
  

Modal logic 3

Normal Modal Logics



  

● Modal rules of S5 are of three kinds:

- MN   (Interdefinability. Worlds have no role)

- ◊S5 rule:    it generates a new world

- □S5 rule:    it fills a world.



  



  



  

Accessibility

● In the tree above, worlds k and l are generated from 
world n.

● When one world generates another then it has access 
to it.

- We write “wAv” for “w has access to v”

- Accessibility relations (relative possibility)



  

In the tree above we have:



  

● One way of changing the logic is to restrict the world filler rule 
(□).

● The world filler rules are unrestricted in S5: 

If □A is in a world, then A can be put into any world. 

So, in S5 every world has access to every world (including 
itself).



  

●  A different, simple condition could be:

– Filling (□ rule) only holds for worlds generated 
from the world in which the formula occurs.

→ Only the directly generated worlds can be accessed



  



  



  

– Note that n has no access to l, so we cannot 
apply □R to close the tree.



  



  

From K to S5

(Normal modal logic. Logics built from K)



  

● Call PTr the propositional rules for trees
● Call MN the modal equivalences
● Together they are the SW (single world) Ptr + 

MN

– So: S5Tr = SW + (◊S5, □S5, □T)



  

K



  

K

● The logic obtained with the restricted rules 
above is K.

KTr = SW + (◊R, □R)



  

Consider ( p→  □◊P) in K



  

● In K we cannot go any further. 

Because the world k has access to no other 
world.

(No world has been generated from k).



  

● Note: 

A world does not even have generated access 
to itself!



  

● K is a very limited logic. 
● Richer logics can be built by adding new filler rules (□ 

rules).

● We consider some of these logics:

T

S4

Br

S5



  

● How good is K as a logic for possibility?

→For example, intuitively, (p → ◊p)  should be valid.

Can it be proved in K?



  

● What formula is K valid? Can you find one?



  

● For example, the necessitation of tautologies, like:

□(P v -P)

● Or formulas such as:
-(◊P & □-P)



  

T



  

T

● The logic T is obtained by adding a filler rule to K, 
the rule □T.

 □T is the same as in S5.

● TTr =  SW + (◊R, □R, □T)



  

Consider (□P → P).
It is T-Valid, but not K-valid.

(Crucial formula for the difference)



  

● Also (p → ◊p) can be proved now.

● Can T prove (□p → □□p) ?



  

S4



  

S4

Logic S4 is obtained adding another filler rule to 
T, the Rule: □□R.

S4Tr = SW + (◊R, □R, □T, □□R)



  

The rule □□R makes you move an entire formula □p in 
another accessible world (not just the formula p).



  

The crucial formula, distinguishing S4 from T is:  
(□p →  □□P)



  

Applying □□R we can proceed:



  

● Can T prove  ( p→□◊p)?

● Can S4 prove it?



  



  

Br



  

● The logic Br is obtained by adding a different filler rule to T 

(not to S4!)*, the rule □SymR. 

* There is a mistake in Girle’s book.

BrTr =  SW + (◊R, □R, □T, □SymR) 



  

● □SymR allows the exemplification of □p (like □R), but 

backwardsbackwards with respect to accessibility.



  

The crucial formula distinguishing Br from T is: (P→□◊P).

In the last line we need  □SymR 



  

● Can T, Br, or S4 prove (◊p→ □◊p)?



  

S5



  

● We already know S5.

 
● It can be obtained by the rules we gave at the 

beginning, or by adding a new rule to S4.



  

● S5 is obtained (in a new way) by adding a 

different filler rule (a new □ rule) to S4.

 
                          

● S5Tr = SW + (◊R, □R, □T, □□R, □□SymR).



  

The rule: □□SymR is similar to □□R (S4) but backwards.
 
(as □SymR (Br) is □R backwards)                        



  

The crucial formula of S5 is (◊P→□◊P)



  



  

The orthodox strategy

● Hintikka strategy (used so far) generates logics 
adding filler rules.

● The orthodox strategy generates logics by 
adding properties to the accessibility relation 
between worlds.



  

● So far, given worlds w, n, we had that wAn only if 
w generates n.

● Now we are going to enrich the accessibility 
relation A with formal properties, so that wAn even 
in cases in which n is not generated from w.



  

● For example, A can be reflexive (Refl): 

for every world: wAw

● This gives, in another way, the logic T:

Ttr = SW + (◊R, □R, Refl) 



  

● Take (□P →P) (characteristic of T)



  

● If we also add transitivity (Trans) to T, S4 is 
obtained.

Trans = if wAn and nAk, then wAk

● S4Tr = SW + (◊R, □R, Refl, Trans) 



  

Consider  (□p → □□P) (characteristic of S4)



  

● If symmetry (Sym) is added to T we obtain Br 
(In Br we have reflexivity, but not transitivity)

Sym = if wAn, then nAw

● BrTr = SW + (◊R, □R, Refl, Sym) 



  

● S5 is obtained by having all these properties: 

reflexivity, transitivity, and symmetry.
(equivalence relation)

● S5Tr = SW + (◊R, □R, Refl,Trans, Sym) 



  

Consider (◊P → □◊P) (Characteristics of S5)



  

Relations among the main normal modal logics:



  



  

Finite modalities

● Consider a formula O...OP

Where O...O stand for a finite sequence of modal operators, for 
example: ◊□□◊□◊◊ P

● IN S4 there are equivalences (see the book for details) that allow to 
simplify any of those sequences to just seven modalities plus their 
negation (14 in total):

/        □       ◊       □◊       ◊□          ◊□◊       □◊□    



  

Modal equivalences in S4



  

● In S5 there are only three modalities plus their 
negations (6 in total):

 /          □         ◊

● Given the equivalences, in S5, in any sequence of modal 
operators we may delete all but the last to gain an 
equivalent formula.

For example: ◊□□◊□◊◊□◊P is equivalent to ◊P



  



  

Counterexamples



  

● Counterexamples in S5 are as before.
● The definition is the same:

A system is a counter-example to a formula’s being valid iff 
the formula is false in at least one world in the system.

● But for the other logics we need to change it considering 
accessibility relations.



  

Counterexamples in K



  

● Consider (□P→ P). It has an open tree in K.



  

● There is only one world in this system: n

● n accesses no world (not even itself).

● P(n) = 0 (because we have -P in n)

 



  

● What is the value of □P in n?

□P is true in n, if P is true in all worlds to which n has 
access.

● if n has no access to worlds, then □P (n) = 1 

(namely, □P is true in n).



  

● Why?
● Because □P  can be read, intuitively, as:

“you cannot even see a single w world in which P is false”

● If there is access o no world, then this is the case. So □P is 
true.



  

● By contrast, 

◊P reads:

“You can see at least one world in which P is 
true.”

If no world can be accessed, then this is false. 



  

● So we obtain:

 □P is true in n

and P is false in n.

● So we have a counterexample to (□P→P)

→Accessibility is crucial to establish that □P is true in n



  



  

Remember that if n has access to no world, then ◊P is 
false in n.

So the system (and counterexample in K) is:



  

Counterexamples in T



  

● Consider the formula  □◊P → ◊□P. Its tree in T is:



  

These are the accessibility relations among the worlds.



  

● Building a T-counterexample based on this tree is 
difficult.

● But we can proceed differently:

we can try to directly build a system making the 
antecedent of the formula true in n, and the consequent 
false in n.

 With accessibility relations defined accordingly.



  

● Note:

When there are too many worlds (more than 3), 
it is better to proceed directly with a system of 
worlds, without the tree.



  

Counterexample to □◊P → ◊□P



  

◊P must be true in both worlds if □◊P is true in n.
□P must be false in both worlds, if ◊□P is false in n.



  

● Since □P is false in k, P must also be false in K (K has 
access only to itself)

(This makes □P false also in n, since n accesses both n and k)



  

● But there is a problem:But there is a problem: 

since k has only access to itself, and P is false in k, ◊P 
should also be false in k.

Against the model above.

● If we change it, and put  ◊P = 0 in k, then □◊P is false in n (since nAk).  

But then we do not have a counterexample.



  

The solution is making the accessibility relations more 
complex, adding kAn, and putting P true in n.



  

● This gives a counterexample in TThis gives a counterexample in T.

– In general, T requires reflexivity, and we have it.

Although it is not obligatory for the accessibility 
relation to be symmetric in T, it is permissible.

→ → Remember what we said about frames!Remember what we said about frames!



  

● Since the relation in this system is also 
transitive, reflexive and symmetric, 

this is also a countermodel also for S4 and for 
S5.



  

● Indeed, in general:

a counterexample in a stronger system is also a counter example for 
a weaker system, but not always vice versavice versa.

→ For example, an S4 counterexample is always also a K.counterexample. 

The converse is not always false (but sometimes it can).

→ Remember what we said about frames!



  



  

The end
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