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Lab 2

Fitting AR Models: BMW stock data

We start loading the require packages:

library(evir)

library(Ecdat)

library(tseries)

library(lmtest)

The data set bmw in evir contains 6146 daily returns on BMW stock from January 3,
1973 to July 23, 1996. Run the following code to obtain the data.

#Obtain BMW daily log returns

data(bmw)

plot(bmw, type="l") #plot of BMW daily log-returns

1



0 1000 2000 3000 4000 5000 6000

−
0.

15
−

0.
05

0.
05

Index

bm
w

ACF and AR fit.

The sample ACF is obtained via the acf() function and displayed below.

acf(bmw,lag.max=20)
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The autocorrelation coefficient at lag 1 is well outside the confidence bounds, so the
series has some dependence. The Ljung-Box test can be implemented via the Box.test()

function; here, the number of autocorrelation coefficients to test is set equal to 5 (other
choices give similar results).
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Box.test(bmw, lag = 5, type = "Ljung-Box")

##

## Box-Ljung test

##

## data: bmw

## X-squared = 44.98701, df = 5, p-value = 1.45972e-08

The p-value is very small, indicating that that we can reject the null hypothesis that
the first lag autocorrelations are 0.

The sample PACF for the BMW log returns is estimated using the R function pacf():

pacf(bmw, lag.max =15)
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The lag-1 PACF is significantly different from zero and large with respect to values
at higher lags. Thus, an AR(1) model is fit to data via the R function arima():

#fit an AR model of order 1

fitAR1 <- arima(bmw, order = c(1,0,0))

fitAR1

##

## Call:

## arima(x = bmw, order = c(1, 0, 0))

##

## Coefficients:
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## ar1 intercept

## 0.081116 0.000340

## s.e. 0.012722 0.000205

##

## sigma^2 estimated as 0.00021626: log likelihood = 17212.34, aic = -34418.68

The AR(1) coefficient estimate is ϕ̂1 = 0.0811, with standard error 0.013. The t-ratio
gives 0.0811/0.013 = 6.2, thus it is statistically significant at 1% level. The intercept in
the output is actually the estimated mean µ̂ = 0.00034, so that the intercept is computed
as

ϕ̂0 = µ̂(1 − ϕ̂1)

0.00034*(1-0.0811) # compute phi(0)

## [1] 0.000312426

sqrt(fitAR1$sigma2) # compute residual standard error

## [1] 0.0147057692

# compute t-ratio

fitAR1$coef/sqrt(diag(fitAR1$var.coef))

## ar1 intercept

## 6.37590342 1.66458115

coeftest(fitAR1)

##

## z test of coefficients:

##

## Estimate Std. Error z value Pr(>|z|)

## ar1 0.0811162792 0.0127223193 6.37590 1.8189e-10 ***

## intercept 0.0003404677 0.0002045365 1.66458 0.095996 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The fitted model is

yt = 0.00031 + 0.08112 yt−1 + ât, σ̂a = 0.0147

where ât are the residuals from the model.
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Residual analysis and model checking.

The ACF and the Ljung-Box test on the residuals can be used to check the closeness
of ât to a white noise. If there is still evidence of serial correlation in the residual series,
then this suggests that a good model has not yet been found.

For the BMW log-returns, the sample ACF of the residuals with 95% confidence
bounds from an AR(1) fit is obtained by running the following code.

acf(residuals(fitAR1), lag.max=20)
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None of the autocorrelations at low lags are significant. The Ljung-Box test was
applied, with lag equal to 5, and fitdt=1, the number of autoregressive coefficient pa-
rameters that were estimated. Such adjustment is done in order to account for the use of
ϕ̂1 in place of the unknown ϕ1 when the test is applied to residuals.

Box.test(residuals(fitAR1), lag = 5, type = "Ljung-Box", fitdf = 1)

##

## Box-Ljung test

##

## data: residuals(fitAR1)

## X-squared = 6.866933, df = 4, p-value = 0.14309

The result suggests that we can accept the null hypothesis that the residuals are
uncorrelated, at least at small lags. This may indicate that the AR(1) model provides an
adequate fit. However, if the Ljung-Box test is performed at different lags (for instance
10, 15, or 20) then the resulting p-values are statistically significant using the level 0.05.
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Box.test(residuals(fitAR1), lag = 15, type = "Ljung-Box", fitdf = 1)

##

## Box-Ljung test

##

## data: residuals(fitAR1)

## X-squared = 24.09947, df = 14, p-value = 0.0445707

Moreover, the time series plot and normal QQ-plot plot of the AR(1) residuals dis-
played below still show volatility clustering and heavy tails:

plot(residuals(fitAR1))

qqnorm(residuals(fitAR1), datax=TRUE)

qqline(residuals(fitAR1), datax=TRUE)
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Finally, we can test for residual heteroscedasticity by examining the ACF of the resid-
uals from the fitted model: if the residuals are heteroscedastic, the squared residuals are
autocorrelated:

acf(residuals(fitAR1)^2)
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EXERCISE. Consider the bmw log returns data and compare the fitted AR(1) model
with alternative models, e.g., an AR(2) model:

1. check whether all parameters are statistically significant at the 5% level

2. plot the ACF and use the Ljung-Box test for examining the null hypothesis of serial
uncorrelation at m = 10 and m = 15 lags;

3. Do you see significant differences between these models? What does the AIC sug-
gest?

ARIMA modelling: US one-month inflation rate

In what follows we consider the one-month inflation rate (in percent, annual rate) data
from 1950 to 1990. The data are contained in the first column of the Mishkin data set in
the Ecdat package (491 observations):

data(Mishkin)

y <- as.ts(Mishkin[,1], start=1950, frequency=12)

Obtain the time series plots of one-month inflation rate (annual rate, in percent) and
first differences (changes) in the one-month inflation rate.

plot(y, ylab="Inflation Rate", type="l", main="(a)")

plot(diff(y), ylab="Change in Rate", type="l", main="(b)")
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Model identification and estimation

y <- as.vector(Mishkin[,1])

acf(y)

acf(diff(y))

Box.test(diff(y), lag=10, type="Ljung-Box")

##

## Box-Ljung test

##

## data: diff(y)

## X-squared = 79.91513, df = 10, p-value = 5.21694e-13

8



0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F
Series  y

0 5 10 15 20 25

−
0.

4
0.

0
0.

4
0.

8

Lag
A

C
F

Series  diff(y)

We see that the sample ACF plots of the one-month inflation rate decays to zero
slowly. This is a sign of either nonstationarity or possibly of stationarity with long-
memory dependence. In contrast, the sample ACF of the differenced series decays to
zero quickly with significant ACF at lags 1, 3, and some marginally significant ACF at
higher lags. Moreover, we perform the KPSS Test for stationarity.

kpss.test(y)

##

## KPSS Test for Level Stationarity

##

## data: y

## KPSS Level = 2.510004, Truncation lag parameter = 5, p-value = 0.01

The p-value is smaller than 0.01 and the null hypothesis of stationarity can be rejected.
This confirms that the inflation rate time series is not stationary.

The sample PACF for the changes in the inflation rate is obtained via the following
code:
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pacf(diff(y), main = "Change in the inflation rate")
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The sample PACF decays slowly to zero, rather than showing a cut off as for an AR
process. This is an indication that this time series should not be fit by a pure AR process.
Other ARMA models (or pure MA models) that could provide a parsimonious fit for the
first order differences of the inflation rates (d = 1).

We start considering an ARIMA(0,1,3) to the inflation rate time series (or ARIMA(0,0,3)
model for the differenced series). The function arima() is used for fitting ARIMA models
by specifying the orders p, d, q.

fitMA3 <- arima(y, order=c(0,1,3))

fitMA3

##

## Call:

## arima(x = y, order = c(0, 1, 3))

##

## Coefficients:

## ma1 ma2 ma3

## -0.632949 -0.102734 -0.108171

## s.e. 0.046017 0.051399 0.046985

##

## sigma^2 estimated as 8.5046: log likelihood = -1220.26, aic = 2448.52

The t-ratio for the the first MA coefficient −0.633/0.046 = −13.76 leads to rejection
of the null hypothesis that the coefficient is zero. Similarly, the other MA coefficients are
significant at level 0.05.
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We can use model selection criteria to compare different MA models

fitMA1 <- arima(y, order=c(0,1,1))

fitMA2 <- arima(y, order=c(0,1,2))

fitMA3$aic

## [1] 2448.52435

fitMA2$aic

## [1] 2451.69507

fitMA1$aic

## [1] 2465.70467

According to the AIC the ARIMA(0,0,3) model provides the best-fit to diff(y).

Model checking

If the model fits well, the residuals should approximately behave as white noise. In
practice, we look at the time plot, the correlogram, and the results from the Ljung-Box
test on residuals. The degrees of freedom of this statistic take into account the number
of estimated parameters so the statistic test under H0 follows approximately a χ2

(m−g)
distribution with g = p + q (in Box.test set fitdf = 3).

Box.test(residuals(fitMA3), type = "Ljung", lag = 24, fitdf = 3)

##

## Box-Ljung test

##

## data: residuals(fitMA3)

## X-squared = 28.37414, df = 21, p-value = 0.129856

#useful plots for residual analysis

par(mfrow=c(2,1))

plot(residuals(fitMA3), type="l", ylab=" ", xlab="Time", main="Residuals")

acf(residuals(fitMA3), main="ACF of residuals form MA(3) fit")
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The plot shows the standardized residuals and their ACF. Inspection of the time plot
of the residuals shows no obvious patterns, but the series exhibits some outliers. The
ACF of the residuals shows no apparent departure from the model assumptions in that
the residual autocorrelations lie within the approximate normal limits (dotted blue lines).

Alternative ARIMA models

An ARIMA (1,1,1) model could also be tried as an alternative model for the inflation
rate series. Model comparison can be carried out by using either AIC (or BIC) and
residual analysis.

fit_arima <- arima(y, order=c(1,1,1))

fit_arima
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##

## Call:

## arima(x = y, order = c(1, 1, 1))

##

## Coefficients:

## ar1 ma1

## 0.238309 -0.877177

## s.e. 0.055043 0.026929

##

## sigma^2 estimated as 8.55214: log likelihood = -1221.62, aic = 2449.25

The parameter estimates are ϕ̂1 = 0.2383 and θ̂1 = −0.8772, with standard errors
0.0550 and 0.0269, respectively. Hence, both coefficients are significant. If xt denotes
changes in the one-month inflation rate, ∇yt, then the fitted model is

xt = 0.2383 xt−1 − 0.8772 at−1 + ât, σ̂2
a = 8.55

Box.test(residuals(fit_arima), lag=20, fitdf=2)

##

## Box-Pierce test

##

## data: residuals(fit_arima)

## X-squared = 27.49744, df = 18, p-value = 0.0701265

ARIMA(1,1,1), Residuals
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This is a very parsimonious model and residual diagnostics show that it fits well. Still,
the plot of standardized residuals indicates the presence of big residuals in the data. By
executing the following code, we can examine the autocorrelation in the mean-centered
squared residuals:

## Testing for ARCH effect

resid2 <- (resid(fit_arima) - mean(resid(fit_arima)))^2

acf(resid2)
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Box.test(resid2, lag = 12, type="Ljung-Box")

##

## Box-Ljung test

##

## data: resid2

## X-squared = 73.62932, df = 12, p-value = 6.66671e-11

Although there is no serial correlation in the residual series, the series of squared
residuals shows profound serial correlation, that is referred to as ARCH effect. This
implies that the residuals do not behave like a realization of a strict white noise process
and that the models for non constant volatility may be required.

EXERCISE. Consider the Stock Price series of Dow Jones Industrial Average (DJIA)
in the period 2018–2020; to obtain the data, run the code

library(quantmod)

getSymbols("^DJI", from=as.Date("2018-02-01"),

to=as.Date("2020-12-31"))

1. Build log-returns and examine the transformed data (describe the data using a
histogram and a normal QQ-plot);

2. Plot the ACF and use the Ljung-Box test to check for the presence of serial correla-
tion;

3. Consider different ARIMA models for the log-returns and compare them via AIC
and BIC.

4. Select a model for the log-returns and perform residual analysis. Finally, plot the
ACF of squared residuals and comment the result.

Forecasting the one-month inflation rate

We saw that an ARIMA(1, 1, 1) model provided a good fit to one-month inflation
rates. This implies that an ARMA(1, 1) model can be appropriate for the changes in the
inflation rates, xt. We derive point forecasts and prediction intervals (P.I.s) for xt using
the model equation.

First, refit the chosen model with the following code

fit_diff<-arima(diff(y), c(1,0,1), include.mean = F)

The ARIMA(1, 1, 1) model is also estimated using the original data.
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fit<-arima(y, c(1,1,1))

The two models are equivalent, but they lead to different forecasts. Then, we can use
function predict() to forecast from the fitted models.

The function predict() returns the time series of predictions, and the estimated stan-
dard errors. The plot below displays point forecasts and 95% P.I.s from the ARMA(1, 1)
and ARIMA(1, 1, 1) fit, out to 20 steps ahead. In the latter case, as expected for a non-
stationary process, the forecast limits diverge.

t1 <- 300:491

t2 <- 492:511

# monthly observations from 1950-2 to 1990-12

year <- seq(1950 + 1/12, 2000, by=1/12)

pred.infl_diff <- predict(fit_diff, n.ahead = 20)

plot(year[t1], diff(y)[t1], xlim=c(1975, 1993), ylim=c(-9,12),

type="l", xlab="year", ylab="Change in inflation rate")

points(year[t2], pred.infl_diff$pred, type="p", pch="*", col="red")

lines(year[t2], pred.infl_diff$pred - 1.96*pred.infl_diff$se, col="blue")

lines(year[t2], pred.infl_diff$pred + 1.96*pred.infl_diff$se, col="blue")
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pred.infl <- predict(fit, n.ahead = 20, se.fit = TRUE)

plot(year[t1],y[t1], xlim=c(1975,1993), ylim=c(-10,18),
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type="l", xlab="year",ylab="Inflation rate")

points(year[t2], pred.infl$pred,type="p", pch="*", col="red")

lines(year[t2], pred.infl$pred - 1.96*pred.infl$se, col="blue")

lines(year[t2], pred.infl$pred + 1.96*pred.infl$se, col="blue")
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