Results

Correlation Matrix

Correlation Matrix
  DASS_DEP_AGGRDASS_STRESS_AGGRDASS_ANSIA_AGGRUCLA_AGGRRSE_AGGR
DASS_DEP_AGGRPearson's r    
 df    
 p-value    
DASS_STRESS_AGGRPearson's r0.784   
 df28   
 p-value< .001   
DASS_ANSIA_AGGRPearson's r0.6920.813  
 df2828  
 p-value< .001< .001  
UCLA_AGGRPearson's r0.5680.5090.322 
 df282828 
 p-value0.0010.0040.083 
RSE_AGGRPearson's r-0.433-0.283-0.290-0.312
 df28282828
 p-value0.0170.1300.1200.094

 

Linear Regression

Model Fit Measures
ModelRAdjusted R²
10.8360.6990.650

 

Model Coefficients - DASS_DEP_AGGR
PredictorEstimateSEtpStand. Estimate
Intercept-0.1200.632-0.1890.851 
DASS_STRESS_AGGR0.4680.2082.2510.0330.475
DASS_ANSIA_AGGR0.2550.2660.9590.3470.186
UCLA_AGGR0.3320.2101.5790.1270.210
RSE_AGGR-0.2820.186-1.5140.143-0.179

 

Assumption Checks

Durbin–Watson Test for Autocorrelation
AutocorrelationDW Statisticp
0.2331.440.148
[3]

 

Collinearity Statistics
 VIFTolerance
DASS_STRESS_AGGR3.700.271
DASS_ANSIA_AGGR3.130.320
UCLA_AGGR1.470.679
RSE_AGGR1.160.862
[3]

 

Moderation

Moderation Estimates
 EstimateSEZp
.....
.....
 ....

 

GLM Mediation Analysis

Models Info
   
Get started Select at least one mediator
Get Started Select at least one factor or covariate as independent variable
Overal Model.The mediational model is incomplete
[4]

 

Path Model

Conceptual Diagram

[5]

Diagram notes
Red paths indicate required coefficients

 

Mediation

Indirect and Total Effects
TypeEffectEstimateSELowerUpperβzp
 

 

[6]

Moderation

Moderation Estimates
 EstimateSEZp
.....
DASS_STRESS_AGGR....
DASS_STRESS_AGGR....

 

GLM Mediation Analysis

Models Info
   
Mediators Models  
 m1DASS_DepressX3Qy ~ RSE + DASS_Depress + DASS_Stress
 m2DASS_Stress_t2 ~ RSE + DASS_Depress + DASS_Stress
Full Model  
 m3DASS_Depress_t3 ~ DASS_DepressX3Qy + DASS_Stress_t2 + RSE + DASS_Depress + DASS_Stress
Indirect Effects  
 IE 1RSE ⇒ DASS_Depress_t2 ⇒ DASS_Depress_t3
 IE 2RSE ⇒ DASS_Stress_t2 ⇒ DASS_Depress_t3
 IE 3DASS_Depress ⇒ DASS_Depress_t2 ⇒ DASS_Depress_t3
 IE 4DASS_Depress ⇒ DASS_Stress_t2 ⇒ DASS_Depress_t3
 IE 5DASS_Stress ⇒ DASS_Depress_t2 ⇒ DASS_Depress_t3
 IE 6DASS_Stress ⇒ DASS_Stress_t2 ⇒ DASS_Depress_t3
   
Sample sizeN30
[4]

 

Path Model

Conceptual Diagram

[5]

Diagram notes
Covariances among IV are estimated but not shown

 

Mediation

Indirect and Total Effects
95% C.I. (a)
TypeEffectEstimateSELowerUpperβzp
IndirectRSE ⇒ DASS_Depress_t2 ⇒ DASS_Depress_t30.03700.1459-0.24890.32290.02370.2530.800
 RSE ⇒ DASS_Stress_t2 ⇒ DASS_Depress_t3-0.05950.0741-0.20470.0857-0.0382-0.8030.422
 DASS_Depress ⇒ DASS_Depress_t2 ⇒ DASS_Depress_t30.22350.1527-0.07570.52270.25701.4640.143
 DASS_Depress ⇒ DASS_Stress_t2 ⇒ DASS_Depress_t3-0.05300.0674-0.18510.0790-0.0610-0.7870.431
 DASS_Stress ⇒ DASS_Depress_t2 ⇒ DASS_Depress_t30.16140.1461-0.12500.44790.17441.1050.269
 DASS_Stress ⇒ DASS_Stress_t2 ⇒ DASS_Depress_t30.13030.1470-0.15780.41830.14070.8860.375
ComponentRSE ⇒ DASS_Depress_t20.05790.2282-0.38930.50520.03920.2540.800
 DASS_Depress_t2 ⇒ DASS_Depress_t30.63790.16830.30800.96780.60643.789< .001
 RSE ⇒ DASS_Stress_t2-0.40260.2368-0.86670.0615-0.2501-1.7000.089
 DASS_Stress_t2 ⇒ DASS_Depress_t30.14770.1622-0.17020.46560.15280.9110.363
 DASS_Depress ⇒ DASS_Depress_t20.35040.2207-0.08220.78300.42371.5870.112
 DASS_Depress ⇒ DASS_Stress_t2-0.35920.2291-0.80810.0898-0.3992-1.5680.117
 DASS_Stress ⇒ DASS_Depress_t20.25310.2191-0.17640.68260.28751.1550.248
 DASS_Stress ⇒ DASS_Stress_t20.88200.22740.43631.32770.92113.878< .001
DirectRSE ⇒ DASS_Depress_t30.10790.1964-0.27700.49290.06940.5500.583
 DASS_Depress ⇒ DASS_Depress_t3-0.22210.2042-0.62220.1781-0.2553-1.0880.277
 DASS_Stress ⇒ DASS_Depress_t30.35870.2175-0.06750.78490.38741.6490.099
TotalRSE ⇒ DASS_Depress_t30.08540.2512-0.40690.57780.05490.3400.734
 DASS_Depress ⇒ DASS_Depress_t3-0.05160.2430-0.52790.4247-0.0593-0.2120.832
 DASS_Stress ⇒ DASS_Depress_t30.65040.24130.17761.12330.70252.6960.007
Nota. Confidence intervals computed with method: Standard (Delta method)
Nota. Betas are completely standardized effect sizes
[6]

 

Linear Regression

Model Fit Measures
ModelR
10.7660.586

 

Model Coefficients - DASS_Stress_t3
PredictorEstimateSEtpStand. Estimate
Intercept-2.90191.3915-2.0850.048 
età0.07450.04531.6460.1130.2880
Genere0.61560.20892.9470.0070.4537
RSE0.10060.30810.3260.7470.0580
UCLA_TOT0.32460.29381.1050.2810.1901
DASS_Depress-0.77480.3057-2.5350.019-0.8001
DASS_Stress1.15430.27784.155< .0011.1198

 

ANOVA a Misure Ripetute

Effetti Entro i Sggetti
 Somma dei QuadratigdlMedia QuadraticaFp
MR Fattore 10.30120.15071.880.162
Residuo4.657580.0803  
Nota. Somma dei quadrati Tipo 3
[7]

 

Effetti Tra Soggetti
 Somma dei QuadratigdlMedia QuadraticaFp
Residuo12.1290.418  
Nota. Somma dei quadrati Tipo 3

 

Riferimenti

[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).

[3] Fox, J., & Weisberg, S. (2020). car: Companion to Applied Regression. [R package]. Retrieved from https://cran.r-project.org/package=car.

[4] Gallucci, M. (2020). jAMM: jamovi Advanced Mediation Models. [jamovi module]. Retrieved from https://jamovi-amm.github.io/.

[5] Soetaert, K. (2019). diagram: Functions for Visualising Simple Graphs (Networks), Plotting Flow Diagrams. [R package]. Retrieved from https://cran.r-project.org/package=diagram.

[6] Rosseel, Y. (2019). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. link.

[7] Singmann, H. (2018). afex: Analysis of Factorial Experiments. [R package]. Retrieved from https://cran.r-project.org/package=afex.