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Preview

Image compression, the art and science of reducing the amount of data required to 
represent an image,  is one of the most useful and commercially successful technologies in 
the field of digital image processing.

Everyone who owns a digital camera, surfs the web, or streams the latest Hollywood movies 
over the Internet benefits from the algorithms and standards that will be discussed here.

The material we will see is applicable to both still-image and video applications. 
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Fundamentals

The term data compression refers to the process of reducing the amount of data required to 
represent a given quantity of information. 

In this definition, data and information are not the same; data are the means by which 
information is conveyed. 

Because various amounts of data can be used to represent the same amount of information, 
representations that contain irrelevant or repeated information are said to contain 
redundant data. 

If we let b and b′ denote the number of bits in two representations of the same information, 
the relative data redundancy, R, of the representation with b bits is

where C, commonly called the compression ratio, is defined as

In the context of digital image compression, b usually is the number of bits needed to 
represent an image as a 2-D array of intensity values. 
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Fundamentals

Two-dimensional intensity arrays suffer from three principal types of data redundancies:

1. Coding redundancy. A code is a system of symbols (letters, numbers, bits) used to 
represent a body of information or set of events. Each piece of information or event is 
assigned a sequence of code symbols, called a code word. The number of symbols in 
each code word is its length. The 8-bit codes that are used to represent the intensities in 
most 2-D intensity arrays contain more bits than are needed to represent the intensities.

2. Spatial and temporal redundancy. Because the pixels of most 2-D intensity arrays are 
correlated spatially, information is unnecessarily replicated in the representations of the 
correlated pixels. In a video sequence, temporally correlated pixels also duplicate 
information.

3. Irrelevant information. Most 2-D intensity arrays contain information that is ignored by 
the human visual system and/or extraneous to the intended use of the image. It is 
redundant in the sense that it is not used.
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Fundamentals
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Coding redundancy

Assume that a discrete random variable rk in the interval [0, L - 1] is used to represent the 
intensities of an M × N image, and that each rk occurs with probability pr(rk).

where L is the number of intensity values, and nk is the number of times that the k-th
intensity appears in the image. 

If the number of bits used to represent each value of rk is l(rk), then the average number of 
bits required to represent each pixel is

The total number of bits required to represent an M × N image is MNLavg. 

If the intensities are represented using a natural m-bit fixed-length code, Lavg = m.
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Coding redundancy

In the first figure m=8. Consider the following variable length code:
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Coding redundancy

As the preceding example shows, coding redundancy is present when the codes assigned to 
a set of events (such as intensity values) do not take full advantage of the probabilities of 
the events. 

Coding redundancy is almost always present when the intensities of an image are 
represented using a natural binary code. 

The reason is that most images are composed of objects that have a regular and somewhat 
predictable morphology (shape) and reflectance, and are sampled so the objects being 
depicted are much larger than the picture elements.

The natural consequence is that, for most images, certain intensities are more probable 
than others.

A natural binary encoding assigns the same number of bits to both the most and least 
probable values, failing to minimize Lavg, and resulting in coding redundancy.
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Spatial and temporal redundancy

Consider the computer-generated collection of constant intensity lines in the second figure. 

In the corresponding 2-D intensity array:

1. All 256 intensities are equally probable: the histogram of the image is uniform.

2. Because the intensity of each line was selected randomly, its pixels are independent of 
one another in the vertical direction.

3. Because the pixels along each line are identical, they are maximally correlated in the 
horizontal direction.

Observations 2 and 3 reveal a significant spatial redundancy that can be eliminated by 
representing the image as a sequence of run-length pairs, where each run-length pair 

specifies the start of a new intensity and the number of consecutive pixels that have 

that intensity.
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Spatial and temporal redundancy

In most images, pixels are correlated spatially (in both x and y) and in time (in videos).

Because most pixel intensities can be predicted reasonably well from neighboring 
intensities, the information carried by a single pixel is small. 

Much of its visual contribution is redundant in the sense that it can be inferred from its 
neighbors. 

To reduce the redundancy associated with spatially and temporally correlated pixels, a 2-D 
intensity array must be transformed into a more efficient but usually “non-visual” 
representation. For example, run-lengths or the differences between adjacent pixels. 

Transformations of this type are called mappings. 

A mapping is said to be reversible if the pixels of the original 2-D intensity array can be 
reconstructed without error from the transformed data set; otherwise, the mapping is said 
to be irreversible.
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Irrelevant information

One of the simplest ways to compress a set of data is to remove superfluous data from the 
set. 

In the context of digital image compression, information that is ignored by the human visual 
system, or is extraneous to the intended use of an image, are obvious candidates for 
omission.
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Irrelevant information

Whether or not this information should be preserved is application dependent. If the 
information is important, as it might be in a medical application like digital X-ray archival, it 

should not be omitted; otherwise, the information is redundant and can be excluded for the 
sake of compression performance.
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Irrelevant information

The redundancy examined here is fundamentally different from the redundancies discussed 
in the previous two sections. 

Its elimination is possible because the information itself is not essential for normal visual 
processing and/or the intended use of the image. 

Because its omission results in a loss of quantitative information, its removal is commonly 
referred to as quantization. 

Because information is lost, quantization is an irreversible operation.
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Measuring image information

How few bits are actually needed to represent the information in an image? 

That is, is there a minimum amount of data that is sufficient to describe an image without 
losing information? 

Information theory provides the mathematical framework to answer this questions.

Its fundamental premise is that the generation of information can be modeled as a 
probabilistic process which can be measured in a manner that agrees with intuition.

A random event E with probability P(E) is said to contain

units of information. If P(E) = 1, I(E) = 0 and no information is attributed to it.

The base of the logarithm determines the unit used to measure information.

If the base 2 is selected, the unit of information is the bit. 

Note that if P(E) = ½, I(E) = - log2 ½ or 1 bit.
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Measuring image information

Given a source of statistically independent random events from a discrete set of 

possible events {a1,a2, …,aJ } with associated probabilities {P(a1 ), P(a2 ), …, P(aJ )}, 

the average information per source output, called the entropy of the source, is

The aj in this equation are called source symbols. Because they are statistically 
independent, the source itself is called a zero-memory source.

If an image is considered to be the output of an imaginary zero-memory “intensity source,” 
we can use the histogram of the observed image to estimate the symbol probabilities of the 
source. Then, the intensity source’s entropy becomes
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Measuring image information

For the first image :

The variable length code gave 1.81 bit/pixel. 

Although this is higher than the 1.6614 bits/pixel entropy estimate, Shannon’s first 
theorem, also called the noiseless coding theorem, assures us that the image can be 
represented with as few as 1.6614 bits/pixel. 

To prove it in a general way, Shannon looked at representing groups of consecutive source 

symbols with a single code word, and showed that

with Lavg,n the average number of code symbols required to represent all n-symbol groups.
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Measuring image information

Finally, we note that although the entropy provides a lower bound on the compression that 
can be achieved when directly coding statistically independent pixels, it breaks down when 
the pixels of an image are correlated. 

Blocks of correlated pixels can be coded with fewer average bits per pixel than the equation 
predicts. 

Less correlated descriptors (such as intensity run-lengths) are normally selected and coded.

When the output of a source of information depends on a finite number of preceding 
outputs, the source is called a Markov source or finite memory source.
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Fidelity criteria

Because information is lost, a means of quantifying the nature of the loss is needed. 

Two types of criteria can be used for such an assessment: 

(1) objective fidelity criteria, and (2) subjective fidelity criteria.

The root-mean-squared error, erms, is the square root of the squared error averaged over 
the M×N array, or

the mean-squared signal-to-noise ratio of the output image, denoted SNRms, can be defined 
as 
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Fidelity criteria
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Image compression model
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Image compression model

In general, fˆ(x, …) may or may not be an exact replica of f(x, …). If it is, the compression 
system is called error free, lossless, or information preserving. If not, the reconstructed 
output image is distorted, and the compression system is referred to as lossy.

The encoder is designed to remove the redundancies described in the previous sections 
through a series of three independent operations. In the first stage of the encoding process, 
a mapper transforms f(x, …) into a (usually nonvisual) format designed to reduce spatial and 
temporal redundancy. This operation generally is reversible and may or may not directly 
reduce the amount of data required to represent the image.

The quantizer reduces the accuracy of the mapper’s output in accordance with a pre-
established fidelity criterion. The goal is to keep irrelevant information out of the 
compressed representation. This operation is irreversible. It must be omitted when error-
free compression is desired. 



22

Image compression model

The symbol coder generates a fixed-length or variable-length code to represent the 
quantizer output, and maps the output in accordance with the code. In many cases, a 
variable-length code is used. The shortest code words are assigned to the most frequently 
occurring quantizer output values, thus minimizing coding redundancy. This operation is 
reversible. 

Upon its completion, the input image has been processed for the removal of each of the 
three redundancies described in the previous sections.

The decoder contains only two components: a symbol decoder and an inverse mapper. 

They perform, in reverse order, the inverse operations of the encoder’s symbol encoder and 
mapper. 

Because quantization results in irreversible information loss, an inverse quantizer block is 
not included in the general decoder model. 



23

Image formats, containers, and compression standards

An image file format is a standard way to organize and store image data. It defines how the 
data is arranged and the type of compression (if any) that is used. 

An image container is similar to a file format, but handles multiple types of image data.

Image compression standards, on the other hand, define procedures for compressing and 
decompressing images—that is, for reducing the amount of data needed to represent an 
image. 
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Image formats, containers, and compression standards
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Image formats, containers, and compression standards
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Image formats, containers, and compression standards
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Image formats, containers, and compression standards
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Image formats, containers, and compression standards
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Image formats, containers, and compression standards
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Image formats, containers, and compression standards
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Image formats, containers, and compression standards
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Huffman coding 

One of the most popular techniques for removing coding redundancy is due to Huffman.

When coding the symbols of an information source individually, Huffman coding yields the 
smallest possible number of code symbols per source symbol. 

In terms of Shannon’s first theorem, the resulting code is optimal for a fixed value of n, 
subject to the constraint that the source symbols be coded one at a time. 

In practice, the source symbols may be either the intensities of an image or the output of an 
intensity mapping operation (pixel differences, run lengths, and so on).
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Huffman coding 

The first step in Huffman’s approach is to create a series of source reductions by ordering 
the probabilities of the symbols under consideration, then combining the lowest probability 
symbols into a single symbol that replaces them in the next source reduction.



34

Huffman coding 

The second step in Huffman’s procedure is to code each reduced source, starting with the 
smallest source and working back to the original source.
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Huffman coding 

Huffman’s procedure creates the optimal code for a set of symbols and probabilities subject 
to the constraint that the symbols be coded one at a time. 

After the code has been created, coding and/or error-free decoding is accomplished in a 
simple lookup table manner. 

The code itself is an instantaneous uniquely decodable block code. 

It is called a block code because each source symbol is mapped into a fixed sequence of 
code symbols. 

It is instantaneous because each code word in a string of code symbols can be decoded 
without referencing succeeding symbols. 

It is uniquely decodable because any string of code symbols can be decoded in only one 
way. 
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Huffman coding 

When a large number of symbols is to be coded, the construction of an optimal Huffman 
code is a nontrivial task. For the general case of J source symbols, J symbol 

probabilities, J − 2 source reductions, and J − 2 code assignments are required. 

When source symbol probabilities can be estimated in advance, “near optimal” coding can 

be achieved with pre-computed Huffman codes. 

Several popular image compression standards, including the JPEG and MPEG standards 
specify default Huffman coding tables that have been pre-computed based on experimental 
data. 



37

Arithmetic coding 

Unlike the variable-length codes as Huffman code, arithmetic coding generates nonblock
codes. 

In arithmetic coding, a one-to-one correspondence between source symbols and code 
words does not exist. 

Instead, an entire sequence of source symbols is assigned a single arithmetic code word.

The code word itself defines an interval of real numbers between 0 and 1. 

As the number of symbols in the message increases, the interval used to represent it 
becomes smaller, and the number of bits required to represent the interval becomes larger.

Each symbol of the message reduces the size of the interval in accordance with its 
probability of occurrence. 

Because the technique does not require that the symbols be coded one at a time it achieves 
(but only in theory) the bound established by Shannon’s first theorem
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Arithmetic coding 
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Arithmetic coding 

In the arithmetically coded message of the last example, three decimal digits are used to 
represent the five-symbol message. 

This translates into 0.6 decimal digits per source symbol and compares favorably with the 
entropy of the source, which is 0.58 decimal digits per source symbol. 

As the length of the sequence being coded increases, the resulting arithmetic code 
approaches the bound established by Shannon’s first theorem. 

In practice, two factors cause coding performance to fall short of the bound: 

(1) the addition of the end-of-message indicator that is needed to separate one message 
from another, and 

(2) the use of finite precision arithmetic. 

Practical implementations of arithmetic coding address the latter problem by introducing a 
scaling strategy and a rounding strategy. 
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Arithmetic coding 

With accurate input symbol probability models, i.e., models that provide the true 
probabilities of the symbols being coded, arithmetic coders are near optimal. 

However, inaccurate probability models can lead to non-optimal results. 

A simple way to improve the accuracy of the probabilities employed is to use an adaptive, 
context dependent probability model. 

Adaptive probability models update symbol probabilities as symbols are coded or become 
known. 

Thus, the probabilities adapt to the local statistics of the symbols being coded. 

Context-dependent models provide probabilities that are based on a predefined 
neighborhood of pixels, called the context, around the symbols being coded. 

Normally, a causal context (one limited to symbols that have already been coded) is used. 
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Arithmetic coding 
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Arithmetic coding 

As each symbol (or bit) begins the coding process, its context is formed in the Context 
determination block. 

Three possible contexts that can be used: (1) the immediately preceding symbol, (2) a group 
of preceding symbols, and (3) some number of preceding symbols plus symbols on the 
previous scan line. 

For the three cases, the Probability estimation block must manage 21 (or 2), 28 (or 256), and 
25 (or 32) contexts and their associated probabilities. 

For instance, if the first context is used, conditional probabilities P (0|a = 0), P (1|a = 0), 

P(0|a = 1), and P (1|a = 1) must be tracked. 

The appropriate probabilities are then passed to the Arithmetic coding block as a function 
of the current context, and drive the generation of the arithmetically coded output 
sequence. 

The probabilities associated with the context involved in the current coding step are then 
updated to reflect the fact that another symbol within that context has been processed.
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Run-length coding 

Images with repeating intensities along their rows can often be compressed by representing 
runs of identical intensities as run-length pairs, where each run-length pair specifies the 
start of a new intensity and the number of consecutive pixels that have that intensity. 

The technique, referred to as run-length encoding (RLE), was developed in the 1950s and 
became, along with its 2-D extensions, the standard compression approach in facsimile 
(FAX) coding. 

Compression is achieved by eliminating a simple form of spatial redundancy—groups of 
identical intensities. 

When there are few (or no) runs of identical pixels, run-length encoding results in data 
expansion.
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RLE in the BMP file format

The BMP file format uses a form of run-length encoding in which image data is represented 
in two different modes: encoded and absolute.

In encoded mode, a two byte RLE representation is used. The first byte specifies the number 
of consecutive pixels that have the color index contained in the second byte. The 8-bit color 
index selects the run’s intensity (color or gray value) from a table of 256 possible intensities.

In absolute mode, the first byte is 0, and the second byte signals one of four possible 
conditions:
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Run-length coding 

Run-length encoding is particularly effective when compressing binary images. 

Because there are only two possible intensities (black and white), adjacent pixels are more 
likely to be identical. 

In addition, each image row can be represented by a sequence of lengths only, rather than 
length-intensity pairs. 

The basic idea is to code each contiguous group (i.e., run) of 0’s or 1’s encountered in a left -
to-right scan of a row by its length and to establish a convention for determining the value 
of the run. The most common conventions are 

(1) to specify the value of the first run of each row, or 

(2) to assume that each row begins with a white run, whose run length may in fact be zero.

Additional compression can be achieved by variable-length coding the run lengths 
themselves.
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Run-length coding 

Two of the oldest and most widely used image compression standards are the CCITT Group
3 and 4 standards for binary image compression. 

They were originally designed as facsimile (FAX) coding methods for transmitting documents 
over telephone networks. 

The Group 3 standard uses a 1-D run-length coding technique in which the last K - 1 lines of 
each group of K lines (for K = 2 or 4) can be optionally coded in a 2-D manner. 

The Group 4 standard is a simplified or streamlined version of the Group 3 standard in which 
only 2-D coding is allowed. 

Both standards use the same 2-D coding approach, which is two-dimensional in the sense 
that information from the previous line is used to encode the current line.
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Symbol-based coding 

In symbol- or token-based coding, an image is represented as a collection of frequently 
occurring subimages, called symbols. 

Each such symbol is stored in a symbol dictionary and the image is coded as a set of triplets
{(x1, y1,t1),(x2, y2,t2), …}, where each (xi, yi) pair specifies the location of a symbol in the 
image and token ti is the address of the symbol or subimage in the dictionary. 

That is, each triplet represents an instance of a dictionary symbol in the image. 

Storing repeated symbols only once can compress images significantly, particularly in 
document storage  and retrieval applications where the symbols are often character 
bitmaps that are repeated many times.



48

Symbol-based coding 

The starting image has 9 × 51 × 1 or 459 bits and, assuming that each triplet is composed of 
three bytes, the compressed representation has (6 × 3 × 8) + [(9 × 7) + (6 × 7) + (6 × 6)] or 

285 bits; the resulting compression ratio C = 1.61.
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Bit-plane coding

The run-length and symbol-based techniques can be applied to images with more than two 
intensities by individually processing their bit planes. 

The technique, called bit-plane coding, is based on the concept of decomposing a multilevel 
(monochrome or color) image into a series of binary images and compressing each binary 
image via one of several well-known binary compression methods.

The intensities of an m-bit monochrome image can be represented in the form of 

the base-2 polynomial

A simple method of decomposing the image into a collection of binary images is to separate 
the m coefficients of the polynomial into m 1-bit bit planes.

The inherent disadvantage of this decomposition approach is that small changes in intensity 
can have a significant impact on the complexity of the bit planes.
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Bit-plane coding

An alternative decomposition approach is to first represent the image by an m-bit Gray
code. 

The m-bit Gray code gm−1 … g2 g1g0 that corresponds to the polynomial can be computed 
from

Here,    denotes the exclusive OR operation. 

This code has the unique property that successive code words differ in only one bit position.

Small changes in intensity are less likely to affect all m bit planes.
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Bit-plane coding



52

Bit-plane coding
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Bit-plane coding
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Bit-plane coding
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Bit-plane coding
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Block transform coding

Is a compression technique that divides an image into small non-overlapping blocks of equal 
size (e.g., 8 * 8) and processes the blocks independently using a 2-D transform. 

In block transform coding, a reversible, linear transform (such as the Fourier transform) is 
used to map each block or subimage into a set of transform coefficients, which are then 
quantized and coded. 

For most images, a significant number of the coefficients have small magnitudes and can be 

coarsely quantized (or discarded entirely) with little image distortion. 

A variety of transformations, including the DFT, can be used to transform the image data.
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Block transform coding
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Block transform coding

An M × N input image is subdivided first into subimages of size n × n, which are then 
transformed to generate MN/n2 subimage transform arrays, each of size n × n. 

The goal of the transformation process is to decorrelate the pixels of each subimage, or to 
pack as much information as possible into the smallest number of transform coefficients. 

The quantization stage then selectively eliminates or more coarsely quantizes the 
coefficients that carry the least amount of information in a predefined sense. 

These coefficients have the smallest impact on reconstructed subimage quality. 

The encoding process terminates by coding (normally using a variable-length code) the 
quantized coefficients. 

Any or all of the transform encoding steps can be adapted to local image content, called 
adaptive transform coding, or fixed for all subimages, called nonadaptive transform coding.
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Transform selection

Block transform coding systems based on a variety of discrete 2-D transforms have been 
constructed and/or studied extensively. 

The choice of a particular transform in a given application depends on the amount of 
reconstruction error that can be tolerated and the computational resources available. 
Compression is achieved during the quantization of the transformed coefficients (not 
during the transformation step).
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Transform selection

Removing 50% of the 
transformed 
coefficients….
The actual rms errors 
were 2.32, 1.78, and 
1.13 intensities, 
respectively.
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Transform selection

The small differences in mean-squared reconstruction error are related directly to the 
energy or information packing properties of the transforms employed.

An n × n subimage g(x, y) can be expressed as a function of its 2-D transform T(u,v):

G, the matrix containing the pixels of the input subimage, is explicitly defined as a linear 
combination of n2 basis images of size n × n. In fact,

Where s(u,v,x,y) are the inverse transform coefficients. For any u, v pair, varying x,y we 
obtain a basis image. 

𝑔 𝑥, 𝑦 = 

𝑢=0

𝑛−1



𝑣=0

𝑛−1

𝑇 𝑢, 𝑣 𝑠(𝑢, 𝑣, 𝑥, 𝑦)
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Transform selection
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Transform selection
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Walsh Hadamard transform

Walsh-Hadamard transforms (WHTs) are non-sinusoidal transformations that decompose a 
function into a linear combination of rectangular basis functions, called Walsh functions, of 
value +1 and −1. 

The ordering of the basis functions within a Walsh-Hadamard transformation matrix 
determines the variant of the transform that is being computed. 

For Hadamard ordering (also called natural ordering), for N=2

where the matrix on the right (without the scalar multiplier) 

is called a Hadamard matrix of order 2. Letting HN denote the Hadamard matrix of order N, 
a simple recursive relationship for generating Hadamard-ordered transformation matrices is
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Walsh Hadamard transform

The number of sign changes along a row of a Hadamard 
matrix is known as the sequency of the row. 
Like frequency, sequency measures the rate of change of a 
function, and like the sinusoidal basis functions of the 
Fourier transform, every  Walsh function has a unique 
sequency. 
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Walsh Hadamard transform

Arranging the basis vectors of a Hadamard matrix so the sequency increases as a function of 
u is both desirable and common in signal and image processing applications. 
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Walsh Hadamard transform
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Transform selection

If we now define a transform coefficient masking function

an approximation of G can be obtained from the truncated expansion

where χ(u,v) is constructed to eliminate the basis images that make the smallest 

contribution to the total sum.
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Transform selection

The mean-squared error between subimage G and approximation Gˆ then is
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Transform selection

The information packing ability of the DCT is superior to that of the DFT and WHT. 

Although this condition usually holds for most images, the Karhunen-Loève transform, not 
the DCT, is the optimal transform in an information packing sense. 

In fact, the KLT minimizes the mean-squared error for any input image and any number of 
retained coefficients. 

However, because the KLT  is data dependent, obtaining the KLT basis images for each 
subimage, in general, is a nontrivial computational task. 

For this reason, the KLT is used infrequently for image compression. 

Most transform coding systems are based on the DCT, which provides a good compromise 
between information packing ability and computational complexity. 

It has the advantages of packing the most information into the fewest coefficients (for most 
images), and minimizing the block-like appearance, called blocking artifact, that results 
when the boundaries between subimages become visible. 
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Subimage size selection

Another significant factor affecting transform coding error and computational complexity is 
subimage size. 

In most applications, images are subdivided so the correlation (redundancy) between 
adjacent subimages is reduced to some acceptable level and so n is an integer power of 2 
where, as before, n is the subimage dimension. 

The latter condition simplifies the computation of the subimage transforms.

In general, both the level of compression and computational complexity increase as the 
subimage size increases. 

The most popular subimage sizes are 8 × 8 and 16 ×16.
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Subimage size selection

The data plotted were obtained by dividing the monochrome image of Lena into subimages
of size n × n, for n = 2,4,8,16,…,256,512, computing the transform of each subimage, 
truncating 75% of the resulting coefficients, and taking the inverse transform of the 
truncated arrays.
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Bit allocation

The reconstruction error is a function of the number and relative importance of the 
transform coefficients that are discarded, as well as the precision that is used to represent 
the retained coefficients. 

In most transform coding systems, the retained coefficients are selected on the basis of
maximum variance, called zonal coding, or on the basis of maximum magnitude, called 
threshold coding. 

The overall process of truncating, quantizing, and coding the coefficients of a transformed 
subimage is commonly called bit allocation. 
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Bit allocation
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Zonal Coding Implementation

Zonal coding is based on the information theory concept of viewing information as 
uncertainty: the transform coefficients of maximum variance carry the most image 
information, and should be retained in the coding process. 

The variances themselves can be calculated directly from the ensemble of MN/n2 

transformed subimage arrays or based on an assumed image model.

In either case, the zonal sampling process can be viewed as multiplying each T(u,v) by the 
corresponding element in a zonal mask, which is constructed by placing a 1 in the locations 
of maximum variance and a 0 in all other locations. 

Coefficients of maximum variance usually are located around the origin of an image 
transform.

The coefficients retained during the zonal sampling process must be quantized and coded, 
so zonal masks are sometimes depicted showing the number of bits used to code each 
coefficient .
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Zonal Coding Implementation
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Threshold Coding Implementation

Zonal coding usually is implemented by using a single fixed mask for all subimages. 

Threshold coding, however, is inherently adaptive in the sense that the location of the 
transform coefficients retained for each subimage vary from one subimage to another. 

Threshold coding is the adaptive transform coding approach most often used in practice 
because of its computational simplicity. 

The underlying concept is that, for any subimage, the transform coefficients of largest 
magnitude make the most significant contribution to reconstructed subimage quality.

Because the locations of the maximum coefficients vary from one subimage to another, the 
elements of χ(u,v)T(u,v) normally are reordered (in a predefined manner) to form a 1-D, run-
length coded sequence. 
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Threshold Coding Implementation
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Threshold Coding Implementation

There are three basic ways to threshold a transformed subimage: 

(1) A single global threshold can be applied to all subimages; 

(2) a different threshold can be used for each subimage, or; 

(3) the threshold can be varied as a function of the location of each coefficient within the 
subimage. 

In the first approach, the level of compression differs from image to image, depending on 
the number of coefficients that exceed the global threshold. 

In the second, called N-largest coding, the same number of coefficients is discarded for each 
subimage. As a result, the code rate is constant and known in advance. 

The third technique, like the first, results in a variable code rate, but offers the advantage 
that thresholding and quantization can be combined by replacing χ(u,v)T(u,v) with
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Threshold Coding Implementation

Z(u,v) is an element of the following transform normalization array:

Before              can be inverse transformed to obtain an approximation of subimage g(x, y), it 
must be multiplied by Z(u,v).
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Threshold Coding Implementation
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Threshold Coding Implementation
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JPEG

One of the most popular continuous tone, still-frame compression standards is the JPEG 
standard. 

It defines three different coding systems: 

(1) a lossy baseline coding system, which is based on the DCT and is adequate for most 

compression applications; 

(2) an extended coding system for greater compression, higher precision, or progressive 
reconstruction applications; and 

(3) a lossless independent coding system for reversible compression. 

To be JPEG compatible, a product or system must include support for the baseline system.

No particular file format, spatial resolution, or color space model is specified.
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JPEG

In the baseline system, often called the sequential baseline system, the input and output 
data precision is limited to 8 bits, whereas the quantized DCT values are restricted to 11 
bits. The compression itself is performed in three sequential steps: 

DCT computation, quantization, and variable-length code assignment. 

The image is first subdivided into pixel blocks of size 8 × 8, which are processed left-to-right, 

top-to-bottom. 

For each  8 × 8 block, its 64 pixels are level-shifted by subtracting the quantity 2k−1, where 2k

is the maximum number of intensity levels. 

The 2-D discrete cosine transform of the block is then computed, quantized and reordered, 
using the zigzag pattern, to form a 1-D sequence of quantized coefficients.

Because the one-dimensionally reordered array generated under the zigzag pattern is 
arranged qualitatively according to increasing spatial frequency, the JPEG coding procedure 
is designed to take advantage of the long runs of zeros that normally result from the 
reordering. 
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JPEG
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JPEG

The nonzero AC coefficients are coded using a variable-length code (Huffman) that defines 
the coefficient values and number of preceding zeros. 

The DC coefficient is difference coded relative to the DC coefficient of the previous 
subimage. 

The JPEG recommended luminance quantization array is the one we have seen that can be 
scaled to provide a variety of compression levels. 

The scaling of this array allows users to select the “quality” of JPEG compressions. 
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JPEG
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Predictive coding 

The predictive coding approach is based on eliminating the redundancies of closely spaced 
pixels—in space and/or time—by extracting and coding only the new information in each 
pixel. 

The new information of a pixel is defined as the difference between the actual and 
predicted value of the pixel.
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Lossless predictive coding 



90

Lossy predictive coding 
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Lossless predictive coding 

Various local, global, and adaptive methods can be used to generate fˆ(n). 

In many cases, the prediction is formed as a linear combination of m previous samples. 

That is,

If the input sequence is considered to be samples of an image, the f(n) are pixels and the m
samples used to predict the value of each pixel come from the current scan line (called 1-D 
linear predictive coding), from the current and previous scan lines (called 2-D linear 
predictive coding), or from the current image and previous images in a sequence of images 
(called 3-D linear predictive coding). Thus, for 1-D linear predictive image coding
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Lossless predictive coding 

In 2-D predictive coding, the prediction is a function of the previous pixels in a left-to-right, 
top-to-bottom scan of an image. 

In the 3-D case, it is based on these pixels and the previous pixels of preceding frames.

The prediction cannot be evaluated for the first m pixels of each line, so those pixels must 
be coded by using other means (such as a Huffman code) and considered as an overhead of 
the predictive coding process. 
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Lossless predictive coding 

The entropy of the prediction 
error is significantly less than the 
estimated entropy of the original 
image (3.99 bits pixel as opposed 
to 7.25 bits pixel). 

This decrease in entropy reflects 
removal of a great deal of spatial 
redundancy, despite the fact that
for k-bit images, (k + 1)-bit 
numbers are needed to represent 
accurately the prediction error 
sequence e(x, y). 
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Lossless predictive coding 

The standard deviation of the 
error is much smaller than in the 
previous example: 3.76 bits pixel 
as opposed to 15.58 bits pixel. 

In addition, the entropy of the 
prediction error has decreased 
from 3.99 to 2.59 bits pixel. 
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Motion compensated prediction residuals

Successive frames in a video sequence often are very similar. 

Coding their differences can reduce temporal redundancy and provide significant 
compression. 

However, when a sequence of frames contains rapidly moving objects—or involves camera 
zoom and pan, sudden scene changes, or fade-ins and fade-outs—the similarity between 
neighboring frames is reduced, and compression is affected negatively. 

Video compression systems avoid the problem of data expansion in two ways:

1. By tracking object movement and compensating for it during the prediction and 
differencing process.

2. By switching to an alternate coding method when there is insufficient interframe 
correlation (similarity between frames) to make predictive coding advantageous.

The first of these, called motion compensation.
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Motion compensated prediction residuals

When there is insufficient interframe correlation to make predictive coding effective, the 
second problem is typically addressed using a block-oriented 2-D transform, like JPEG’s DCT-
based coding. 

Frames compressed in this way (i.e., without a prediction residual) are called intraframes or 
Independent frames (I-frames). 

They can be decoded without access to other frames in the video to which they belong. 

I-frames usually resemble JPEG encoded images, and are ideal starting points for the 
generation of prediction residuals. 

Moreover, they provide a high degree of random access, ease of editing, and resistance to 
the propagation of transmission error. 

As a result, all standards require the periodic insertion of I -frames into the compressed 
video codestream.
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Motion compensated prediction residuals
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Motion compensated prediction residuals

Each video frame is divided into non-overlapping rectangular regions (typically of size 

4 × 4 to 16 × 16) called macroblocks.

The “movement” of each macroblock with respect to its “most likely” position in the 
previous (or subsequent) video frame, called the reference frame, is encoded in a motion 
vector. 

The vector describes the motion by defining the horizontal and vertical displacement from 
the “most likely” position. 

The displacements typically are specified to the nearest pixel, ½ pixel, or ¼ pixel precision. 

If subpixel precision is used, the predictions must be interpolated from a combination of 
pixels in the reference frame. 

An encoded frame that is based on the previous frame is called a Predictive frame (P-
frame); one that is based on the subsequent frame is called a Bidirectional frame (B-frame). 
B-frames require the compressed codestream to be reordered so that frames are presented 
to the decoder in the proper decoding sequence, rather than the natural display order.
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Motion compensated prediction residuals

Motion estimation is the key component of motion compensation. 

During motion estimation, the motion of objects is measured and encoded into motion 
vectors. 

The search for the “best” motion vector requires that a criterion of optimality be defined. 

For example, motion vectors may be selected on the basis of maximum correlation or 
minimum error between macroblock pixels and the predicted from the chosen reference 
frame. 

One of the most commonly used error measures is mean absolute distortion (MAD)

Typically, dx and dy must fall within a limited search region around each macroblock. 

Values from ±8 to ±64 pixels are common, and the horizontal search area is often slightly 
larger than the vertical area. 
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Motion compensated prediction residuals

Motion estimation is performed by searching for the dx and dy that minimize MAD(x, y) 
over the allowed range of motion vector displacements, including subpixel displacements.

This process often is called block matching. 

An exhaustive search guarantees the best possible result, but is computationally expensive 
because every possible motion must be tested over the entire displacement range. 

For 16 ×16 macroblocks and a ±32 pixel displacement, 4225 16 × 16 MAD calculations must 
be performed for each macroblock in a frame when integer displacement precision is used. 
If ½ or ¼ pixel precision is desired, the number of calculations is multiplied by a factor of 4 
or 16, respectively. 

Fast search algorithms can reduce the computational burden, but may or may not yield 
optimal motion vectors.
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Motion compensated prediction residuals

The standard deviation of the 
prediction residual in Fig. 8.34(c) 
is 12.73 intensity levels; its 
entropy is 4.17 bits pixel.

Figure 8.34(d) shows a motion 
compensated prediction residual 
with a much lower standard 
deviation (5.62 as opposed to 
12.73 intensity levels) and slightly 
lower entropy (3.04 vs. 4.17 bits 
pixel). 

The motion prediction used 16 ×
16 macroblocks and compared 
each macroblock against every 16 
× 16 region in Fig. 8.34(a) that fell 
within ±16 pixels of the 
macroblock’s position in (b). 
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Motion compensated prediction residuals
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Motion compensated prediction residuals

Motion estimation is a computationally demanding task. 

Fortunately, only the encoder must estimate macroblock motion. 

Given the motion vectors of the macroblocks, the decoder simply accesses the areas of the 
reference frames that were used in the encoder to form the prediction residuals. 

Because of this, motion estimation is not included in most video compression standards.

Compression standards focus on the decoder, placing constraints on macroblock 
dimensions, motion vector precision, horizontal and vertical displacement ranges, and the 
like. 

Most of the standards use an 8 × 8 DCT for I-frame encoding, but specify a larger area (i.e., 
16 × 16 macroblock) for motion compensation. 

In addition, even the P- and B-frame prediction residuals are transform coded due to 

the effectiveness of DCT coefficient quantization. 
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Motion compensated prediction residuals
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Motion compensated prediction residuals
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High Efficiency Video Coding (HEVC) Standard

1) Coding tree units and coding tree block (CTB) structure:

The core of the coding layer in previous standards was the macroblock, containing a 16×16 
block of luma samples and, in the usual case of 4:2:0 color sampling, two corresponding 8×8 
blocks of chroma samples; whereas the analogous structure in HEVC is the coding tree unit

(CTU), which has a size selected by the encoder and can be larger than a traditional 
macroblock. 

The CTU consists of a luma CTB and the corresponding chroma CTBs and syntax elements. 
The size L×L of a luma CTB can be chosen as L = 16, 32, or 64 samples, with the larger sizes 
typically enabling better compression. 

HEVC then supports a partitioning of the CTBs into smaller blocks using a tree structure and 
quadtree-like signaling.
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High Efficiency Video Coding (HEVC) Standard

2) Coding units (CUs) and coding blocks (CBs): 

The quadtree syntax of the CTU specifies the size and positions of its luma and chroma CBs. 
The splitting of a CTU into luma and chroma CBs is signaled jointly. 

One luma CB and ordinarily two chroma CBs, together with associated syntax, form a

coding unit (CU). 

A CTB may contain only one CU or may be split to form multiple CUs, and each CU has an

associated partitioning into prediction units (PUs) and a tree of transform units (TUs).
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High Efficiency Video Coding (HEVC) Standard

Taken from https://sonnati.wordpress.com/2014/06/20/h265-part-i-technical-overview/
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High Efficiency Video Coding (HEVC) Standard

3) Prediction units and prediction blocks (PBs): 

The decision whether to code a picture area using interpicture or intrapicture prediction is 
made at the CU level. 

Depending on the basic prediction-type decision, the luma and chroma CBs can then be 
further split in size and predicted from luma and chroma prediction blocks (PBs). 

HEVC supports variable PB sizes from 64×64 down to 4×4 samples.
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High Efficiency Video Coding (HEVC) Standard

4) TUs and transform blocks: 

The prediction residual is coded using block transforms. 

The luma CB residual may be identical to the luma transform block (TB) or may be

further split into smaller luma TBs. The same applies to the chroma TBs.

Integer basis functions similar to those of a discrete cosine transform (DCT) are defined for 
the square TB sizes 4×4, 8×8, 16×16, and 32×32. 

For the 4×4 transform of luma intrapicture prediction residuals, an integer transform 
derived from a form of discrete sine transform (DST) is alternatively specified.
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High Efficiency Video Coding (HEVC) Standard

5) Motion vector signaling: 

Advanced motion vector prediction (AMVP) is used, including derivation of several

most probable candidates based on data from adjacent PBs and the reference picture. 

A merge mode for MV coding can also be used, allowing the inheritance of MVs from 
temporally or spatially neighboring PBs.
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High Efficiency Video Coding (HEVC) Standard

6) Motion compensation: 

Quarter-sample precision is used for the MVs, and 7-tap or 8-tap filters are used for

interpolation of fractional-sample positions. 

Similar to H.264/MPEG-4 AVC, multiple reference pictures are used. 

For each PB, either one or two motion vectors can be transmitted, resulting either in 
unipredictive or bipredictive coding, respectively. 

As in H.264/MPEG-4 AVC, a scaling and offset operation may be applied to the prediction 
signal(s) in a manner known as weighted prediction.
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High Efficiency Video Coding (HEVC) Standard

7) Intrapicture prediction: 

The decoded boundary samples of adjacent blocks are used as reference data for spatial 
prediction in regions where interpicture prediction is not performed. 

Intrapicture prediction supports 33 directional modes, plus planar (surface fitting) and

DC (flat) prediction modes. 

The selected intrapicture prediction modes are encoded by deriving most probable

modes (e.g., prediction directions) based on those of previously decoded neighboring PBs.
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High Efficiency Video Coding (HEVC) Standard

8) Quantization control: 

As in H.264/MPEG-4 AVC, uniform reconstruction quantization (URQ) is used in HEVC, with 
quantization scaling matrices supported for the various transform block sizes.

9) Entropy coding: 

Context adaptive binary arithmetic coding (CABAC) is used for entropy coding. 

This is similar to the CABAC scheme in H.264/MPEG-4 AVC, but has undergone several 
improvements to improve its throughput speed (especially for parallel-processing

architectures) and its compression performance, and to reduce its context memory 
requirements.
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High Efficiency Video Coding (HEVC) Standard

10) In-loop deblocking filtering: 

A deblocking filter similar to the one used in H.264/MPEG-4 AVC is operated within the 
interpicture prediction loop. 

However, the design is simplified in regard to its decision-making and filtering processes, 
and is made more friendly to parallel processing.

11) Sample adaptive offset (SAO): 

A nonlinear amplitude mapping is introduced within the interpicture prediction loop after 
the deblocking filter. Its goal is to better reconstruct the original signal amplitudes by using 
a look-up table that is described by a few additional parameters that can be determined by 
histogram analysis at the encoder side.
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High Efficiency Video Coding (HEVC) Standard



117

Study:

•Rafael Gonzalez, Richard Woods, “Digital Image Processing”, 4 th edition, Pearson, 2018
•Chapter 8.1, 8.2, 8.4, 8.6, 8.7, 8.8, 8.9, 8.10

•Sullivan, G. J., Ohm, J. R., Han, W. J., & Wiegand, T. (2012). Overview of the high efficiency 
video coding (HEVC) standard. IEEE Transactions on circuits and systems for video 
technology, 22(12), 1649-1668.

•Ohm, J. R., & Sullivan, G. J. (2012). High efficiency video coding: the next frontier in video 
compression [standards in a nutshell]. IEEE Signal Processing Magazine, 30(1), 152-158.


	Diapositiva 1: Image Compression
	Diapositiva 2: Preview
	Diapositiva 3: Fundamentals
	Diapositiva 4: Fundamentals
	Diapositiva 5: Fundamentals
	Diapositiva 6: Coding redundancy
	Diapositiva 7: Coding redundancy
	Diapositiva 8: Coding redundancy
	Diapositiva 9: Spatial and temporal redundancy
	Diapositiva 10: Spatial and temporal redundancy
	Diapositiva 11: Irrelevant information
	Diapositiva 12: Irrelevant information
	Diapositiva 13: Irrelevant information
	Diapositiva 14: Measuring image information
	Diapositiva 15: Measuring image information
	Diapositiva 16: Measuring image information
	Diapositiva 17: Measuring image information
	Diapositiva 18: Fidelity criteria
	Diapositiva 19: Fidelity criteria
	Diapositiva 20: Image compression model
	Diapositiva 21: Image compression model
	Diapositiva 22: Image compression model
	Diapositiva 23: Image formats, containers, and compression standards
	Diapositiva 24: Image formats, containers, and compression standards
	Diapositiva 25: Image formats, containers, and compression standards
	Diapositiva 26: Image formats, containers, and compression standards
	Diapositiva 27: Image formats, containers, and compression standards
	Diapositiva 28: Image formats, containers, and compression standards
	Diapositiva 29: Image formats, containers, and compression standards
	Diapositiva 30: Image formats, containers, and compression standards
	Diapositiva 31: Image formats, containers, and compression standards
	Diapositiva 32: Huffman coding 
	Diapositiva 33: Huffman coding 
	Diapositiva 34: Huffman coding 
	Diapositiva 35: Huffman coding 
	Diapositiva 36: Huffman coding 
	Diapositiva 37: Arithmetic coding 
	Diapositiva 38: Arithmetic coding 
	Diapositiva 39: Arithmetic coding 
	Diapositiva 40: Arithmetic coding 
	Diapositiva 41: Arithmetic coding 
	Diapositiva 42: Arithmetic coding 
	Diapositiva 43: Run-length coding 
	Diapositiva 44: RLE in the BMP ﬁle format
	Diapositiva 45: Run-length coding 
	Diapositiva 46: Run-length coding 
	Diapositiva 47: Symbol-based coding 
	Diapositiva 48: Symbol-based coding 
	Diapositiva 49: Bit-plane coding
	Diapositiva 50: Bit-plane coding
	Diapositiva 51: Bit-plane coding
	Diapositiva 52: Bit-plane coding
	Diapositiva 53: Bit-plane coding
	Diapositiva 54: Bit-plane coding
	Diapositiva 55: Bit-plane coding
	Diapositiva 56: Block transform coding
	Diapositiva 57: Block transform coding
	Diapositiva 58: Block transform coding
	Diapositiva 59: Transform selection
	Diapositiva 60: Transform selection
	Diapositiva 61: Transform selection
	Diapositiva 62: Transform selection
	Diapositiva 63: Transform selection
	Diapositiva 64: Walsh Hadamard transform
	Diapositiva 65: Walsh Hadamard transform
	Diapositiva 66: Walsh Hadamard transform
	Diapositiva 67: Walsh Hadamard transform
	Diapositiva 68: Transform selection
	Diapositiva 69: Transform selection
	Diapositiva 70: Transform selection
	Diapositiva 71: Subimage size selection
	Diapositiva 72: Subimage size selection
	Diapositiva 73: Bit allocation
	Diapositiva 74: Bit allocation
	Diapositiva 75: Zonal Coding Implementation
	Diapositiva 76: Zonal Coding Implementation
	Diapositiva 77: Threshold Coding Implementation
	Diapositiva 78: Threshold Coding Implementation
	Diapositiva 79: Threshold Coding Implementation
	Diapositiva 80: Threshold Coding Implementation
	Diapositiva 81: Threshold Coding Implementation
	Diapositiva 82: Threshold Coding Implementation
	Diapositiva 83: JPEG
	Diapositiva 84: JPEG
	Diapositiva 85: JPEG
	Diapositiva 86: JPEG
	Diapositiva 87: JPEG
	Diapositiva 88: Predictive coding 
	Diapositiva 89: Lossless predictive coding 
	Diapositiva 90: Lossy predictive coding 
	Diapositiva 91: Lossless predictive coding 
	Diapositiva 92: Lossless predictive coding 
	Diapositiva 93: Lossless predictive coding 
	Diapositiva 94: Lossless predictive coding 
	Diapositiva 95: Motion compensated prediction residuals
	Diapositiva 96: Motion compensated prediction residuals
	Diapositiva 97: Motion compensated prediction residuals
	Diapositiva 98: Motion compensated prediction residuals
	Diapositiva 99: Motion compensated prediction residuals
	Diapositiva 100: Motion compensated prediction residuals
	Diapositiva 101: Motion compensated prediction residuals
	Diapositiva 102: Motion compensated prediction residuals
	Diapositiva 103: Motion compensated prediction residuals
	Diapositiva 104: Motion compensated prediction residuals
	Diapositiva 105: Motion compensated prediction residuals
	Diapositiva 106: High Efﬁciency Video Coding (HEVC) Standard
	Diapositiva 107: High Efﬁciency Video Coding (HEVC) Standard
	Diapositiva 108: High Efﬁciency Video Coding (HEVC) Standard
	Diapositiva 109: High Efﬁciency Video Coding (HEVC) Standard
	Diapositiva 110: High Efﬁciency Video Coding (HEVC) Standard
	Diapositiva 111: High Efﬁciency Video Coding (HEVC) Standard
	Diapositiva 112: High Efﬁciency Video Coding (HEVC) Standard
	Diapositiva 113: High Efﬁciency Video Coding (HEVC) Standard
	Diapositiva 114: High Efﬁciency Video Coding (HEVC) Standard
	Diapositiva 115: High Efﬁciency Video Coding (HEVC) Standard
	Diapositiva 116: High Efﬁciency Video Coding (HEVC) Standard
	Diapositiva 117: Study:

