Correlation Matrix | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DASS_DEP_AGGR | DASS_STRESS_AGGR | DASS_ANSIA_AGGR | UCLA_AGGR | RSE_AGGR | |||||||||
DASS_DEP_AGGR | Pearson's r | — | |||||||||||
df | — | ||||||||||||
p-value | — | ||||||||||||
DASS_STRESS_AGGR | Pearson's r | 0.784 | — | ||||||||||
df | 28 | — | |||||||||||
p-value | < .001 | — | |||||||||||
DASS_ANSIA_AGGR | Pearson's r | 0.692 | 0.813 | — | |||||||||
df | 28 | 28 | — | ||||||||||
p-value | < .001 | < .001 | — | ||||||||||
UCLA_AGGR | Pearson's r | 0.568 | 0.509 | 0.322 | — | ||||||||
df | 28 | 28 | 28 | — | |||||||||
p-value | 0.001 | 0.004 | 0.083 | — | |||||||||
RSE_AGGR | Pearson's r | -0.433 | -0.283 | -0.290 | -0.312 | — | |||||||
df | 28 | 28 | 28 | 28 | — | ||||||||
p-value | 0.017 | 0.130 | 0.120 | 0.094 | — | ||||||||
Model Fit Measures | |||||||
---|---|---|---|---|---|---|---|
Model | R | R² | Adjusted R² | ||||
1 | 0.836 | 0.699 | 0.650 | ||||
Model Coefficients - DASS_DEP_AGGR | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Predictor | Estimate | SE | t | p | Stand. Estimate | ||||||
Intercept | -0.120 | 0.632 | -0.189 | 0.851 | |||||||
DASS_STRESS_AGGR | 0.468 | 0.208 | 2.251 | 0.033 | 0.475 | ||||||
DASS_ANSIA_AGGR | 0.255 | 0.266 | 0.959 | 0.347 | 0.186 | ||||||
UCLA_AGGR | 0.332 | 0.210 | 1.579 | 0.127 | 0.210 | ||||||
RSE_AGGR | -0.282 | 0.186 | -1.514 | 0.143 | -0.179 | ||||||
Durbin–Watson Test for Autocorrelation | |||||
---|---|---|---|---|---|
Autocorrelation | DW Statistic | p | |||
0.233 | 1.44 | 0.148 | |||
[3] |
Collinearity Statistics | |||||
---|---|---|---|---|---|
VIF | Tolerance | ||||
DASS_STRESS_AGGR | 3.70 | 0.271 | |||
DASS_ANSIA_AGGR | 3.13 | 0.320 | |||
UCLA_AGGR | 1.47 | 0.679 | |||
RSE_AGGR | 1.16 | 0.862 | |||
[3] |
Moderation Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | SE | Z | p | ||||||
. | . | . | . | . | |||||
. | . | . | . | . | |||||
. | . | . | . | ||||||
Models Info | |||||
---|---|---|---|---|---|
Get started | Select at least one mediator | ||||
Get Started | Select at least one factor or covariate as independent variable | ||||
Overal Model | . | The mediational model is incomplete | |||
[4] |
Diagram notes | |
---|---|
Red paths indicate required coefficients | |
Indirect and Total Effects | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Effect | Estimate | SE | Lower | Upper | β | z | p | |||||||||
[6]
Moderation Estimates | |||||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | SE | Z | p | ||||||
. | . | . | . | . | |||||
DASS_STRESS_AGGR | . | . | . | . | |||||
DASS_STRESS_AGGR | . | . | . | . | |||||
Models Info | |||||
---|---|---|---|---|---|
Mediators Models | |||||
m1 | DASS_DepressX3Qy ~ RSE + DASS_Depress + DASS_Stress | ||||
m2 | DASS_Stress_t2 ~ RSE + DASS_Depress + DASS_Stress | ||||
Full Model | |||||
m3 | DASS_Depress_t3 ~ DASS_DepressX3Qy + DASS_Stress_t2 + RSE + DASS_Depress + DASS_Stress | ||||
Indirect Effects | |||||
IE 1 | RSE ⇒ DASS_Depress_t2 ⇒ DASS_Depress_t3 | ||||
IE 2 | RSE ⇒ DASS_Stress_t2 ⇒ DASS_Depress_t3 | ||||
IE 3 | DASS_Depress ⇒ DASS_Depress_t2 ⇒ DASS_Depress_t3 | ||||
IE 4 | DASS_Depress ⇒ DASS_Stress_t2 ⇒ DASS_Depress_t3 | ||||
IE 5 | DASS_Stress ⇒ DASS_Depress_t2 ⇒ DASS_Depress_t3 | ||||
IE 6 | DASS_Stress ⇒ DASS_Stress_t2 ⇒ DASS_Depress_t3 | ||||
Sample size | N | 30 | |||
[4] |
Diagram notes | |
---|---|
Covariances among IV are estimated but not shown | |
Indirect and Total Effects | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
95% C.I. (a) | |||||||||||||||||
Type | Effect | Estimate | SE | Lower | Upper | β | z | p | |||||||||
Indirect | RSE ⇒ DASS_Depress_t2 ⇒ DASS_Depress_t3 | 0.0370 | 0.1459 | -0.2489 | 0.3229 | 0.0237 | 0.253 | 0.800 | |||||||||
RSE ⇒ DASS_Stress_t2 ⇒ DASS_Depress_t3 | -0.0595 | 0.0741 | -0.2047 | 0.0857 | -0.0382 | -0.803 | 0.422 | ||||||||||
DASS_Depress ⇒ DASS_Depress_t2 ⇒ DASS_Depress_t3 | 0.2235 | 0.1527 | -0.0757 | 0.5227 | 0.2570 | 1.464 | 0.143 | ||||||||||
DASS_Depress ⇒ DASS_Stress_t2 ⇒ DASS_Depress_t3 | -0.0530 | 0.0674 | -0.1851 | 0.0790 | -0.0610 | -0.787 | 0.431 | ||||||||||
DASS_Stress ⇒ DASS_Depress_t2 ⇒ DASS_Depress_t3 | 0.1614 | 0.1461 | -0.1250 | 0.4479 | 0.1744 | 1.105 | 0.269 | ||||||||||
DASS_Stress ⇒ DASS_Stress_t2 ⇒ DASS_Depress_t3 | 0.1303 | 0.1470 | -0.1578 | 0.4183 | 0.1407 | 0.886 | 0.375 | ||||||||||
Component | RSE ⇒ DASS_Depress_t2 | 0.0579 | 0.2282 | -0.3893 | 0.5052 | 0.0392 | 0.254 | 0.800 | |||||||||
DASS_Depress_t2 ⇒ DASS_Depress_t3 | 0.6379 | 0.1683 | 0.3080 | 0.9678 | 0.6064 | 3.789 | < .001 | ||||||||||
RSE ⇒ DASS_Stress_t2 | -0.4026 | 0.2368 | -0.8667 | 0.0615 | -0.2501 | -1.700 | 0.089 | ||||||||||
DASS_Stress_t2 ⇒ DASS_Depress_t3 | 0.1477 | 0.1622 | -0.1702 | 0.4656 | 0.1528 | 0.911 | 0.363 | ||||||||||
DASS_Depress ⇒ DASS_Depress_t2 | 0.3504 | 0.2207 | -0.0822 | 0.7830 | 0.4237 | 1.587 | 0.112 | ||||||||||
DASS_Depress ⇒ DASS_Stress_t2 | -0.3592 | 0.2291 | -0.8081 | 0.0898 | -0.3992 | -1.568 | 0.117 | ||||||||||
DASS_Stress ⇒ DASS_Depress_t2 | 0.2531 | 0.2191 | -0.1764 | 0.6826 | 0.2875 | 1.155 | 0.248 | ||||||||||
DASS_Stress ⇒ DASS_Stress_t2 | 0.8820 | 0.2274 | 0.4363 | 1.3277 | 0.9211 | 3.878 | < .001 | ||||||||||
Direct | RSE ⇒ DASS_Depress_t3 | 0.1079 | 0.1964 | -0.2770 | 0.4929 | 0.0694 | 0.550 | 0.583 | |||||||||
DASS_Depress ⇒ DASS_Depress_t3 | -0.2221 | 0.2042 | -0.6222 | 0.1781 | -0.2553 | -1.088 | 0.277 | ||||||||||
DASS_Stress ⇒ DASS_Depress_t3 | 0.3587 | 0.2175 | -0.0675 | 0.7849 | 0.3874 | 1.649 | 0.099 | ||||||||||
Total | RSE ⇒ DASS_Depress_t3 | 0.0854 | 0.2512 | -0.4069 | 0.5778 | 0.0549 | 0.340 | 0.734 | |||||||||
DASS_Depress ⇒ DASS_Depress_t3 | -0.0516 | 0.2430 | -0.5279 | 0.4247 | -0.0593 | -0.212 | 0.832 | ||||||||||
DASS_Stress ⇒ DASS_Depress_t3 | 0.6504 | 0.2413 | 0.1776 | 1.1233 | 0.7025 | 2.696 | 0.007 | ||||||||||
Nota. Confidence intervals computed with method: Standard (Delta method) | |||||||||||||||||
Nota. Betas are completely standardized effect sizes | |||||||||||||||||
[6] |
Model Fit Measures | |||||
---|---|---|---|---|---|
Model | R | R² | |||
1 | 0.766 | 0.586 | |||
Model Coefficients - DASS_Stress_t3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Predictor | Estimate | SE | t | p | Stand. Estimate | ||||||
Intercept | -2.9019 | 1.3915 | -2.085 | 0.048 | |||||||
età | 0.0745 | 0.0453 | 1.646 | 0.113 | 0.2880 | ||||||
Genere | 0.6156 | 0.2089 | 2.947 | 0.007 | 0.4537 | ||||||
RSE | 0.1006 | 0.3081 | 0.326 | 0.747 | 0.0580 | ||||||
UCLA_TOT | 0.3246 | 0.2938 | 1.105 | 0.281 | 0.1901 | ||||||
DASS_Depress | -0.7748 | 0.3057 | -2.535 | 0.019 | -0.8001 | ||||||
DASS_Stress | 1.1543 | 0.2778 | 4.155 | < .001 | 1.1198 | ||||||
Effetti Entro i Sggetti | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Somma dei Quadrati | gdl | Media Quadratica | F | p | |||||||
MR Fattore 1 | 0.301 | 2 | 0.1507 | 1.88 | 0.162 | ||||||
Residuo | 4.657 | 58 | 0.0803 | ||||||||
Nota. Somma dei quadrati Tipo 3 | |||||||||||
[7] |
Effetti Tra Soggetti | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Somma dei Quadrati | gdl | Media Quadratica | F | p | |||||||
Residuo | 12.1 | 29 | 0.418 | ||||||||
Nota. Somma dei quadrati Tipo 3 | |||||||||||
[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.
[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).
[3] Fox, J., & Weisberg, S. (2020). car: Companion to Applied Regression. [R package]. Retrieved from https://cran.r-project.org/package=car.
[4] Gallucci, M. (2020). jAMM: jamovi Advanced Mediation Models. [jamovi module]. Retrieved from https://jamovi-amm.github.io/.
[5] Soetaert, K. (2019). diagram: Functions for Visualising Simple Graphs (Networks), Plotting Flow Diagrams. [R package]. Retrieved from https://cran.r-project.org/package=diagram.
[6] Rosseel, Y. (2019). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. link.
[7] Singmann, H. (2018). afex: Analysis of Factorial Experiments. [R package]. Retrieved from https://cran.r-project.org/package=afex.