graph. Two cliques are adjacent if they share k − 1
nodes;

3) Each connected component in the clique graph is a community.

Clique percolation

Take the network in the toy example.

For k = 3, we can identify all the cliques of size 3 as follows.

Then we have the clique graph where 2 cliques are connected if they
share k − 1 (2 in our case) nodes.

Clique percolation

In the clique graph, there are two connected components.

The nodes in each component fall into one community.

Consequently, we obtain two communities: {1, 2, 3, 4} and {4, 5, 6, 7, 8}.

Note that node 4 belongs to both communities. In other words, we obtain
two overlapping communities.

Note that the clique percolation method requires the enumeration of all
the possible cliques of a fixed size k.

This can be computational costly for large-scale networks.

Community evaluation
The reason for so many assorted definitions and methods, is that there is
no clear ground truth information about a community structure in a real
world network.

Therefore, different community detection methods are developed from
various applications of specific needs.

Strategies commonly adopted to evaluate identified communities in order
to facilitate the comparison of different community detection methods are:

1) Groups with self-consistent structural definitions.
Some groups like cliques, k-cliques, k-clubs, and k-cores can be examined
immediately once a community is identified. We can simply check whether
the extracted communities satisfy the definition.

Community evaluation

2) Networks with ground truth. That is, the community membership for
each actor is known. Ideal scenario (ex: Karate club network).

In presence of ground truth a way to evaluate community detection results
is to consider all the possible pairs of nodes and check if they belong to the
same community.

It is considered an error if two nodes of the same community are assigned
to different communities, or two nodes of different communities are
assigned to the same community.

Let C(vi) denote the community of node vi. We can construct a contingency
table: a, b, c and d are frequencies of each case.

Community evaluation

For ex.: a is the frequency that two nodes are assigned into the same
community in the ground truth as well in the CD result.

Note that the total sum of frequencies is the number of all possible pairs of
nodes in the network: a + b + c + d = n(n − 1)/2.

Based on the frequencies, the accuracy of CD algorithm can be computed as

Community evaluation
Example result

We have a = 4. Specifically, {1, 3},{4, 5}, {4, 6}, {5, 6} are assigned into the
same community in the ground truth and CD result.

Any pair between {1, 2, 3} and {4, 5, 6} are being assigned to different
communities, thus d = 9.

Consequently, the accuracy of the clustering result is

(4 + 9)/(6 × 5/2) = 13/15

Community evaluation

3) Networks without ground truth or other information.

This is the most common situation, yet it requires objective evaluation
most. Normally, one resorts to some quantitative measure
for network validation. For instance modularity

It can be use a similar procedure as cross validation in classification for
validation.
It extracts communities from a (training) network and then compares them
with those of the same network (e.g., constructed from a different date) or
another related network based on a different type of interaction.

In order to quantify the quality of extracted community structure, a
common measure being used is modularity.
The method with higher modularity is selected.

Community evaluation

4) Artificial networks benchmark

Existing evaluation tests and benchmarks involves as said Small networks
with known community structure.

But we can also simulate Artificial graphs with simplified structure.

Planted l-partition model

- Partition the graph with N nodes into N/l Partitions.
- Each node has a probability pin of being

connected to nodes of its group
- and a probability pout of being connected to nodes

of different groups.
- As long as pin≥pout the graph has a community

structure else it’s a Random Graph.

Community evaluation

LFR Benchmark

• A special case of Planted l-partition model, in which groups have different size and
nodes have different degrees.

• Node degree distribution based on power law with exponent τ1

• Community size also obeys power law distribution with exponent τ2

• Each node receives its degree which remains the same throughout.

• Mixing parameter μ, is the ratio of external degree of a node with respect to its
community and the total degree of the node.

• For simplicity all nodes have the same μ.

Community evaluation

LFR Benchmark

Based on power law distribution with exponent τ2 the sizes of the communities are
assigned (Sum matches the size N of the network).

Each community is treated as an isolated graph.
Assign degree ki to a node i based on power law distribution with exponent τ1.

Assign internal degree (1- μ) ki to node i.

