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7.2 Stabiliser formalism

The stabiliser formalism exploits the fact that there exist operations, namely stabilisers, that can be used to
detect errors without changing the state of the logical qubit. While the single stabiliser can only tell if there
was an error, without establishing which error, a specific set of stabilisers can identify the specific errors that
occurred, and thus providing the information to correct it.

7.2.1 Inverting quantum channels

The following scheme summarises the QEC philosophy. Given a qubit, this is encoded in a logical qubit made
of a set of physical qubits. The interaction with the surrounding environment (or other faulty components of
the physical circuit) leads to errors in the state. The action of these errors can be described in terms of a CPTP
map. The QEC code applies a recovery CPTP map, which — up to a certain probability — gives back the same
initial state, as there were no errors, cf. Fig. 7.7.

Encoded 
information

Faulty 
information

Corrected 
information

Noises
CPTP map

QEC
Recovery
CPTP map

Fig. 7.7: Schematic representation of the QEC scheme, where a recovery CPTP map is applied to recover the
information as there were no errors.

The question is: when is this possible?

Consider two CPTP maps E and R, which describe respectively the occurrence of environmental errors and
the recovery map. Their action is

B(H)
E�! B(H0)

R�! B(H00), (7.75)

where B(H) is the space of all the linear operators acting on H. We want to have no e↵ects of the errors,
i.e. R � E = id.

Now, we show that the following two statements are equivalent:

1) Given a CPTP map E , it exists another CPTP map R such that R � E = id.
2) For any Kraus representation of E , which is defined through the set of Kraus operators Êi, then one has that

Ê†
i Êj = µij 1̂, (7.76)

where µij 2 C are the coe�cients of the density matrix of the environment imposing the map E . Namely,

µ̂ =
X

ij

µij |eii hej | . (7.77)

First, we prove that 1) implies 2). Consider | i 2 H, to which we apply the map E . This gives

| i E�!
X

j

Êj | i |eji , (7.78)

where |eji is the state of the environment with which the system is entangling. Now, we apply the map R:
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R�!
X

jk

R̂kÊj | i |eji |aki , (7.79)

where |aki is the state of an ancilla, whose interaction defines the map R. Since we want that the map R works
as a recovery map for the map E , we have to impose that

X

jk

R̂kÊj | i |eji |aki = | i ⌦ (. . . ), (7.80)

where (. . . ) is a suitable state of the environment and the ancilla. In this way, the entanglement between the
system and the environment is transferred to the environment and the ancilla, with no correlation to the state
of the system. This is possible only if

R̂kÊj = ↵kj 1̂. (7.81)

In such a case, one has that (. . . ) =
P

jk ↵kj |eji |aki and

Ê†
i Êj =

X

k

Ê†
i R̂

†
kR̂kÊj ,

=
X

k

↵⇤
ki↵kj 1̂,

(7.82)

where we used that X

k

R̂†
kR̂k = 1̂. (7.83)

Then, we can define

µij =
X

k

↵⇤
ki↵kj . (7.84)

Notably, we have that µ⇤
ji = µij , indeed

µ⇤
ji1̂ = (µij 1̂)† = (Ê†

i Êj)
† = Ê†

j Êi = µij 1̂. (7.85)

Moreover, we have that X

i

µii1̂ =
X

i

Ê†
i Êi = 1̂, (7.86)

and that
µii1̂ = Ê†

i Êi, (7.87)

is a positive operator, which implies that µii > 0. Thus, {µij }ij have all the properties to be the coe�cients of
a density matrix, and this proves that 1) implies 2).

We now prove that 2) implies 1). We start from

Ê†
i Êj = µij 1̂, (7.88)

and we diagonalise µij . This implies a change the Kraus operators according to Êi ! F̂i such that

F̂ †
i F̂j = �ijpi1̂, (7.89)

where pi > 0 by definition. We then introduce the isometries V̂i that are related to F̂i via

F̂i =
p
piV̂i. (7.90)

Then, as represented in Fig. 7.8, the map E is mapping H to di↵erent subspaces H
0
i of H

0. Each of these
mapping is performed with a probability pi by the operator V̂i / F̂i. Notably, since we diagonalised µij , the
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Fig. 7.8: Graphical representation of the mapping between H and H
0.

di↵erent operators V̂i are orthogonal, and thus are also the subspaces H
0
i. Now, given this set of isometries, we

can construct the recovery Kraus operators as
R̂i = V̂ †

i , (7.91)

which will act only on the corresponding subspace H
0
i, leaving the rest of Hilbert space H

0 untouched: indeed,
for i 6= j we have V̂ †

j Fj / V̂ †
j Vj = 0. Finally, we compose the maps E and R:

⇢̂
E�!E(⇢̂) =

X

i

piV̂i⇢̂V̂
†
i ,

R�! R(E(⇢̂)) =
X

j

V̂ †
j

 
X

i

piV̂i⇢̂V̂
†
i

!
V̂j ,

=
X

ij

piV̂
†
j V̂i⇢̂V̂

†
i V̂j ,

=
X

i

pi⇢̂ = ⇢̂,

(7.92)

where we used that V̂ †
j V̂i = �ij 1̂.

7.2.2 Correctable errors

The generic scheme for QEC is the following. We are given k qubits in an unknown state | i 2 H. We encode
| i in a larger number n > k of qubits. These n qubits are subject to errors, which are described in terms of
a Kraus map E with the Kraus operators being Êi or equivalently V̂i, see Eq. (7.90). The recovery protocol
employs some extra n0 ancillary qubits to apply the QEC, which inverts the error Kraus map under certain
conditions.

After the encoding, the relevant state will be | 0i 2 HC, which is a subspace of H
0 and it is called code space.

In particular, the entire Hilbert space H
0 is the union of the code space HC with the ⌦iH

0
i. Here, the basis of

each H
0
i is obtained by applying the corresponding V̂i to the basis of HC. Under this perspective, one can say

that also the basis of HC is generated in the same way, where the corresponding error operator is V̂C = 1̂. Now,
since the subspace H

0
i so constructed is orthogonal to HC, then the error can be recovered. What is needed is

a error syndrome measurement that identifies the subspace H
0
i in which the state | 0i has been mapped. Given
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such a measurement, one can apply the corresponding Kraus recovery operator. This is graphically represented
in Fig. 7.9
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Fig. 7.9: Graphical representation of the division of the Hilbert space H
0 in the code space H and error spaces

Hi, which are linked by the operators V̂i.

One can invert the error map if the corresponding operators Êi satisfy

P̂ Ê†
i ÊjP̂ = µijP̂ , (7.93)

where P̂ is a projector on the code space HC.
Notably, P̂ acts as an identity operator if restricted on HC. This also implies that there exists a special set

of Kraus operators, which allow to rewrite the error map, and thus also the recovery map, as a mixture of
isometries. These are induced by a set of unitary operators Ûi on the code space:

V̂i = ÛiP̂ , (7.94)

such that
P̂ Û†

i ÛjP̂ = �ijP̂ . (7.95)

Then, one can map the state V̂i | 0i back to HC by selecting the corresponding recovery Kraus operator R̂i = V̂ †
i .

An important note is the following. Let be R the recovery map for E . Then, one has

E(⇢̂) =
X

i

Êi⇢̂Ê
†
i ,

R(⇢̂) =
X

k

R̂k⇢̂R̂
†
k,

(7.96)

such that R̂kÊi = ↵ki1̂. We define the map D as

D(⇢̂) =
X

i

D̂i⇢̂D̂
†
i , (7.97)

with D̂i appertaining to the span of { Êi }i, i.e. D̂i =
P

j cijÊj . Then, the map D can be recovered with the
same recovery map R.

Consider the case of n qubits . We want to construct the recovery map for errors due to the application of

the Pauli operators. These are { 1̂, �̂x, �̂y, �̂z }⌦n
, and they form the basis of B(H⌦n). The operator 1̂ is the
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identity, so is not associated to any error. The operator �̂y = i�̂x�̂z. So, one needs to construct the recovery
map R that corrects only errors due to �̂x and �̂z. Now, for every Pauli operator di↵erent from the identity, we
have two important properties: Tr [�̂i] = 0 and �̂2

i = 1̂. They imply that their eigenvalues are ±1. Thus, one can
divide the full Hilbert space H

0 = H, with dim(H) = 2n, in two subspaces (of the same dimension), which are
associated to the corresponding eigeinvalues, see Fig. 7.10. Namely, given �̂i we have H�i=1 and H�i=�1, with
dim(Hi) = 2n�1, whose union gives H

0. Suppose the code space HC is defined in terms of the operators Ê1 and
Ê2 as it follows: 8 | i 2 HC, one has

Ê1 | i = +1 | i , and Ê2 | i = +1 | i . (7.98)

Any other combination identifies an error subspace H
0
i.
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Fig. 7.10: Division of the Hilbert space H
0 with respect to the subspaces defined by the eigeinvalues of Ê1 and

Ê2.

More in general, given the operators in B(H), they are part of one of the following families:

- They specify the subspaces we are going to divide H
0.

- They are responsible for errors. So they describe how a state moves from HC to H
0
i.

- They are responsible for logical operations within the individual subspaces HC and Hi.
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