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Prediction Models in Epidemiological & 

Clinical Research: performance & 

sample size

George E.P. Box

(1919 – 2013)

All models are wrong 

but some are useful. 
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Some steps should be considered in developing prediction models:

Validity
Presentation/Clinical 

Implementation

Possibly on external dataset !!!

Defining

problem
Coding/measuring

features/variables
Checking data 

quality

Model’s 

formula

Parameters/Hyperparameters 

estimation
Performance

INITIAL DATA ANALYSIS !!!

 Selection of variables

 Functional Forms 

 Interactions
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Measuring performance 

While working on the development/validation of a prediction model, 

evaluating the performance is a crucial step. 

2. Are our predictions reliable ? 

1. 𝑅2-type measures or % of the explained variation of the outcome

1.1 Calibration: does the model predict accurately? 

[calibration slope, 1 : perfect calibration]

1.2 Discrimination: does the model discriminate well? 

[C statistic (AUCROC), 1: perfect discrimination, 0.5 : 

flipping a coin]
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How to use the data in building the model* and perfomance evaluations ?

Single Split Cross-validation (boostrap)

Original

Dataset 

(size=n)

Training 

set 

(size=m)

Test set 

(size=n-m)

• Conditional performance 

• Dependence on the single split

• Waste of data   • «average» performance 

* different scenarios: 1. Evaluating performance of a given model vs 2. Comparing alternative models …
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Overall performance: R squared

𝑅2 (coefficient of determination) 

is the proportion of the variance 

for a dependent variable that's 

explained by an independent 

variable in a regression model.
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R squared for multivariable (generalized) models

𝑅2 : % of variation in Y explained by the model 

[adjusted for p=#covariates, n=sample size] 

Binary/[time-to-event] models: 

• Cox and Snell 𝑅2

• Nagelkerke’s 𝑅2

𝑅𝑎𝑑𝑗
2 = 1 − 1 − 𝑅2

𝑛 − 1

𝑛 − 𝑝 − 1

likelihood of the null model with only the intercept vs a given set of parameters

𝑅𝐶𝑆
2 = 1 − exp

2

𝑛
𝑙𝑛 𝐿𝑖𝑘𝑁𝑢𝑙𝑙 − 𝑙𝑛 𝐿𝑖𝑘𝑀𝑜𝑑𝑒𝑙
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For given values of the model covariates, we can obtain the predicted probability:    

𝑃 𝑌 = 1 𝑋1, …𝑋𝑝 =
𝑜𝑑𝑑𝑠

1 + 𝑜𝑑𝑑𝑠
=

𝑒𝑥𝑝 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝

1 + 𝑒𝑥𝑝 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝

The model is said to be well calibrated if the observed risk matches the predicted risk 
(probability). 

That is, if we were to take a large group of observations which are assigned a value P(Y=1)=0.2 

the proportion of these observations with Y=1 ought to be close to 20%. 

If instead the observed proportion was 80%, we would probably agree that the model is not 

performing well - it is under-estimating risk for these observations. 

The comparison between predicted probabilities and observed proportions is the basis for the 

Hosmer-Lemeshow (HL) test.

Calibration (binary outcome/logistic regression) 
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Based on the estimated parameter values መ𝛽0, መ𝛽1, … መ𝛽𝑝 , for each observation in the sample the probability 

that Y=1 is calculated, depending on each observation's covariate values:

We divide the sample in groups up according to their predicted probabilities, or risks.

ො𝜋 =
𝑒𝑥𝑝 𝛽0 +𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝

1 + 𝑒𝑥𝑝 𝛽0 +𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝

The observations in the sample are then split into g groups according to their predicted 

probabilities. 

Suppose (as is commonly done) that g=10. 

Then the first group consists of the observations with the lowest 10% predicted probabilities. 

The second group consists of the 10% of the sample whose predicted probabilities are next 

smallest, etc etc…



Block 3.4

Suppose for the moment, artificially, that all of the observations in the first group had a predicted 

probability of 0.1. 

Then, if our model is correctly specified, we would expect the proportion of these observations who have 

Y=1 to be 10%. 

Of course, even if the model is correctly specified, the observed proportion will deviate to some extent 

from 10%, but not by too much (random variability…). 

If the proportion of observations with Y=1 in the group were instead 90%, this is suggestive that our model 

is not accurately predicting probability (risk), i.e. an indication that our model is not fitting the data well.

To calculate how many “Y=1” observations we would expect, the Hosmer-Lemeshow test takes the 

average of the predicted probabilities in the i-th group, and multiplies this by the number of 

observations in the group. 

This calculation is then stratified with respect to the observed relative frequency of the outcomes in the 

groups. 
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𝜒𝑔−2 = 

𝑘=0

1



𝑙=1

𝑔
𝑜𝑘𝑙 − 𝑒𝑘𝑙

2

𝑒𝑘𝑙

Provided p+1<g (p=#covariates) the test statistic 

approximately follows a chi-squared distribution with g-2 

degrees of freedom. Differences are computed for the 

“event” (k=1)and for the “non-event” (k=0). 

If the p-value is small, this is indicative of poor fit.

But….a large p-value does not mean the model fits well, 
since lack of evidence against a null hypothesis is not 

equivalent to evidence in favour of the alternative hypothesis…

For example: if our sample size is small, do not reject H0 may 

simply be a consequence of the test having lower power to 

detect misspecification, rather than being indicative of good fit.
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Calibration in the large: 

Level 1: Mean calibration (calibration in the large)

Mean estimated risk = observed proportion of event

“On average, risks are not over-or underestimated.”

Compare event rate with average predicted risk. 

O:E ratio of observed events / expected events = 1 

If violated adjust the intercept of the model. 

Logistic calibration model: 

Linear PredictorTaking fixet ad 1 the slope:  

ሾ𝑎 𝑏 = 1 ideally ≈ 0Estimate the calibration intercept:

log
𝜋

1 − 𝜋
= 𝑎 + 𝑏 ∗ 𝐿𝑃

𝑏 = 1

ቁlog
𝜋

1 − 𝜋
= ො𝑎 + offset(𝐿𝑃

Red: observed

Blue: predicted
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Level 2: Weak calibration

“On average, risks are not over-or underestimated, nor too extreme/modest.”

No systematic over- or under-fitting 

Logistic calibration model: log
𝜋

1 − 𝜋
= 𝑎 + 𝑏 ∗ 𝐿𝑃

Linear Predictor

Estimate the calibration slope:  𝑏

Estimate the calibration intercept:

Then adjust estimated probabilities using: ො𝑎 + 𝑏 ∗ 𝐿𝑃

ො𝑎

(the slope is called the shrinkage factor)
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Level 3: Moderate calibration

“Among patients with estimated risk 𝑥𝑥, the proportion of events is 𝑥𝑥.”

Use calibration plots (density/loess/splines…) 

Note that the flexible calibration curve is
more sensible to deviations, with respect to 
the logistic regression approach, especially at
the extremes of the distribution. 

But, it does not give us a numerical
summary of calibration, it is sensible to the 
smoothing method used and it does not take 
into account the number of subjects in each
bin of the smoothing function.  
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Should we be content to use a model so long as it is well calibrated?  Unfortunately not. 

To see why, suppose we fit a logistic model for our outcome Y but without any covariates, i.e. the model:

This (null) model assigns every observation the same predicted probability : it does not use any 

covariates. 

Therefore  𝛽0 will be the observed overall log odds of a positive outcome, such that the predicted value 

of P(Y=1) will be identical to the proportion of Y=1 observations in the dataset.

𝑃 𝑌 = 1 =
𝑒𝛽0

1 + 𝑒𝛽0

This (rather useless) model assigns every observation the same predicted probability. It will have good 

calibration ! - in future samples the observed proportion will be close to our estimated probability. 

However, the model isn't really useful because it doesn't discriminate between those at high risk and those at low 
risk. The situation is analogous to a weather forecaster who, every day, says the chance of rain tomorrow is 10%. This 

prediction might be well calibrated (over a long period), but it doesn't tell people whether it is more or less likely to 

rain on a given day, and so isn't really a helpful forecast!

Discrimination of a regression model [binary outcome] : AUC of the ROC curve  
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As well as being well calibrated, we would therefore like our model to have high discrimination ability. 

In the binary outcome context, this means that observations with Y=1 ought to be predicted high 

probabilities, and those with Y=0 ought to be assigned low probabilities. 

Such a model allows us to discriminate between low and high risk observations.

Recall the important notions of sensitivity and specificity of a test or prediction rule (from block 1!): 

Sensitivity: probability of the model predicting an observation as 'positive' given that is true (Y=1).

In words, the sensitivity is the proportion of truly positive observations which is classified as such by the 

model or test.

Specificity: probability of the model predicting 'negative' given that the observation is 'negative' (Y=0).

Our model or prediction rule is perfect at classifying observations if it has 100% sensitivity and 100% 

specificity. In practice this is (usually) not attainable. 

So how can we summarize the discrimination ability of our logistic regression model?
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For each observation, our fitted model can be used to calculate the fitted probabilities 𝑃 𝑌 = 1 𝑋1, …𝑋𝑝

On their own, these don't tell us how to classify observations as positive or negative. 

One way to create such a classification rule is to choose a cut-point c, and classify those observations 

with a fitted probability > c as positive and those <= c as negative. 

For this specific cut-off, the sensitivity is the proportion of observations with Y=1 which have a predicted 

probability > c, and similarly the specificity is the proportion of Y=0 observations with a predicted 

probability <= c: 

Predicted

Probability

Outcome

Y=1 Y=0 Tot

cutoff > c a b a+b

<=c c d c+d

Tot a+c b+d n

Sensibility=a/a+c

Specificity=d/b+d
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If we increase the cut-point c, fewer observations will be predicted as positive. 

This will mean that fewer of the Y=1 observations will be predicted as positive (reduced sensitivity), but 

more of the Y=0 observations will be predicted as negative (increased specificity). 

In picking the cut-point, there is thus an intrinsic trade-off between sensitivity and specificity.

Now we come to the ROC curve: we plot all the values of sensitivity against (1-specificity), as the value 

of the cut-point c is increased from 0 through to 1:

A model with high discrimination ability will 

have high sensitivity and specificity 

simultaneously, leading to a ROC curve 

which goes close to the top left corner of the 

plot. 

A model with no discrimination ability will 

have an ROC curve which is the 45 degree 

diagonal line.
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Area under the ROC curve: 

To summarize the discrimination ability of a model we can report the area under the ROC curve (with 

corresponding 95% CI). 

A model with high discrimination ability has an ROC curve which goes closer to the top left hand corner 

of the plot, whereas a model with low discrimination ability has an ROC curve close to a 45 degree line. 

Thus AUC ranges from 1, corresponding to perfect discrimination, to 0.5, corresponding to a model with 

no discrimination ability. 

The area under the ROC curve is also sometimes referred to as the c-statistic (c for concordance).

The AUC has a somewhat appealing interpretation: 

The AUC is the probability that if you were to take a random pair of observations, one with Y=1 and one 

with Y=0, the observation with Y=1 has a higher predicted probability than the other. The AUC thus gives 

the probability that the model correctly ranks the risk of such pairs of observations.

Assessing the performance of prediction models: a framework for some 
traditional and novel measures
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575184/
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Sample Sizes for Various Response Variables (basic indications): event per variable [EPV] 

When a model is fitted that is too complex

(i.e. too many parameters to estimate for the 

amount of information in the data), the 

goodness of fit of the model will be 

exaggerated and future observed values will 

not agree with predicted values. 

In this situation, overfitting is said to be present, 

and some of the findings of the analysis come 

from fitting noise and not just a signal, or finding 

spurious associations between X (independent 

variables) and Y (outcome). 

A fitted regression model is likely to be reliable

when the number of predictors (or candidate 

predictors if using variable selection) p is less than 

m/10 or m/20, where m is the “limiting sample 

size”. 

A good average requirement is p < m/15

h: n1 and n2 are the marginal frequencies of the two response levels.

j:  failures: events in the survival jargon 
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Of note: the number of non-intercept parameters in the model is usually > number of variables

Categorical variables, nonlinear terms require >1 parameters to be estimated and included in 

the model 

1 categorical variable with 4 categories : 3 parameters

𝐸𝑃𝑉 ≡ 𝐸𝑃𝑃 =
#𝐸𝑣𝑒𝑛𝑡𝑠

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

…but… why one rule ? Sample size should be tailored to the problem!
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Here we focus on a more complex approach than EPV,  based on minimizing 

the expected overfitting and ensuring precise parameter estimation. 
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What do we want?

Development 

We want to have a large enough sample 

size to develop a model that predicst as

accurately as we can.  

Validation

We want to have a large enough sample size

to accurately and precisely estimate model 

performance. This is to be intended as

external validation.  

Of note:

• Use as much data as possible to develop your model… [cross-validation/boostrap to internally

evaluate optimism]

• Avoid (randomly) single-splitting your data to develop and then validate your model*   

- Reduces development sample size (overfitting)

- Reduces validation sample size (inadequate to evaluate model performance)

Much better external validation (different place/time…) 

Medical data : often low-moderate sample size!
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Sample size for model development Sample size for model validation 

Recent guidelines have been proposed in the biostatistical community: 

2018

2018 2020

2021

2020

Summary:
Calculate sample size that is needed to: 
• minimise potential overfitting
• estimate overall risk precisely

Requires calculations for multiple criterion
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Calculate sample size that is needed to:

• Minimize potential overfitting

• Estimate parameters precisely

A series of closed form solutions compute the required sample size to precisely estimate key performance 

measures: 

Continuous outcomes

• A shrinkage factor >=0.9 (calibration slope)

• A small difference (<=0.05) in 𝑹𝟐 apparent vs 

adjusted

• Precise estimation of the residual standard 

deviation

• Precise estimation of the average outcome

Binary/Time to event outcomes

• A shrinkage factor >=0.9 (calibration slope)

• A small difference (<=0.05) in Nagelkerke’s 𝑹𝟐

apparent vs adjusted

• A margin of error <=0.05 in overall risk estimate

• A certain level of the AUC(>= 0.80)  

Development: 
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Cox-Snell 𝑅2 may be small… 

For example, for a logistic regression model with an outcome proportion of: 

• 50% the max Cox-Snell 𝑅2 is 0.75 

• 5% the max Cox-Snell 𝑅2 is 0.33 

• 1% the max Cox-Snell 𝑅2 is 0.11

Parameters required in input 

What about No-existing-model thing? 

When there is no existing model for a particular research question (rare!) take into account that

healthcare outcomes are generally low signal:noise ratio. 

Assume a low 𝑅2 [i.e. : between 15% and 20%]
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Last but not least: timing of data collection vs sample size calculation

BEFORE (primary data source) : 

• If you can anticipate the expected sample size and proportion of events, then

You can limit the number of variables you will collect

• If you know a priori how many predictors you wanto to examine, then

You will need to collect a suitably sized sample 

AFTER (secondary data source) : 

• Your sample size and number of events are fixed

• You can then restrict the number of variables (and complexity) you will include in the modelling
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AUC values

Prevalence/Incidence

Sample Size 

# parameters to be estimated

Sample Size 

Sample Size 

[like larger effects size
in hypothesis tests]

Binary outcome
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https://github.com/ewancarr/pmsims-iscb

Existing tools can estimate minimum samples for continuous, binary, and survival outcomes
[“standard” statistical tools]

Work is in progress in developing simulation-based approaches that works with 
any outcome or method [!ML algorithms!].

Ewan Carr, Gordon Forbes, Diana Shamsutdinova,
Daniel Stahl & Felix Zimmer

Department of Biostatistics & Health Informatics
King’s College London

https://github.com/ewancarr/pmsims-iscb

