Astrofisica Nucleare e Subnucleare GeV Astrophysics

Detector Project

Gamma-ray astrophysics above 100 MeV

Picture of the day, Feb. 28, 2011, NASA-HEASARC[®]

Exercise on GeV gamma-rays

- Find the web sites of AGILE and Fermi/LAT
- Check the status of "new" gamma-ray detectors (CALET, DAMPE, Gamma-400, HERD, other?)

AGILE

AGILE

Welcome to the AGILE Data Center Home Page at SSDC

These pages provide updated information and services in support to the general scientific community for the mission AGILE, which is a small Scientific Mission of the Italian Space Agency (ASI) with participation of INFN, IASF/INAF and CIFS.

AGILE is devoted to gamma-ray astrophysics and it is a first and unique combination of a gamma-ray (AGILE-GRID) and a hard X-ray (SuperAGILE) instrument, for the simultaneous detection and imaging of photons in the 30 MeV - 50 GeV and in the 18 - 60 keV energy ranges. AGILE has been operating nominally for more than 16 years, providing valuable data and important scientific results.

AGILE operations:

Launch date: 23 April, 2007 - Re-entry date: 14 February, 2024 Science observations ended on 18 January, 2024 Planned Nominal Phase: 2 + 2 extended years Elapsed: 16 years and 10 months in orbit (6.141 days)

AGILE spinning sky view

(Click here for previous pointing details)

Click here to access the AGILE Spinning FOV plotter

Click here to access the AGILE Real Data FOV Plotter

Fermi LAT

Fermi LAT

Astrofisica Nucleare e Subnucleare Electromagnetic Showers

ELECTROMAGNETIC SHOWERS
SCIAMI ELETTROMAGNETICI

$$\frac{-dE}{dX} = \frac{E}{X_{o}} \qquad \text{SIA } e^{\frac{1}{2}} \text{ che } 8$$

$$\frac{-dE}{dX} = \frac{E}{X_{o}} \qquad \text{SIA } e^{\frac{1}{2}} \text{ che } 8$$

$$E = \frac{e}{2}e^{\frac{1}{X_{o}}} \qquad E = \frac{1}{X_{o}} \qquad E = \frac{$$

Fig. 4.6. The total number of particles N in a shower initiated by an electron of energy E_0 , as a function of depth n, measured in radiation lengths; E_c is the critical energy of the material. (From Leighton, 1959, p. 693, after Rossi & Greisen, 1941.)

Astrofisica Nucleare e Subnucleare Hadronic showers

Hadronic showers

 \rightarrow photo effect, scattering (γ)

Hadronic

- \rightarrow ionization (π ±, p)
- → invisible energy (binding, recoil)

Hadronic shower

Rule of thumb argument: the geometric cross section goes as the square of the size of the nucleus, a_N^2 , and since the nuclear radius scales as $a_N \sim A^{1/3}$, the nuclear mean free path in gm/cm² units scales as $A^{1/3}$.

NUCL.

Table 5. Radiation length X_0 , critical energy E_c and hadronic absorption length λ_{had} for some materials

Material	X _o (g/cm ²)	Kg/m²	E _c (MeV)	λ _{had} (1.45) (g/cm ²)
<u>ne</u> .	63	630	340	52.4
1 2111111	24	240	47	106.4
A MARINE MANIMUM	20 -	200		119.7
Ar	13.8	138	24	131.9
Personal and a second	00 35.0	62 1	6.9 Pett	
Pb	0.5	84	~11.8	
Lead glass Sr 5	9.0	56	80	83.6
Plexiglas	40.5	405	93	84.9
H ₂ O	30	560	12.5	152.0
Nal(TI)	9.5	35	10.5	164
Bi ₄ Ge ₃ O ₁₂	12 (1) 8.0 , (*) (80	10.5	

Comparison hadronic vs EM showers

50

Astrofisica Nucleare e Subnucleare Calorimeters

Calorimetry

Iron return yoke interspersed

with Muon chambers

Transverse slice through CMS

Calorimetry: Energy Measurement by total Absorption of Particles

77

The e^I in the Colorimeter ionize and erail the Matirial Ionizohion: e^T, I⁺ pairs in the Material Excitation: Photons in the Material Measuring the total Number of e^T, I⁺ pairs or the total Number of Photons gives the particle Energy. If N is the total Number of e^+, I^+ pairs or photons, on $N = c_n E_0^{\circ}$ $\Delta N = \overline{N}'$ (Poisson Statistics) $\frac{\Delta E}{E} = \frac{\Delta N}{N} = \frac{1}{\overline{N}'} = \frac{\alpha}{\overline{VE'}} \Rightarrow Resolution$

Only Electrons and High Energy Photons show EM cascades at current GeV-TeV level Energies.

Strongly interacting particles like Pions, Kaons, produce hadonic showers in a similar fashion to the EM cascade →Hadronic calorimetry

Detectors for Particle Physics Calorimetry

D. Bortoletto

What is a calorimeter ?

- In nuclear and particle physics calorimetry refers to the detection of particles through total absorption in a block of matter
 - The measurement process is destructive for almost all particle
 - The exception are muons (and neutrinos) → identify muons easily since they penetrate a substantial amount of matter
- In the absorption, almost all particle's energy is eventually converted to heat → calorimeter
- Calorimeters are essential to measure neutral particles

Longitudinal shower distribution

Lateral development of EM shower

Opening angle:

bremsstrahlung and pair production

$$\left\langle \theta^2 \right\rangle \approx \left(\frac{m_e c^2}{E_e} \right)^2 = \frac{1}{\gamma^2}$$

multiple coulomb scattering [Molière theory]

$$\left|\left\langle \theta \right\rangle = \frac{E_s}{E_e} \sqrt{\frac{x}{X_0}} \quad \text{where} \quad E_s = \sqrt{\frac{4\pi}{\alpha}} \left(m_e c^2\right) = 21.2 MeV$$

• Main contribution from low energy e^- as $\langle \theta \rangle \sim 1/E_e$, i.e. for e^- with $E < E_c$

Molière Radius

$$R_M = \frac{E_s}{E_c} X_0 \approx \frac{21.2 MeV}{E_c} X_0$$

Assuming the approximate range of electrons to be X_0 yields $<\theta>\approx 21.2$ MeV/E_e \rightarrow lateral extension: R = $<\theta>X_0$

Calorimetry: Energy Measurement by total Absorption of Particles

The Meanwarment is Bestructive. The porticle can not be subject to for the study.

Measuring the Photons produced by the collision of the et with Alon thermas of the noterial.

Total Anound of E, It pairs or Photons is proportional to the total track length is proportional to the particle Energy. Scintillating Crystals, Plastic Scintillators

EM Calorimeter configurations

Total absorption

- Electrons and photons stop in calorimeter
- Scintillation proportional to energy of electron
- Usually non-organic scintillator (BGO, PbWO_{4,...}) or liquid Xe
- Advantage: Excellent energy resolution
 - see all charged particles in the shower (but for shower leakage) → best statistical precision
 - Uniform response → good linearity
- Disadvantages:

If W is the mean energy required to produce a signal (eg an e⁻-ion pair in a noble liquid or a 'visible' photon in a crystal)

$$\frac{\sigma_E}{E} = \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{E/W}}$$

Examples:

- B factories: small photon energies
- CMS ECAL which was optimized for H→γγ

EM Calorimeter configurations

Sampling Calorimeter

- One material to induce showering (high Z)
- Another to detect particles (typically by counting number of charged tracks)
- Many layers sandwiched together
- Resolution $\propto E^{-1/2}$
- Advantages
 - Depth segmentation
 - Spatial segmentation
- Disadvantages:
 - Only part of shower seen, less precise
- Examples
 - ATLAS ECAL
 - Most HCALs

Sampling fraction

$$f_{sampling} = \frac{E_{visible}}{E_{deposited}}$$

Crystals for Homogeneous EM Calorimetry

	NaI(Tl)	CsI(Tl)	CsI	BGO	PbWO ₄
Density (g/cm ³)	3.67	4.53	4.53	7.13	8.28
X_0 (cm)	2.59	1.85	1.85	1.12	0.89
R_M (cm)	4.5	3.8	3.8	2.4	2.2
Decay time (ns)	250	1000	10	300	5
slow component			36		15
Emission peak (nm) slow component	410	565	305 480	410	440
Light yield γ /MeV	4×10^{4}	5×10^{4}	4×10^{4}	8×10^{3}	1.5×10^{2}
Photoelectron yield (relative to NaI)	1	0.4	0.1	0.15	0.01
Rad. hardness (Gy)	1	10	10^{3}	1	10^{5}

Barbar@PEPII,	KTeV@Tev	L3@LEP,	CMS@LHC,
10ms	atron,	25us	25ns bunch
interaction	High rate,	bunch	crossing,
rate, good light	Good	crossing,	high
yield, good S/N	resolution	Low	radiation
		radiation	dose
		dose	

Noble Liquids for Homogeneous EM Calorimetry

	Ar	Kr	Xe			
Ζ	18	36	58			HV
A	40	84	131	07		4
X_0 (cm)	14	4.7	2.8	e		E
R_M (cm)	7.2	4.7	4.2		PTI VE	1
Density (g/cm^3)	1.4	2.5	3.0			0
Ionization energy (eV/pair)	23.3	20.5	15.6		5	U
Critical energy ϵ (MeV)	41.7	21.5	14.5		+ L	
Drift velocity at saturation $(mm/\mu s)$	10	5	3			

When a charge particle traverses these materials, about half the lost energy is converted into ionization and half into scintillation.

The best energy resolution would obviously be obtained by collecting both the charge and light signal. This is however rarely done because of the technical difficulties to extract light and charge in the same instrument.

Krypton is preferred in homogeneous detectors due to small radiation length and therefore compact detectors. Liquid Argon is frequently used due to low cost and high purity in sampling calorimeters (see later).

GeV Gamma-ray Astrophysics The EGRET legacy

EGRET

COMPTON OBSERVATORY INSTRUMENTS

The HE sky from EGRET

EGRET Gamma-ray Sources

Challenge #1

Need simultaneous multiwavelength data to study variability and emission processes

Challenge # 2

• Need more exposure and optimal timing (and radio monitoring) to discover more gamma-ray PSRs.

Challenge # 3

 Need fast timing for gamma-ray detection (improving EGRET deadtime, 100 msec → 100 microsec or less).

Prompt Emission (GRB 930131)

Challenge # 4

• Need arcminute positioning of gamma-ray sources (improving EGRET error box radii by a factor of 2-10).

Challenge # 5

• Need improvements in Spectral Resolution fo check for DM signals

Technology impact - FoV

EGRET on Compton GRO

GLAST Large Area Telescope

Technology impact -- PSF

Cygnus region (15⁰ x 15⁰), Eγ > 1 *GeV*

Multiple Scattering

Multiple Scattering

Statistical (quite complex) analysis of multiple collisions gives:

Probability that a particle is defected by an angle θ after travelling a distance x in the material is given by a Gaussian distribution with sigma of:

$$\Theta_0 = \frac{0.0136}{\beta c p [\text{GeV/c}]} Z_1 \sqrt{\frac{x}{X_0}}$$

 X_0 ... Radiation length of the material Z_1 ... Charge of the particle p ... Momentum of the particle

x /2 Y plane Y plane Splane A dolare

W. Riegler/CERN

AGILE

AGILE instrument

AGILE: inside the cube...

ANTICOINCIDENCE

INAF-IASF-Mi (F.Perotti)

HARD X-RAY IMAGER (SUPER-AGILE)

INAF-IASF-Rm (E.Costa, M. Feroci)

GAMMA-RAY IMAGER SILICON TRACKER INFN-Trieste (G.Barbiellini, M. Prest)

(MINI) CALORIMETER

INAF-IASF-Bo, Thales-Alenia Space (LABEN)

(G. Di Cocco, C. Labanti)

The Silicon Tracker

The AGILE silicon detectors

Detector specifications:

- dimension: 9.5x9.5 cm²
- thickness: 410 μm (6 inch technology)
- readout pitch: 242 μm; physical pitch: 121 μm (one floating strip)
- number of strips/ladder: 384
- Single side and AC-coupled
- leakage current: 2 nA/cm² at Vbias=2.5*V_{FD} =200 V
- polarization resistor: 40 MΩ
- coupling capacitor: 55 pF/cm
- Al strip resistance: 4.3 Ω/cm
- max number of bad strips: <1%
- average number of bad strips: <0.5%

The AGILE frontend chip: TA1 \rightarrow TAA1

low noise, low power, SELF-TRIGGERING technology: 1.2 μ CMOS, double poly, double metal (final: 0.8 μ BiCMOS on epitaxial layer) features:

128 channels gain: 25 mV/fC; range: 18 fC noise (e⁻rms): 165+6.1/pF for T_{peak}=2 μs power: <0.4 mW/channel power rails: ±2 V readout frequency: 5 Mhz gain spread: <1.5% threshold offset spread (TA1): 20% (in TAA1 will be implemented a 3 bit DAC per channel)

The CsI Mini-Calorimeter

MINI-CALORIMETER

DETECTOR

30 Csl bars wrapped with tight diffusion material organized in 2 orthogonal trays
- bar dimension: 40x2.3x1.5 cm³
- total radiation length: 1.5X₀ (in axis)

FRONTEND ELECTRONICS

- 1 photodiode on each side of the bar - optically coupled

GOAL

 measure energy deposit of the photon conversion pair (GRID mode)
detect GRBs and transients in the range 0.25-250MeV (BURST mode)

SCIENTIFIC FEATURES

 energy resolution: 22-24%(FWHM) @ 1MeV 0.7% @ 100MeV
spatial resolution: 15mm @ 1MeV 2mm @ 100MeV
timing resolution: 2µs (BURST mode)

SuperAGILE X-ray detector

SUPER-AGILE

DETECTOR

plane with 16 silicon tiles organized in 4 1D detectors
each detector: 1536 readout strips (0.121mm pitch)
a coded mask system

FRONTEND ELECTRONICS

- 12 self-triggering readout ASICs (128 channels each) per each detector, positioned on a kapton-FR4 hybrid

GOAL

measure X-rays in the energy range 10-40keV to detect GRBs, transients, galactic and extra-galactic sources

SCIENTIFIC FEATURES

- imaging: 1'-3' at ~20mCrab - timing resolution: 5us
- energy resolution: 4keV (FWHM)
- flux sensitivity: ~5mCrab (15keV)

Performance

Si Self Trigger and FoV

Analog readout and PSF

The AGILE launch

Sriharikota launch base (India) PSLV-C8 launch, April 23, 2007

AGILE in orbit

AGILE in orbit

First gamma-ray detected in orbit with the nominal GRID trigger configuration (May 10, 2007)

First Light

AGILE two lifes

	pointing- AGILE	spinning- AGILE
time period	Jul.07 – Oct.09	Nov. 2010 -
attitude	fixed	variable (spinning, 1º/sec)
sky coverage	1/5	~ 70%
source livetime fraction	~ 0.5	~ 0.2
1-day exposure (30 degree off-axis, 100 MeV)	~ 2 10 ⁷ (cm ² sec)	(0.5-1) 10 ⁷ (cm ² sec)

The AGILE sky

AGILE sources

Pittori et al. 2009

AGILE sources

Bulgarelli et al. 2019

AGILE sources

Bulgarelli et al. 2019

Challenge #1-AGN

Joint campaign with MAGIC and VERITAS on Mkn 421

Challenge #2 – Pulsar

High Precision Timing (eg. Crab PSR)

Pellizzoni et al. 2009

Challenge #3-GRB

Challenge #4 – Unidentified

Chen et al. 2011

Challenge # 5 – Spectral resolution

Key AGILE results

Terrestrial Gamma Ray Flashes

SNR W44

SNR W44

The Flaring 3C454.3

Vercellone et al. 2010

Blazar 3C454.3

Galactic Transients: Cygnus X3

AGILE discovery of transient gamma-ray emission from Cygnus X-3

Galactic Transients: The Flaring Crab

The Flaring Crab

The Bruno Rossi Prize in High Energy Astrophysics awarded by AAS to astrophysicist Marco Tavani and the AGILE Team for the discovery of gamma-ray flares from the Crab Nebula (January 10, 2012).

Bruno B. Rossi

Where to find data?

Welcome to the AGILE Data Center Home Page at SSDC

These pages provide updated information and services in support to the general scientific community for the mission AGILE, which is a small Scientific Mission of the Italian Space Agency (ASI) with participation of INFN, IASF/INAF and CIFS .

AGILE is devoted to gamma-ray astrophysics and it is a first and unique combination of a gamma-ray (AGILE-GRID) and a hard X-ray (SuperAGILE) instrument, for the simultaneous detection and imaging of photons in the 30 MeV - 50 GeV and in the 18 - 60 keV energy ranges. AGILE has been operating nominally for more than 16 years, providing valuable data and important scientific results.

AGILE operations:

Launch date: 23 April, 2007 - Re-entry date: 14 February, 2024 Science observations ended on 18 January, 2024 Planned Nominal Phase: 2 + 2 extended years Elapsed: 16 years and 10 months in orbit (6.141 days)

The AGILE Mission Board (AMB) has executive power overseeing all the scientific matters of the AGILE Mission and is composed of:

- AGILE Principal Investigator: Marco Tavani, INAF Rome (Chair)
- ASI Project Scientist: Paolo Giommi, ASI
- ASI Mission Director: Giovanni Valentini, ASI
- (Former ASI Mission Directors: Luca Salotti: Apr 2007 Sep 2010, Giovanni Valentini: Sep 2010 Jan
- 2015, Fabio D'Amico: Jan 2015 Jun 2023)
- AGILE Co-Principal Investigator: Guido Barbiellini, INFN Trieste - 1 ASI representative: Elisabetta Tommasi di Vignano
- (Former ASI representative: Sergio Colafrancesco up to June, 2010)

- INAF Project Scientist: Carlotta Pittori (from November 10, 2020)

NEW AGILE LV3 online data analysis

AGILE spinning sky view

(Click here for previous pointing details)

Click here to access the AGILE Spinning FOV plotter

Click here to access the AGILE Real Data FOV Plotter

AGILE total intensity map up to Sep. 30, 2017.

Conclusions

- AGILE crucial contributions to testing particle acceleration theories, plasma instabilities in the Universe and on the Earth !
 - Big surprise: discovery of gamma-ray flares from the Crab Nebula: 2012 Bruno Rossi Prize
 - Origin of cosmic rays, SNR W44, first direct evidence of neutral pion emission
 - Relativistic jets in microquasars and blazars
 - Gamma-ray emission up to 100 MeV from Terrestrial
 Gamma-Ray Flashes

Fermi LAT

Overview of LAT

- <u>Precision Si-strip Tracker (TKR)</u> 18 XY tracking planes. Single-sided silicon strip detectors (228 μm pitch) Measure the photon direction; gamma ID.
- <u>Hodoscopic Csl Calorimeter(CAL)</u> Array of 1536 Csl(Tl) crystals in 8 layers. Measure the photon energy; image the shower.
- <u>Segmented Anticoincidence Detector (ACD)</u> 89 plastic scintillator tiles. Reject background of charged cosmic rays; segmentation removes self-veto effects at high energy.
- <u>Electronics System</u> Includes flexible, robust hardware trigger and software filters.

Systems work together to identify and measure the flux of cosmic gamma rays with energy 20 MeV - >300 GeV.

Launch!

- Launch from Cape
 Canaveral Air Station
 11 June 2008 at
 12:05PM EDT
- Circular orbit, 565 km altitude (96 min period), 25.6 deg inclination.

Key Features

Large Area Telescope (LAT)

- Two instruments:
 - LAT:
 - high energy (20 MeV >300 GeV)
 - GBM:
 - low energy (8 keV 40 MeV)

Spacecraft Partner: General Dynamics

• Huge field of view

Gamma-ray Burst Monitor (GBM)

- LAT: 20% of the sky at any instant; in sky survey mode, expose all parts of sky for ~30 minutes every 3 hours. GBM: whole unocculted sky at any time.
- Huge energy range, including largely unexplored band 10 GeV - 100 GeV
- Large leap in all key capabilities. Great discovery potential.

Effective Area (A_{eff})

< 100 MeV limited by 3-in a row requirement

< 1 GeV limited discriminating information

P8R2_SOURCE_V6 effective area at 10 GeV, averaged over ϕ

Off-axis: more material, less cross section

Shift from front/back events as we go off-axis

> 100 GeV self-veto from backsplash

http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm

Point Spread Function (P)

High energy: dominated by strip pitch

http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm

LAT first light

LAT discovers a radio-quiet pulsar!

Fermi Gamma-ray Space Telescope

GLAST renamed *Fermi* by NASA on August 26, 2008

http://fermi.gsfc.nasa.gov/

" Enrico Fermi (1901-1954) was an Italian physicist who immigrated to the United States. He was the first to suggest a viable mechanism for astrophysical particle acceleration. This work is the foundation for our understanding of many types of sources to be studied by NASA's Fermi Gamma-ray Space Telescope, formerly known as GLAST. "

Fermi LAT 3 months sky

PKS 1502-106 and 3C454.3

- The sky is dynamic, Fermi is monitoring the sky, catching flaring sources over different time scales.
- Atel #1628 (3C454.3) and #1650 (PKS 1502-106) issued to announce these flares.

Fermi 1 yr sky

Fermi Year One Catalog

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/1yr_catalog/

More than 1000 sources in year one catalog !

- About 250 sources show evidence of variability
- Half the sources are associated positionally, mostly blazars and PSRs
- Other classes of sources exist in small numbers (XRB, PWN, SNR, starbursts, globular clusters, radio galaxies, narrow-line Seyferts)
- Uncertainties due to the diffuse model, particularly in the Galactic ridge

2 year sky

Credit: Fermi Large Area Telescope Collaboration

4 years sky

3FGL catalog – 3033 sources

4FGL catalog

1 FHL (3 years, Pass7, E>10 GeV)

2FHL (P8 data >50 GeV) – 80 months

3FHL (E>10 GeV – P8)

3 FHL

Challenge # 1 – AGN

Joint campaign on PKS 2155 with HESS

Aharonian et al. 2009

Challenge # 2 – Pulsars Blind Search

The first blind ms Pulsar

New MSP and GW detection

Challenge # 3 – GRB

This GRB is a perfect case for studying Lorentz Invariance Violation

z = 0.9 (5.381 Gyr)

Emission of 31 GeV photon after 859 ms since the trigger

Only conservative assumption!

□ the HE photon is not emitted *before* the LE photons, at different events.

Table 2 | Limits on Lorentz Invariance Violation

	<u> </u>					
#	$t_{start} - T_0$	Limit on	Reasoning for choice of t _{start}	E,†	Valid	Lower limit on
	(ms)	∆t (ms)	or limit on Δt or $ \Delta t/\Delta E $	(MeV)	for s _n *	M _{QG,1} /M _{Planck}
(a)*	-30	< 859	start of any < 1 MeV emission	0.1	1	> 1.19
(b)*	530	< 299	start of main < 1 MeV emission	0.1	1	> 3.42
(c)*	648	< 181	start of main > 0.1 GeV emission	100	1	> 5.63
(d)*	730	< 99	start of > 1 GeV emission	1000	1	> 10.0
(e)*	_	< 10	association with < 1 MeV spike	0.1	±1	> 102
(f)*	_	< 19	If 0.75 GeV [‡] γ -ray from 1 st spike	0.1	-1	>1.33
(g) ^	∆t/∆E <3	30 ms/GeV	lag analysis of > 1 GeV spikes	—	±1	> 1.22

nature

Explore content ~ About the journal ~ Publish with us ~

nature > letters > article

Published: 01 October 1998

Tests of quantum gravity from observations of γ-ray bursts

G. Amelino-Camelia, John Ellis, N. E. Mavromatos, D. V. Nanopoulos & Subir Sarkar

Nature 395, 525 (1998) Cite this article

The recent confirmation that at least some γ -ray bursts originate at cosmological distances¹⁻⁴ suggests that the radiation from them could be used to probe some of the fundamental laws of physics. Here we show that γ -ray bursts will be sensitive to an energy dispersion predicted by some approaches to quantum gravity. Many of the bursts have structure on relatively rapid timescales⁵, which means that in principle it is possible to look for energydependent dispersion of the radiation, manifested in the arrival times of the photons, if several different energy bands are observed simultaneously. A simple estimate indicates that, because of their high energies and distant origin, observations of these bursts should be sensitive to a dispersion scale that is comparable to the Planck energy scale (~10¹⁹ GeV), which is sufficient to test theories of quantum gravity. Such observations are already possible using existing γ -ray burst detectors.

$$v = \frac{\partial E}{\partial p} \approx c \left(1 - \xi \frac{E}{E_{QG}} \right) \qquad \Delta t \approx \xi \frac{E}{E_{QG}} \frac{L}{c}$$

130

GRB080916C - Multiple detector light curve

First 3 light curves are background subtracted

The LAT can be used as a counter to maximize the rate and to study time structures above tens of MeV

 The first low-energy peak is not observed at LAT energies

Spectroscopy needs LAT event selection (>100 MeV)

14 events above 1 GeV

GRB 130427A

(Ackermann et al., Science, Vol. 343 no. 6166 pp. 42-47)

GRB 130427A

Challenge # 4 – Unidentified CTA 1 Discovery

Pulse Phase

Abdo et al. 2008

Challenge # 4 Location of Gamma-ray emission

Observations of the Large Magellanic Cloud with Fermi

Challenge # 4 Location of Gamma-ray emission

Gamma-Ray Emission from the Shell of Supernova Remnant W44 Revealed by the Fermi LAT

Challenge # 5 – Spectral Resolution

Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

Supernova Remnants

The EBL

Dark Matter Searches

Gamma-ray indirect emission

No astrophysical uncertainties, good source id, but low sensitivity because of expected small BR

Extra-galactic

Large statistics, but astrophysics, galactic diffuse background

Narrow Spectral Feature at 130 GeV

Bringmann et al. and Weniger showed evidence for a narrow spectral feature near 130 GeV near the Galactic center (GC) in the LAT data. •Signal is particularly strong in 2 out of 5 test regions, shown above. •Over 4σ local significance with S/N > 30%, up to ~60% in optimized ROI. •Some indication of double line (111 &130 GeV).

Dark Matter searches – Galactic Center

Dark Matter searches – GC

Dark Matter searches – Dwarfs Galaxies

The Quiet Sun

Abdo, A. A. et al. 2011

Solar Flares

Surprise! Nova emitting in Gamma Rays!

Abdo, A. A. et al. 2010

Gamma Ray Novae

Surprise! The Fermi Bubbles

Fermi bubbles

LAT team analysis: Ackermann, M. et al. 2017

Scientific Highlights of the LAT

