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ABSTRACT

Proline-rich antimicrobial peptides (PrAMPs) pro-
duced as part of the innate immune response of
animals, insects and plants represent a vast, un-
tapped resource for the treatment of multidrug-
resistant bacterial infections. PrAMPs such as on-
cocin or bactenecin-7 (Bac7) interact with the bac-
terial ribosome to inhibit translation, but their sup-
posed specificity as inhibitors of bacterial rather than
mammalian protein synthesis remains unclear, de-
spite being key to developing drugs with low toxic-
ity. Here, we present crystal structures of the Ther-
mus thermophilus 70S ribosome in complex with the
first 16 residues of mammalian Bac7, as well as the
insect-derived PrAMPs metalnikowin I and pyrrho-
coricin. The structures reveal that the mammalian
Bac7 interacts with a similar region of the ribosome
as insect-derived PrAMPs. Consistently, Bac7 and
the oncocin derivative Onc112 compete effectively
with antibiotics, such as erythromycin, which target
the ribosomal exit tunnel. Moreover, we demonstrate
that Bac7 allows initiation complex formation but
prevents entry into the elongation phase of trans-
lation, and show that it inhibits translation on both
mammalian and bacterial ribosomes, explaining why
this peptide needs to be stored as an inactive pro-
peptide. These findings highlight the need to con-
sider the specificity of PrAMP derivatives for the bac-
terial ribosome in future drug development efforts.

INTRODUCTION

Antimicrobial peptides (AMPs) represent a large and di-
verse group of molecules that form part of the innate im-
mune response of a variety of invertebrate, plant and ani-
mal species (1). While many AMPs kill bacteria by disrupt-
ing the bacterial cell membrane, there is growing evidence
that some AMPs have intracellular targets (1). Members
of one such class of non-membranolytic peptides are re-
ferred to as proline-rich AMPs (PrAMPs) and are present
in the hemolymph of several species of insects and crus-
taceans, as well as in the neutrophils of many mammals
(2). PrAMPs exhibit potent antimicrobial activity against
a broad range of bacteria, especially Gram-negative, and
are therefore considered as potential lead candidates for
the development of therapeutic antimicrobial agents (3).
Well-characterized insect PrAMPs include the apidaecins
produced by bees (Apis melifera) and wasps (Apis Vesp-
idae), pyrrhocoricin from firebugs (Pyrrhocoris apterus),
drosocins from fruit flies (Drosophila), metalnikowins from
the green shield bug (Palomena prasina) and the milkweed
bug (Oncopeltus fasciatus) oncocins (2,4,5). PrAMPs are
synthesized as inactive precursors, which undergo prote-
olysis to release the active peptide. In contrast to the ac-
tive insect peptides, which are generally <21 amino acids in
length, the active mammalian mature forms tend to be much
longer; for example, the porcine PR-39 is 39 residues long,
whereas the bovine bactenecin-7 (Bac7), which is also found
in sheep and goats, is 60 residues long (2). Nevertheless, C-
terminally truncated versions of the mammalian PrAMPs
retain antimicrobial activity (6–9) and exhibit high sequence
similarity with the insect PrAMPs. Indeed, the Bac7(1–16)
and Bac7(1–35) derivatives corresponding to the first 16 and
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35 residues of Bac7, respectively, display similar, if not im-
proved, antimicrobial activities compared to the full-length
processed Bac7 peptide (6,10,11). For instance, Bac7(1–35)
reduces mortality from Salmonella typhimurium in a mouse
model of infection (12) as well as in a rat model for septic
shock (13).

The insect-derived PrAMPs apidaecin and oncocin, as
well as the mammalian Bac7, penetrate the bacterial cell
membrane mainly via the SbmA transporter present in
many Gram-negative bacteria (10,14). Early studies iden-
tified interactions between both insect and mammalian
PrAMPs and DnaK, suggesting that this molecular chap-
erone was the common intracellular target (2,15). However,
subsequent studies questioned the relevance of this inter-
action by demonstrating that these PrAMPs also display
an equally potent antimicrobial activity against bacterial
strains lacking the dnaK gene (16–18). Instead, apidaecin,
oncocin and Bac7 were shown to bind to the ribosome and
inhibit translation (17,19). Subsequent crystal structures of
the oncocin derivative Onc112 in complex with the bacterial
70S ribosome revealed that this peptide binds with a reverse
orientation in the ribosomal tunnel and blocks binding of
the aminoacyl-tRNA to the A-site (20,21). However, there
are no crystal structures to date of a mammalian PrAMP in
complex with the ribosome.

Here we present 2.8–2.9 Å resolution X-ray struc-
tures of the Thermus thermophilus 70S (Tth70S) ribosome
in complex with either the mammalian Bac7 derivative
Bac7(1–16) or the insect-derived PrAMPs metalnikowin I
or pyrrhocoricin. The structures reveal that Bac7(1–16),
metalnikowin I and pyrrhocoricin bind within the ribo-
somal tunnel with a reverse orientation compared to a
nascent polypeptide chain, as observed previously for on-
cocin (20,21). In contrast to the insect PrAMPs oncocin,
metalnikowin I and pyrrhocoricin, the mammalian Bac7(1–
16) utilizes multiple arginine side chains to establish stack-
ing interactions with exposed nucleotide bases of the rRNA,
and we show that its unique N-terminal RIRR motif is crit-
ical for inhibiting translation. Like oncocin, metalnikowin
I and pyrrhocoricin, the binding site of Bac7 overlaps with
that of the A-tRNA, consistent with our biochemical stud-
ies indicating that Bac7(1–16) allows 70S initiation complex
formation, but prevents subsequent rounds of translation
elongation. Furthermore, we demonstrate that Bac7(1–35)
displays activity in a mammalian in vitro translation system,
providing a possible explanation for why Bac7 is produced
as a pre-pro-peptide that is targeted to large granules and
phagosomes, thus avoiding direct contact between the ac-
tive peptide and the mammalian ribosome.

MATERIALS AND METHODS

Peptide synthesis and purification

The Bac7 N-terminal fragments Bac7(1–16; RRIR-
PRPPRLPRPRPR), Bac7(1–35; RRIRPRPPRL-
PRPRPRPLPFPRPGPRPIPRPLPFP) and Bac7(5–35;
PRPPRLPRPRPRPLPFPRPGPRPIPRPLPFP) were
synthesized on solid phase and purified by reversed-phase
HPLC as described previously (22). Their concentra-
tions were determined as reported previously (4). All
peptides, with a purity of at least 95%, were stored in

milliQ water at −80◦C until use. The Onc112 peptide
was obtained from an earlier study (21). Metalnikowin I
(VDKPDYRPRPRPPNM) and pyrrhocoricin (VDKG-
SYLPRPTPPRPIYNRN) were synthesized to 97.5 and
98.1% purity by NovoPro Bioscience (China).

Purification of T. thermophilus 70S ribosomes

Tth70S ribosomes were purified as described earlier (23)
and resuspended in buffer containing 5 mM HEPES-
KOH, pH 7.5, 50 mM KCl, 10 mM NH4Cl and 10
mM Mg(CH3COO)2 to yield a final concentration of ∼30
mg/ml. Tth70S ribosomes were flash frozen in liquid nitro-
gen and kept at −80◦C for storage.

Preparation of mRNA, tRNAi
Met and YfiA

Synthetic mRNA containing a Shine-Dalgarno sequence
and an AUG start codon followed by a phenylalanine codon
(5′-GGC AAG GAG GUA AAA AUG UUC UAA -3′) was
purchased from Eurogentec. Escherichia coli tRNAi

Met was
overexpressed in E. coli HB101 cells and purified as de-
scribed previously (24). YfiA was overexpressed in BL21
Star cells and purified as described previously (25).

Complex formation

A quaternary complex containing Tth70S ribosomes,
mRNA, deacylated tRNAi

Met and Bac7(1–16) peptide was
prepared by mixing of 5 �M Tth70S ribosomes with 10 �M
mRNA and 50 �M Bac7(1–16), and incubating at 55◦C for
10 min. After addition of 20 �M tRNAi

Met, the mixture
was incubated at 37◦C for 10 min. The sample was then in-
cubated at room temperature for at least 15 min and cen-
trifuged briefly prior to use. Ternary complexes containing
50 �M metalnikowin I or pyrrhocoricin, 5 �M Tth70S ri-
bosomes and 50 �M YfiA were formed by incubation for 30
min at room temperature. The final buffer conditions were
5 mM HEPES-KOH, pH 7.6, 50 mM KCl, 10 mM NH4Cl
and 10 mM Mg(CH3COO)2.

Crystallization

Published conditions were used as a starting point for
screening crystallization conditions by vapour diffusion in
sitting-drop trays at 20◦C (23,26). Crystallization drops
consisted of 3 �l of quaternary or ternary complexes and
3–4 �l of reservoir solution containing 100 mM Tris–HCl,
pH 7.6, 2.9% (v/v) PEG 20,000, 7–10% (v/v) 2-methyl-
2,4-petanediol (MPD) and 175 mM arginine. Crystals ap-
peared within 2–3 days and grew to ∼1000 × 100 × 100
�m within 7–8 days. For cryoprotection, the concentration
of MPD was increased in a stepwise manner to yield a fi-
nal concentration of 40% (v/v). The ionic composition dur-
ing cryoprotection was 100 mM Tris–HCl, pH 7.6, 2.9%
(v/v) PEG 20,000, 50 mM KCl, 10 mM NH4Cl and 10 mM
Mg(CH3COO)2. Crystals were flash frozen in a nitrogen
cryostream at 80 K for subsequent data collection.
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Data collection and processing

Diffraction data for Bac7(1–16) were collected at
PROXIMA-2A, a beamline at the SOLEIL synchrotron
(Saclay, France) equipped with an ADSC Q315 detec-
tor. A complete dataset was obtained by merging 0.25◦
oscillation data collected at 100 K with a wavelength
of 0.98011 Å from multiple regions of the same crystal.
Diffraction data for metalnikowin I and pyrrhocoricin
were collected at PROXIMA-1, a beamline at the SOLEIL
synchrotron equipped with a DECTRIS PILATUS 6M
detector. Complete datasets were obtained by merging
0.1◦ oscillation data collected at 100 K with a wavelength
of 0.97857 Å from multiple regions of the crystal. Initial
data processing, including integration and scaling, was
performed with X-ray Detector Software (XDS) (27). The
data could be indexed in the P212121 space group, with
unit-cell dimensions approximating 210 × 450 × 625 Å and
an asymmetric unit containing two copies of the Tth70S
ribosome.

Model building and refinement

Initial phases were obtained by molecular replacement per-
formed with Phaser (28). The search model was obtained
from a high-resolution structure of the Tth70S ribosome
(PDB ID: 4Y4O) (29) where the RNA backbone had been
further improved with the ERRASER-Phenix pipeline (30),
using the deposited structure factors. Restrained crystallo-
graphic refinement was carried out with Phenix (31) and
consisted of a single cycle of rigid-body refinement followed
by multiple cycles of positional and individual B-factor re-
finement. Rigid bodies comprised four domains from the
small 30S subunit (head, body, spur and helix h44) and three
domains from the large 50S subunit (body, L1 stalk and the
C terminus of ribosomal protein L9). Non-crystallographic
symmetry restraints between the two copies of the Tth70S
ribosome in the asymmetric unit were also applied during
refinement. After confirming that a single tRNA was bound
to the P site or that YfiA was present at the decoding center,
and that additional density corresponding to the PrAMPs
was visible within the exit tunnel in a minimally biased FO–
FC map, models of the corresponding PrAMPs were built in
Coot (32). The models for the tRNA and mRNA were ob-
tained from a high-resolution structure of the Tth70S ribo-
some pre-attack complex (PDB ID: 1VY4). The model for
YfiA was obtained from a high resolution Tth70S ribosome
structure (PDB ID: 4Y4O). Further refinement and model
validation was carried out in Phenix (31) and on the Mol-
Probity server (33), respectively. In the final models, 0.56–
0.95% of protein residues were classified as Ramachandran
outliers, and 92.4–94.3% had favourable backbone confor-
mations (Supplementary Table S1). Coordinates and struc-
ture factors have been deposited in the Protein Data Bank
under accession codes 5F8K (Bac7(1–16)), 5FDU (Metal-
nikowin I) and 5FDV (Pyrrhocoricin).

In vitro translation assays

Escherichia coli lysate-based transcription-translation cou-
pled assay (RTS100, 5Prime) were performed as described
previously for other translational inhibitors (34). Briefly, 6

�l reactions, with or without PrAMP were mixed according
to the manufacturer’s description and incubated for 1 h at
30◦C with shaking (750 rpm). A total of 0.5 �l of each reac-
tion were stopped with 7.5 �l kanamycin (50 �g/�l). The
effect of Bac7(1–35) on eukaryotic translation was deter-
mined using Rabbit Reticulocyte Lysate System (Promega).
A total of 6 �l reactions, with or without Bac7(1–35) were
mixed according to the manufacturer´s description and in-
cubated for 1 h at 30◦C with shaking (300 rpm). A total of
5 �l of each reaction were stopped in 5 �l kanamycin (50
�g/�l). All samples were diluted with 40 �l of Luciferase
assays substrate (Promega) into a white 96-well chimney flat
bottom microtiter plate (Greiner). The luminescence was
then measured using a Tecan Infinite M1000 plate reader.
Relative values were determined by defining the lumines-
cence value of the sample without inhibitor as 100%.

Toe-printing assay

The position of the ribosome on the mRNA was mon-
itored with a toe-printing assay (35) based on an in
vitro–coupled transcription-translation system with the
PURExpress in vitro protein synthesis kit (NEB), as
described previously (21,36). Briefly, each translation
reaction consisted of 1 �l solution A, 0.5 �l �isoleucine
amino acid mixture, 0.5 �l tRNA mixture, 1.5 �l solution
B, 0.5 �l (0.5 pmol) hns37aa template: (5′-ATTAAT
ACGACTCACTATAGGGATATAAGGAGGAAAAC
ATatgAGCGAAGCACTTAAAattCTGAACAACCTGC
GTACTCTTCGTGCGCAGGCAAGACCGCCGCCGC
TTGAAACGCTGGAAGAAATGCTGGAAAAATTA
GAAGTTGTTGTTtaaGTGATAGAATTCTATCGTTA
ATAAGCAAAATTCATTATAAC-3′, with start codon
ATG, catch isoleucine codon ATT and stop codon TAA
in bold, the hns37aa ORF underlined and toe-print
primer binding site in italics) and 0.5 �l additional agents
(nuclease-free water, water dissolved Bac7(1–35) Bac7(1–
16), Bac7(5–35) (1, 10 or 100 �M final concentration)
or antibiotics (100 �M thiostrepton, 50 �M edeine, 50
�M clindamycin final concentration)). Translation was
performed in the absence of isoleucine at 37◦C for 15 min
at 500 rpm in 1.5 ml reaction tubes. After translation,
2 pmol Alexa647-labelled NV-1 toe-print primer (5′-
GGTTATAATGAATTTTGCTTATTAAC-3′) was added
to each reaction. Reverse transcription was performed with
0.5 �l of AMV RT (NEB), 0.1 �l dNTP mix (10 mM)
and 0.4 �l Pure System Buffer and incubated at 37◦C for
20 min. Reverse transcription was quenched and RNA
degraded by addition of 1 �l 10 M NaOH and incubation
for at least 15 min at 37◦C and then was neutralized with
0.82 �l of 12 M HCl. 20 �l toe-print resuspension buffer
and 200 �l PN1 buffer were added to each reaction before
treatment with a QIAquick Nucleotide Removal Kit (Qi-
agen). The Alexa647-labelled DNA was then eluted from
the QIAquick columns with 80 �l of nuclease-free water. A
vacuum concentrator was used to vaporize the solvent and
the Alexa647-labelled DNA was then dissolved into 3.5 �l
of formamide dye. The samples were heated to 95◦C for 5
min before being applied onto a 6% polyacrylamide (19:1)
sequencing gel containing 7 M urea. Gel electrophoresis
was performed at 40 W and 2000 V for 2 h. The GE
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Figure 1. Binding site of Bac7(1–16) on the ribosome and comparison
with Onc112. (A) Overview and closeup view of a cross-section of the
Tth70S ribosomal exit tunnel showing the Bac7(1–16) peptide (RRIR-
PRPPRLPRPRPR) in green and highlighting the three regions of inter-
action with the ribosome: the A-tRNA binding pocket (light pink), the
A-site crevice (light green) and the upper section of the exit tunnel (light
blue). (B) Structural comparison of Bac7(1–16) (green) with Onc112 (or-
ange)(20,21), Met1(1–10) (burgundy) and Pyr(1–16) (cyan), highlighting
the distinct structure of the Bac7 N-terminus (N-term) and the Pyr C-
terminus (C-term).

Typhoon FLA9500 imaging system was subsequently used
to scan the polyacrylamide gel.

Filter binding assay

Filter binding assays were performed as described previ-
ously (34,37). Briefly, 3 pmol of 70S ribosomes purified from
BL21 E. coli strain were exposed to 30 pmol of radiolabelled
[14C]-Erythromycin (Perkin Elmer; 110 dpm/pmol) in pres-
ence of 1x filter binding buffer (10 mM HEPES/KOH
[pH 7.4], 30 mM MgCl2, 150 mM NH4Cl and 6 mM �-
mercaptoethanol) for 15 min at 37◦C. Our controls in-
dicated that approximately 65% of the 70S ribosomes (2
pmol) contained [14C]-Erythromycin previous to the addi-
tion of the different PrAMPs. The PrAMPs were diluted in
nuclease-free water to a concentration of 1 mM, 100 �M
and 10 �M. 2 �l of each PrAMP stock dilution (Onc112,
Bac7(1–35), Bac7(1–16) and Bac7(5–35)) were transferred
to the respective tube resulting in final concentrations of
100, 10 and 1 �M. Reactions were incubated for an addi-
tional 25 min at 37◦C. Afterwards the 20 �l samples were
passed through a HA-type nitrocellulose filter from Milli-
pore (0.45 �m pore size) and the filter subsequently washed
three times with 1 ml 1× filter binding buffer. Scintillation
counting was performed in the presence of Rotiszint R© eco
plus Scintillant. All reactions were performed in duplicate
and results were analysed using GraphPad Prism 5. Error
bars represent the standard deviation from the mean.

Disome formation assay

The disome formation assay was performed as described
previously (38,39). Briefly, in vitro translation of the
2xermBL construct was performed using the Rapid Trans-
lation System RTS 100 E. coli HY Kit (Roche). Transla-
tions were carried-out for 1 h at 30◦C and then analysed
on 10–55% sucrose density gradients (in a buffer contain-
ing 50 mM HEPES-KOH, pH 7.4, 100 mM KOAc, 25 mM

Mg(OAc)2, 6 mM �-mercaptoethanol) by centrifugation at
154 693 × g (SW-40 Ti, Beckman Coulter) for 2.5 h at 4◦C.

RESULTS

The N-terminus of Bac7 adopts a compact conformation

We obtained a structure referred to here as Tth70S-Bac7
from co-crystals of Tth70S ribosomes in complex with dea-
cylated tRNAi

Met, a short mRNA and Bac7(1–16) (Sup-
plementary Table S1). In addition, we obtained two addi-
tional structures, Tth70S-MetI and Tth70S-Pyr, from co-
crystals of Tth70S ribosomes in complex with YfiA and
either metalnikowin I or pyrrhocoricin, respectively (Sup-
plementary Table S1). The quality of the electron den-
sity in the minimally biased FO–FC difference maps calcu-
lated after refinement of a model comprising Tth70S ribo-
somes and tRNAi

Met/mRNA or YfiA, made it possible to
build a model for the entire Bac7(1–16; RRIRPRPPRL-
PRPRPR), the first 10 (of 15; VDKPDYRPRPRPPNM)
residues of metalnikowin I (MetI) and the first 16 (of
20; VDKGSYLPRPTPPRPIYNRN) residues of pyrrho-
coricin (Pyr), as well as to position several neighbouring sol-
vent molecules (Supplementary Figure S1). Like the insect-
derived Onc112 peptide (20,21), MetI, Pyr and Bac7(1–16)
all bind to the ribosomal exit tunnel in a reverse orienta-
tion relative to the nascent polypeptide chain and make ex-
tensive interactions with three distinct regions of the large
50S ribosomal subunit: the A-tRNA binding pocket, the A-
site crevice and the upper section of the nascent polypep-
tide exit tunnel (Figure 1A, B and Supplementary Figure
S1). A nearly identical, extended backbone conformation
is seen for residues 7–13 of Bac7(1–16) and residues 4–10
of Onc112, Met1 and Pyr, with Arg9 of Bac7(1–16) sub-
stituting for Tyr6 of Onc112, Met1 and Pyr (Figure 1B).
The structural similarity however does not extend to the N-
terminus of Bac7(1–16), where the first six residues adopt a
structure that deviates substantially from that of the shorter
N-terminus of the insert-derived PrAMPs. Indeed, arginine
residues within this region are arranged such that the side
chain of Arg6 is sandwiched between the side chains of Arg2
and Arg4 to form a compact, positively charged structure
(Figure 1A and B). The binding site of Bac7(1–16) sug-
gests that the additional C-terminal residues of Bac7(1–
35) and of the full-length Bac7 (60 residues) would occupy
the entire length of the ribosomal tunnel. Consistently, a
photocrosslinkable derivative of Bac7(1–35) has been cross-
linked to two ribosomal proteins of ∼16 and 25 kDa (19),
which we suggest to be L22 and L4, respectively, based on
their size and close proximity to the Bac7(1–16) binding
site (Supplementary Figure S2). Compared to Onc112 and
Met1, additional density for the C-terminal PRPR motif
(residues 13–16) of Pyr is observed extending deeper into
the tunnel (Figure 1 and Supplementary Figure S1). With
the exception of Arg14 for which no density is observed,
the PRPR motif is quite well ordered despite not forming
any obvious direct interactions with the ribosome.
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Bac7 makes extensive interactions with the 50S ribosomal
subunit

As with Onc112 (20,21), binding of Bac7(1–16) to the ribo-
some is accompanied by an induced fit involving 23S rRNA
residues A2062, U2506 and U2585 (Supplementary Figure
S3A; E. coli numbering is used throughout this work for the
23S rRNA), such that the base of this last nucleotide occu-
pies a position that would normally clash with the formyl-
methionyl moiety of fMet-tRNAi

Met bound to the P-site of
an initiation complex (Supplementary Figure S3B). Three
modes of interaction are observed between Bac7(1–16) and
the large 50S ribosomal subunit (Figure 2A–E).

First, the N-terminal region of Bac7(1–16) forms multi-
ple hydrogen bonds and salt bridges with the A-tRNA bind-
ing pocket of the ribosome (Figure 2A and B). In particular,
the compact structure formed by Arg2, Arg4 and Arg6 pro-
vides a positively charged N-terminal anchor that displaces
two magnesium ions from a deep groove lined by 23S rRNA
residues C2452, A2453 and G2454 on one side, and residues
U2493 and G2494 on the other (Figure 2B). This groove dif-
fers from the standard A-form RNA major groove in that
it occurs between two unpaired, antiparallel strands of the
23S rRNA. Consequently, the compact arginine structure
at the N-terminus of Bac7(1–16) is ideally sized and shaped
to fit into this groove and the resulting interaction is likely
to be specific in spite of its simple electrostatic nature. Fur-
ther contacts in this region are likely to increase the speci-
ficity of Bac7(1–16) for the ribosome, such as the two hydro-
gen bonds between the side chain of Arg1 and 23S rRNA
residues U2555 and C2556, and four hydrogen bonds be-
tween the backbone of Bac7(1–16) residues Arg2-Arg4 and
23 rRNA residues U2492, U2493 and C2573 (Figure 2A).

Second, the unusually high arginine (50%) and proline
(37.5%) content of Bac7(1–16) restricts the types of con-
tacts that this peptide can establish with the ribosome. This
results in �-stacking interactions between the side chains of
Arg2, Arg9, Arg12, Arg14 and Arg16 and exposed bases of
23S rRNA residues C2573, C2452/U2504, C2610, C2586
and A2062, respectively. Additional rigidity within the pep-
tide is provided through the packing of Arg1 against Ile3
and Arg9 against Leu10, and through the compact arginine
stack described above (Figure 2C).

Third, numerous possible hydrogen bonds can be estab-
lished between the backbone of Bac7(1–16) and the ribo-
some (Figure 2A, D and E), including many indirect inter-
actions via ordered solvent molecules (Figure 2D and E).
Many of the water-mediated contacts suggested for Tth70S-
Bac7 are likely to occur with oncocin, even though the
lower resolution of the earlier Tth70S-Onc112 structures
precluded the modelling of any water molecules (20,21).
In addition, interactions such as those between 23S rRNA
residue U2506 and the backbone of Bac7(1–16) residues
Arg9 and Leu10 were also proposed to occur between the
Onc112 peptide and the ribosome (20,21).

Bac7 and Onc112 compete with erythromycin for ribosome
binding

The C-terminal residues 12–16 of Bac7(1–16) overlap with
the binding site of the macrolide antibiotic erythromycin

on the bacterial ribosome (40,41), in particular with the re-
gion occupied by the cladinose sugar and part of the lac-
tone ring (Figure 3A). Consistently, we could demonstrate
that Bac7(1–16) and Bac7(1–35) efficiently compete with
the binding of radiolabelled erythromycin to the 70S ribo-
some (Figure 3B). Similarly, Onc112 also efficiently com-
peted with erythromycin (Figure 3B), as expected based
on the similarity in binding mode with the ribosome for
these regions of Onc112 and Bac7 (Figure 1B). In contrast,
Bac7(5–35) was a poor competitor of erythromycin (Fig-
ure 3B), indicating that the highly cationic N-terminus of
Bac7 and its interaction with the A-tRNA binding pocket
(Figure 2B) are important for high affinity binding of Bac7
to the ribosome. Indeed, Bac7 derivatives lacking the first
four N-terminal residues (RRIR), Bac7(5–35) and Bac7(5–
23), exhibit dramatically reduced minimal inhibitory con-
centrations (MIC) against Gram-negative strains, such as E.
coli, as well as Salmonella typhimurium (6). We note, how-
ever, that the internalization of Bac7(5–35) into bacteria is
reduced, indicating that the N-terminal RRIR motif also
plays an important role for cell penetration (11).

Bac7 allows initiation, but prevents translation elongation

Consistent with the erythromycin binding assays and in
agreement with previous results (Figure 4A) (19), we ob-
served that Bac7(1–35) inhibits the production of luciferase
with an IC50 of 1 �M in an E. coli in vitro translation system,
similar to MetI and Pyr (Supplementary Figure S1), as well
as that observed previously for Onc112 (20,21). Bac7(1–16)
was an equally potent inhibitor as Bac7(1–35), consistent
with the similar MICs observed for these two derivatives
(6,10,11). In contrast, Bac7(5–35) inhibited in vitro trans-
lation with an IC50 of 10 �M, i.e. 10-fold higher than ob-
served for Bac7(1–16) or Bac7(1–35), indicating that the re-
duced affinity for the ribosome, together with reduced cellu-
lar uptake (11), results in the higher MIC of the Bac7(5–35)
derivative (6,42).

Next we investigated the mechanism of inhibition by
Bac7 using two in vitro translation assays. First, we com-
pared the effect of Bac7(1–35) and Bac7(5–35) on the stabi-
lization of disomes formed upon the stalling of ribosomes
on a dicistronic mRNA (in this case 2XErmBL mRNA),
as measured by sucrose gradient centrifugation (21,38,39).
In the absence of inhibitor, the majority of ribosomes are
present as 70S monosomes (control in Figure 4B), whereas
the presence of erythromycin leads to translational arrest of
the ribosomes on both cistrons of the 2XErmBL mRNA,
thereby generating the expected disome peaks (Ery in Fig-
ure 4B). Consistent with the in vitro translation assays (Fig-
ure 4A), translation inhibition and thus disome formation
was observed in the presence of 10 �M Bac7(1–35), whereas
even 100 �M of Bac7(5–35) did not produce significant dis-
omes (Figure 4B). These findings suggest that Bac7(1–35)
but not Bac7(5–35) stabilizes an arrested ribosome com-
plex, as observed previously for Onc112 (21).

Second, to monitor the exact site of translation inhibi-
tion of the Bac7 derivatives, we employed a toeprinting as-
say, which uses reverse transcription from the 3′ end of
an mRNA to determine the exact location of the ribo-
somes that are translating it (35). In the absence of in-
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Figure 2. Interactions between Bac7(1–16) and the ribosome. (A) Bac7(1–16) (green) makes extensive contacts with the A-site tRNA binding region of
the ribosome, in particular (B) electrostatic interactions between its N-terminal arginine stack and a deep groove lined by phosphate groups from the 23S
rRNA (B). (C) �-stacking interactions between arginine side chains (green) of Bac7(1–16) and 23S rRNA bases contribute to much of the binding and are
reinforced through further packing against aliphatic side chains (blue). (D and E) Water-mediated contacts between the peptide and the ribosome are also
proposed to occur further down the exit tunnel, in addition to direct hydrogen bonding interactions between the two.

Figure 3. Competition between Bac7 derivatives and erythromycin. (A) Superimposition of the binding site of erythromycin (blue) (40,41) with residues
11–16 of Bac7(1–16) (green). (B) A filter binding assay was used to monitor competition between radiolabelled [14C]-erythromycin and increasing concen-
trations (1–100 �M) of Bac7(1–35) (red), Bac7(1–16) (green), Bac7(5–35) (blue), Onc112 (grey) and cold (non-radioactive) erythromycin (ery, black).

hibitor, ribosomes initiated at the AUG start codon of the
mRNA, translated through the open reading frame and
ultimately became stalled on an isoleucine codon (Figure
4C) due to the omission of isoleucine from the translation
mix. In the presence of thiostrepton or clindamycin, ribo-
somes accumulated at the AUG codon (Figure 4C), since
these antibiotics prevent delivery and/or accommodation
of aminoacyl-tRNA at the A-site directly following initi-
ation (43). Similar results were observed when using the
Bac7(1–35) and Bac7(1–16) derivatives, such that complete

inhibition of translation elongation was observed at a pep-
tide concentration of 10 �M (Figure 4C). These findings
suggest that like Onc112 (21), Bac7 allows subunit joining
and fMet-tRNAi

Met binding, but prevents accommodation
of the first aminoacyl-tRNA at the A-site, as suggested by
the overlap in the binding site of Bac7 and the CCA-end of
an A-tRNA (Figure 4D). Curiously, the toeprint for ribo-
somes stalled during initiation became weaker at 100 �M
of Bac7(1–16) and Bac7(1–35) and the signal for the full-
length mRNA became stronger, similar to the effect ob-
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Figure 4. Mechanism of action of Bac7 on the ribosome. (A) Effects of increasing concentrations of Bac7 derivatives Bac7(1–16) (green), Bac7(1–35) (red)
and Bac7(5–35) (blue) on the luminescence resulting from the in vitro translation of firefly luciferase (Fluc) using an Escherichia coli lysate-based system.
The error bars represent the standard deviation from the mean for triplicate experiments and the luminescence is normalized relative to that measured in
the absence of peptide, which was assigned as 100%. (B) Sucrose gradient profiles to monitor disome formation from in vitro translation of the 2XErmBL
mRNA in the absence (control) or presence of 20 �M erythromycin (Ery), 10 �M Bac7(1–35) (red) or 100 �M Bac7(5–35) (blue). (C) Toe-printing assay
performed in the absence (−) or presence of increasing concentrations (1, 10, 100 �M) of Bac7(1–35), Bac7(1–16) or Bac7(5–35), or 100 �M thiostrepton
(Ths), 50 �M edeine (Ede) or 50 �M clindamycin (Cli). Sequencing lanes for C, U, A and G and the sequence surrounding the toe-print bands (arrowed)
when ribosomes accumulate at the AUG start codon (green, initiation complex) or the isoleucine codon (blue, stalled elongation complex) are included for
reference. (D) Structural comparison of Phe-tRNAPhe (slate) in the A-site and fMet-tRNAi

Met in the P-site (blue) (26) with the binding site of Bac7(1–16)
(green).

served when the antibiotic edeine was used (Figure 4C).
Edeine prevents 70S initiation complex formation by desta-
bilizing fMet-tRNAi

Met binding to the 30S subunit (43).
Thus, Bac7 may have a similar effect when high cytosolic
concentrations are achieved through active uptake into the
cell, possibly due to the presence of non-specific interactions
with the ribosome. In contrast to Bac7(1–16) and Bac7(1–
35), Bac7(5–35) only stabilized the initiation complex at a
much higher concentration (100 �M) (Figure 4C). This is
consistent with a reduced affinity of Bac7(5–35) for the ri-
bosome and reinforces the critical role played by the first
four residues of Bac7 in its inhibitory activity (Figure 1A)
(6,42).

Bac7 inhibits eukaryotic translation in vitro

Bac7(1–35) is internalized by mammalian cells (42,44), yet
no toxicity has been observed, even at concentrations well
above those effective against microbes (12,13,42), raising
the question as to whether Bac7 binds to eukaryotic cytoso-
lic ribosomes. A comparison of the binding site of Bac7(1–
16) on the bacterial 70S ribosome with the equivalent region
of a mammalian 80S ribosome reveals that the rRNA nu-
cleotide sequence is highly conserved. Structurally, the con-
formation of three 25S rRNA nucleotides, C4519 (C2573),
U4452 (U2506) and A3908 (A2602), would be expected to
preclude Bac7(1–16) from binding to the mammalian ri-
bosome (Figure 5A). Nevertheless, these nucleotides are
highly mobile and adopt different conformations depend-
ing on the functional state of the ribosome (26,39,45,46),
suggesting that conformational rearrangements of these nu-
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Figure 5. Specificity of Bac7 for bacterial and eukaryotic ribosomes. (A) Superimposition of Bac7(1–16) (green) onto a mammalian 80S ribosome (PDB ID:
3J7O) (47) on the basis of the 23S and 25S rRNA chains in the corresponding structures, with inset illustrating three rRNA nucleotides whose conformation
differs in the 80S (grey) and Tth70S-Bac7 (yellow) structures. (B) Effect of increasing concentrations of Bac7(1–35) on the luminescence resulting from the
in vitro translation of firefly luciferase (Fluc) using an Escherichia coli lysate-based system (red) or rabbit reticulocyte-based system (black). The error bars
represent the standard deviation from the mean for triplicate experiments and the fluorescence is normalized relative to that measured in the absence of
peptide, which was assigned as 100%. (C) Model for the targeting of proBac7 to large granules and its processing by elastase to yield active Bac7 peptide.
The latter is transported through the bacterial inner membrane by the SbmA transporter and binds within the tunnel of bacterial ribosomes to inhibit
translation.

cleotides could allow Bac7(1–16) binding. Indeed, we ob-
served that increasing concentrations of Bac7(1–35) inhib-
ited in vitro translation using a rabbit reticulocyte system
(Figure 5B). Bac7(1–35) exhibited an IC50 of 2.5 �M, only
2.5-fold higher than that observed in the E. coli in vitro
translation system (Figure 5B). The excellent inhibitory ac-
tivity of Bac7(1–35) on mammalian ribosomes, combined
with its lack of toxicity on mammalian cells (42), would be
consistent with a mechanism of internalization via an endo-
cytotic process (42) to ensure that Bac7 minimizes contact
with the mammalian cytosolic ribosomes.

DISCUSSION

Our finding that Bac7 is active against eukaryotic trans-
lation, together with the current literature, allows us to
present a model that explains how and why the mammalian
cell prevents the active Bac7 peptide from being present in
the cytoplasm (Figure 5C). Bac7 is produced by immature
myeloid cells as a pre-pro-Bac7 precursor that is targeted
to large granules, where it is stored as pro-Bac7 in differ-
entiated neutrophils (48). The inactive proBac7 is cleaved
by elastase, a serine protease that is present in azurophil
granules, either upon (A) fusion with the phagosome, or (B)
exocytosis and release into the extracellular matrix (Figure
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5C) (48,49). The resulting activated Bac7 peptide can then
enter into the bacterial cell through the SbmA transporter
(10), where it subsequently binds to the ribosome to inhibit
translation (Figure 5C) (19). Our structure of the Tth70S–
Bac7 complex reveals specifically how Bac7 interacts with
the bacterial ribosome (Figures 1 and 2) and inhibits trans-
lation by allowing initiation but preventing translation elon-
gation (Figure 3). Although the overall mechanism of ac-
tion of Bac7 is similar to that of insect-derived AMPs like
oncocin (20,21), the high arginine content of Bac7 leads to
a distinct mode of binding to the ribosome, namely through
electrostatic and stacking interactions with the backbone
and bases of 23S rRNA nucleotides, respectively (Figure
2C). It will be interesting to see whether such interactions
are the basis for the translational arrest that has been ob-
served when the ribosome translates a nascent polypeptide
chain bearing positively charged arginine residues (50,51).
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