
  

Modal Logic



  

Checking the background



  

● In this course we assume basic knowledge of propositional and 
predicate logic.

– Can you read formulasformulas?

– Do you know truth tablestruth tables? 
Derivations? (but this course does not focus much on derivations)

- Refutation trees?

– What is the difference between truthtruth and validityvalidity?

What is logical validitylogical validity?



  

Formal language



  

and   =   & , ʌ

or =   v

if…, then… = → , 

not =   - , ⌐

if and only if =   ↔   



  

Formulas
Read the following formulas:

P & Q

P V R

-T

Q → -R

(-P & - -Q)

(P V -R) → P

(P V R) → (R V -P)

(P& -Q) → P

Q →  - -R



  

Truth Tables



  



  

Truth tables

1. Give the truth tables of: 
&, V, -, → 

2.  Give the truth tables of: 
- -P;    -P & Q;    P V -Q;    P → -R;   (P&Q) → R, ...



  

● Be sure that you know and remember the 
language and the truth tables for propositional 
logic.

→ Necessary!

● Semantic trees (also called refutation trees or 
tableaux) apply truth tables.

- We use semantic trees in modal logic.



  

Logical validity



  

– What is logical validitylogical validity?

– What is the difference between truthtruth and 
validityvalidity?



  

● Logical validity is a relation between premises 
and conclusion of an argument.

→ It is not the truth of the premises or the truth 
of the conclusion.



  

● An argument is logically valid iff:

in any case in which the premises are true,in any case in which the premises are true,

also the conclusion is true.also the conclusion is true.



  

● Note!

An argument can be valid even if its premises 
and conclusion are false!

and an argument can be not valid even if its 
premises and conclusion are true!



  

● Is the following argument valid?

P & -PP & -P

therefore, therefore, 

QQ



  



  

Semantic trees for propositional logic



  

● Semantic trees are a way to prove validities.
→ Proof theory 

(like natural deduction, axiomatic systems, sequents, etc.)

● They are ‘mechanical’ procedures.

● Semantic trees for propositional logic are easy if 
one knows truth tables.

→ Knowledge of truth tables for &, v, -, →, ↔ is assumed.



  

● A semantic tree is the search for a counter-example to 
a formula.

→ If the search is successful, then there is a counter-example.

 

→ If there is a counter-example, the original 
sentence/argument is not valid.



  

● Suppose we want to know whether the formula A is 
valid. 

Then, we look for a counter-example to A.

We check whether A could be false.

Namely, whether not A could be true.

→ If not A could be true, then A is not always true. A could 
be false. A has counter-examples. So A is not logically 
valid.



  

● If, instead, the search for a counter-example fails, and there 
is no counter-example,

then not A is never true. 

Namely, A is never false.

● Which means that A is always true. 

→ A is logically valid.



  

● The search for counter-example fails if all 
options lead to contradictions.

A contradiction is a pair of the form p, -p (with p atomic)

→ The “options” are represented by different 
paths/branches on the tree. 



  

Rules



  

● Semantic trees use rules for each logical constant. 
(conjunction, disjunction, etc…)

● For each logical constant there are two rules:
1. when the formula containing it is true.

2. when the formula containing it is false (negated).



  

● The rules immediately follow from the truth tables.

→ One can study the rules, or just recover them from 
the truth tables. 

(I suggest to do the latter, and memorize the rules while 
practicing.)



  

● Note: 

we indicate falsity by negation.

“p is false” is written: -p



  

Example.

● Consider a conjunction (A & B)

- There is a rule for when:  (A & B) is true.

- And there is a rule for when:  (A & B) is false, 
Namely for its negation:  -(A & B)



  

● Each rule can be easily obtained by the truth tables for 
conjunction.

1. (A & B) is true.
When is a conjunction (A & B) true?

2.   -(A & B)   (A&B is falsefalse).
When is a conjunction (A & B) false?

- Note: when you have the negation you ask when the original 
formula (A&B) is false, not when the negated one -(A&B) is false.



  

1. (A & B)  TrueTrue

● When is a conjunction (A & B) true?

When both conjuncts are true.

● So we write both conjuncts below the formula.

(A & B)

    A

    B



  

2.   -(A & B)             FalseFalse

● When is a conjunction (A & B) false?

When at least one conjunct is false.

So we write the false conjuncts (negated) as two different cases.

   -(A&B)

   /         \

-A          -B



  

● For the other connectives the procedure is 
similar. 

● By similar reasoning on truth tables you can 
recover the other rules.



  



  

General notions



  

● Note that trees are drawn upside down.
● In trees we can distinguish the “root”, “the leafs” 

(terminal points), the branch.

● One branch (path) is a way to go from a leaf to the root. 

Note that branches (patches) do not cross.



  

● Each branch is developed until: 

- a contradiction is reached (in a single path),

or:
- all formulas in the path/branch cannot be analyzed 
further.



  

● When a branch/path includes a contradiction we 
write an X below, and we say that the branch closes.

● If the branch cannot be analyzed further, and it does 
not have a contradiction, we write a vertical arrow 
below it and we say that the branch is open.



  

● If all branches close (have contradictions), then 
there is no way to make the counter-example true. 

● If all branches close, we say that the tree closes.

→ If at least one branch remains open, the tree 
is open.



  



  



  

Semantic trees

Examples



  

● Example:

check whether the formula

(p V -p) is valid.



  

● First step:

 

we NEGATE the formula. 

- Because we are looking for a counter-example!

- We want to test the formula and see if the formula can be false.

- We want to see whether we can go against the formula.

So we write:

-(p V -p)



  

Then, we draw the tree. 

So we apply the rules derived from truth tables, as presented above. 

The formula that we have now is

-(p V -p)

Which is a negated disjunction.

● So we ask: when is a disjunction (p V -p) false?
→ False, because (p V -p) is negated.



  

A disjunction is false if both disjuncts are false.

So we write both negations of the disjuncts below the 
formula.

-(p V -p)

     -p

   - -p



  

● Now we have two new formulas to consider: -p 
and - -p. We consider them in turn. 



  

● Consider -p. 

What kind of formula is the negated formula p?

p is just an atomic formula. Truth tables do not tell us 
anything about atomic formulas.

Truth tables say that -p is true, if p is false. But to write that p is false, we use  
negation, -p, which is the initial formula. So we do not go anywhere.

-p is then already completely analyzed. We stop here.-p is then already completely analyzed. We stop here.



  

● Consider - -p.

What kind of formula is -p?

It is a negation. We want -p to be false. 
(Note we are considering - -p now!).

Given truth tables, -p is false when p is true. 

● So from - -p we get p.
→ Which is just double negation elimination!



  

● Concerning negations, in general if A is atomic: 

i. If we have  - -A, we write A.
(double negation elimination)

ii. If we have -A, we stop.



  

So we now have the following tree for (p V -p):

- (p V -p)

      -p

    - -p

       p



  

● But there is a contradiction in the path! So we close 
it.

● Check (p V -p)

- (p V -p)

      -p

    - -p

       p

     X



  

● The contradiction shows that it is not possible to 
negate (p V -p)! There is no counter-example.

● So (p V -p) is logically valid. 

→ It is just the excluded middle.



  



  

Other example.

● Check: (p & q)

● First step: we negate the formula.

-(p & q)



  

● Then we draw the tree following the rules.

First formula: -(p & q)
When is a conjunction false?

When at least one conjunct is false.

→ “At least one” not “both”, so we have two cases now.



  

● Check: (p & q)

       -(p&q)

       /          \

    -p           -q



  

● At this point there is nothing else we can do.

-p and -q cannot be analyzed further. So we stop.

● There is no contradictionno contradiction in the paths. Both branches are 
open.

So -(p&q) could be true. 

There are counter-examples to the initial formula.

(p & q) is not valid.



  



  

Semantic trees for arguments



  

● How do we check arguments instead of single 
formulas?

● First, we write, in column, all premises, and the negation 
of the conclusion.

→ This is a counterexample to the validity of an argument.

● Then we proceed as usual.



  

● For example:

Check whether the following argument is valid:

p&q, -p  ├  q 



  

● Argument: p&q, -p ├ q

● We write: 

p&q

-p

-q

...and then proceed with the tree as before.



  



  

Counter-examples



  

● From open trees you can build counter-examples to the 
initial formula

by considering the atomic formulas appearing in the open 
branch. 

● As usual:

 p =    p is true

-p =    p is false.



  

For example, we know that the tree for (p & q) is open.

● Check: (p & q)

      - (p & q)

       /          \

    -p           -q



  

● There are two open branches here, 

so there are two counter-examples.

A first counter-example is given by the left path:

-p       (so p must be false. p = 0)

Another counter-example is given by the right path:

-q        (so q must be false. q=0)



  

● Consider the first (left) branch.

The left path gives p as false, p = 0.

But what is the value of q, in the left path?

- It does not matter. It can be true or false. To have a 
counterexample to (p&q) it is enough that p is false. 

→ Similarly for q. 

● These undetermined values can be given no value, or an 
arbitrary value (for example false).



  

● So, when is (p & q), the initial formula, false?

When p = 0    or    when q=0. 

As expected.



  

All propositional rules



  



  

● To use the propositional trees in modal 
propositional logic, it is enough that we add a 
specification of the world in which the formula is 
true or false.

→ As we know, worlds are inert and basically useless 
for propositional logic.



  

● For example,

test (A&-B)

● First: we negate the formula in one world, say w:

-(A&B)         (w)



  

● Then we just proceed taking trace of the world in which we are 
supposed to be.

- (A & -B)        (w)

|

-A                   (w)

|

--B                  (w)

|

B                    (w)
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