
  

Classical predicate logic

A brief reminder



  

● Propositional logic is not enough to account for all valid 
arguments in natural language.

● For example:

All humans are mortal,

Socrates is human,

therefore, Socrates is mortal. 

Cannot be accounted for in propositional logic (Try!)



  

● To cover these arguments a richer language is 
needed. 

● We need a language able to analyse the internal 
structure of sentences (beyond just P or Q) and 
capturing quantifiers such as “all” and “some”.



  

● This is done by predicate logic.

In what follows a quick review of predicate logic 
is given.



  

The formal language of classical predicate logic



  

● The classical predicate language L1 is given by 
extending the classical propositional language 
L.

● We extend: the vocabulary, the syntax, the 
semantics of the propositional language L.



  

Vocabulary

(extension)



  

● We have two kinds of new expressions:

● Individual constants: p,q,r,s,… (like names of individuals)
● Individual variables: x,y,z, … (like names of unspecified 

individuals)

● N-place predicates: P(…), Q(…), … (like expressions for 
properties and relations)



  

● Quantifiers:

∀    (The universal quantifier: For all)

∃      (The existential quantifier: For some/There 
exists at least one)



  

Syntax of L1

(Extension)



  

● The syntax of L1 is obtained by adding the following 
clauses to the propositional syntax.

1. 

If A( ) is a predicate symbols with n-places, then 
writing n individual constants or variables, separated 
by commas, in A(  ), what is obtained a WFF.



  

2.
If A is a WFF with no occurrences of ∀v or ∃v 
for the variable v, 

Then ∀vA    and    ∃vA  are WFF.



  

● The syntactic notions are defined as in L.

● An additional notion is that of free variable and 
bound variable. 



  

● A variable v is free in wff if it is not in the range 
of a quantifier. 

It is bounded otherwise.



  

● A wff is closed if it no free variables occur in it.

Otherwise the formula is open.

(Note: these definition are intended to be intuitive 
reminder, but they are not fully rigorous. For full definition I 
refer to standard textbooks introducing predicate logic). 



  

● Closed wffs are also called sentences.

● We only consider sentences (closed formulas) 
from now on.



  

Semantics



  

● The semantics for the predicate language is 
much more complex than the semantics for the 
propositional language.



  

● In particular, truth tables do not extend to the 
new expressions (predicates, individual 
constants, variables, quantifiers).



  

● To fix these a more complex semantics, based 
on the notions like that of domain, 
interpretation, assignment, satisfaction, model, 
… must be introduced.



  

● Here, however, we just give an intuitive 
semantic reading for the new expressions, and 
then turn to semantic trees.



  

● Notice that, unlike truth tables, refutation trees 
can be easily extended to the language of 
predicate logic.

→ And also to modal predicate logic. 

We thus follow that route. 



  

● Intuitively, the domain is a set of objects. The 
set of objects we intende to speak about.

● Interpretations give meaning relatively to that 
set of objects.



  

● Individual constants are given a meaning by 
associating to every constant an object of the 
domain.



  

● Individual variables are assigned a 
“temporary” and variable objects by various 
assignments.

→ A complete treatment would be needed to 
give rigorous semantic clauses for quantifiers.



  

● A predicate symbol with n individual constants is 
read as meaning that a certain relation hold among 
those n individuals. 

For example P(t,r) means that t and r are in the 
relation P. 

(e.g. if P stands for “loves”, t loves r).



  

● For simplicity, we limit our treatment to unary 
predicate symbols ascribing a property to 
certain objects.

● For example, Q(r) means that r is Q.



  

● ∀xQ(x) means that all objects x are Q

●  ∃yR(y) means that at least one object is R   



  

● In complete treatment this should be phrased in 
terms of assignments of values to individual 
variables.

● The details are not obvious and we skip them 
here.



  

● Note that: 

All humans are mortal can be translated as:

∀y(H(y) → M(y))  ∀  ∃  

Namely: for all y, if y us human, then y is mortal.

With a conditional!



  

Some humans are mortal can be translated as:

∃y(H(y) & M(y))  

Namely: there is at least one y, such that y is human 
and y is mortal.

With a conjunction!



  

● For other notable translations, such as no 
human is mortal, see an introduction to 
predicate logic.



  



  

Semantics

Appendix



  

Note:

What follows is an additional appendix not 
required for the course on modal logic, and just 
put as material for the interested reader.



  

● A little more rigorously, the semantics for the 
predicate language could be given as follows.



  

● For predicative logic, we need a more complex 
structure (also called a model) consisting of:  

1. A domain D and 

2. An interpretation I.



  

● D is a set of element. 

● It is intended to provide the things we talk about.

● I is the semantic interpretation that gives meaning to the 
expression of L1.

I interprets L1 in D.



  

● In particular, for the basic vocabulary:

I gives an element to each individual constant.

I gives a set of elements to unary predicates (the 
set of things that have the intended property)



  

● Then we can define truth in the model M = (D,I) 
as follows. The definition is inductive:

Base of induction:

An atomic sentence, like P(a), is true in M if the 
element given to a by I is in the set given to P( ) 
by I.



  

Inductive steps:

● Propositional combinations of formulas follows 
truth tables.

(so A&B is true in M iff A is true in M and B is 
true in M)



  

● For the quantifiers, we have that

∀vA   is true in M, if everything in M has the property 
A.

∃vA is true in M, if something in M has the property A.



  

● With the notion of truth in M, we can define 
logical validity as usual.

● An argument is logically validity when:

if the premises are true in every model, the 
conclusion is true in every model.



  

● Notice that the above is not the fully rigorous 
treatment, which require the notion of satisfaction 
and assignment of values to variables. 

● For such a treatment, refer, again, to a textbook in 
predicate logic.



  

Semantics for modal predicate logic



  



  

● The semantics works like in predicate logic, interpreting and defining 
truth in a model (M = D,I).

● Additionally however, M specifies a set W, the set of “possible worlds” 
of M, 

one of which is designated its “actual world”, 

and each world w in W is assigned its own domain of quantification, 
d(w) included in D (intuitively,the set of individuals that exist in w).



  

● For each basic expression (constant and 
predicate) we have an extension, relative to 
each world, 

and an intension. (the function that assigns the 
extension).



  

● The definition of truth is the same of predciate 
logic but relativized to possible worlds.

So we have Truth in M, relatively to a world 
w.



  

● For example, an atomic sentence like P(a) is 
true in M, in world w iff

the extension of a in w belongs to the extension 
of P( ) in w.

● The clauses for connective remains the same.



  

● For quantifiers, we need to specify that 
quantifiers are limited to a single world, and 
they do not run on the entire domain (given by 
the union of all elements in all possible worlds).



  

∀vA    is true in M,w, if everything in w has the 
property A.

∃vA is true in M,w if something in w has the 
property A.



  

● The clauses of modal operators also remains 
the same, just relativized to possible worlds.

◻P is true in M,w if and only if p is true in all possible worlds.

◇P is true in M,w if and only if p is true in some possible worlds.



  

● We can then define logical validity, as usual just 
relativized to possible worlds.



  

De dicto and de re



  

● An application of the possible world analysis  concerns the 
venerable distinction between de re and de dicto modality. 

● Among the strongest modal intuitions is that the 
possession of a property has a modal character — that 
things exemplify some properties necessarily, or 
essentially, and others only accidentally.



  

● We can say that an individual a has a property 
P essentially if a has P in every world in which it 
exists.



  

Algol is a dog essentially: □G(a)

Algol is a pet accidentally: Ta & ¬◇ T(a)

Sentences like these, in which properties are ascribed to a specific 
individual in a modal context, signaled formally by the occurrence 
of a name or the free occurrence of a variable in the scope of a 
modal operator, are de re. 



  

● Often, de re statements are identified, more strictly, with 
those in which there is quantification in the scope of modal 
operator.

So, there is a free variable in the scope.

● These are easily obtained by existential generalizations, 
even if individual constants are involved. 

So, this sense includes the former.



  

● Necessarily, all dogs are mammals:

□ ∀x(D(x) → M(x)

□ (PvQ)

Where in the scope of the modal operators only bound 
variables, at most, occur are de dicto.

● Note that propositional modal logic only expresses de dicto 
modalities.



  

● Sometimes, de re statement can be derived from de 
dicto, by logical steps, in modal predicate logic.

● This is a problem for those, like Quine, who rejects de 
re statements. 

Indeed, Quine only accepts modal propositional logic 
at most.



  

● Modality de re involves in addition a commitment to the 
meaningfulness of transworld identity. 

The thesis that, necessarily, individuals exist and exemplify 
(often very different) properties in many different possible 
worlds. 



  

● More specifically, basic possible world semantics:

 

(i) permits world domains to overlap

(ii) assigns intensions to predicates, thereby, in effect, 
relativizing predicate extensions to worlds

● Both features are absent in Lewis concretism.  
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