Modal logic 3

Normal Modal Logics

Modal rules of S5 are of three kinds:

- MN (Interdefinability. Worlds have no role)
- ♦S5 rule: it **generates** a new world
- □S5 rule: it **fills** a world.

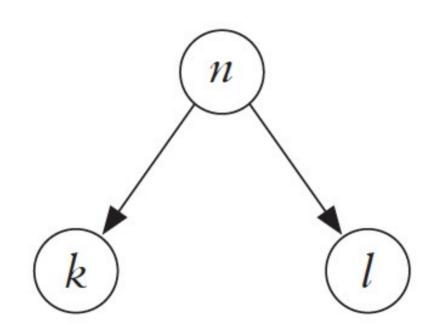
(MN)
$$\sim \Diamond \alpha \ (\omega)$$
 $\sim \Box \alpha \ (\omega)$ \vdots \vdots \vdots $\Diamond \sim \alpha \ (\omega)$ $\Diamond \sim \Box \alpha \ (\omega)$

Accessibility

- In the tree above, worlds k and l are generated from world n.
- When one world generates another then it has access to it.

- We write "wAv" for "w has access to v"
- Accessibility relations (relative possibility)

In the tree above we have:



• One way of changing the logic is to restrict the world **filler** rule (\Box) .

• The world filler rules are <u>unrestricted in S5</u>:

If $\Box A$ is in a world, then A can be put into **any world**.

So, in S5 every world has access to every world (including itself).

A different, simple condition could be:

- Filling (
rule) only holds for worlds generated from the world in which the formula occurs.

→ Only the directly generated worlds can be accessed

 $\Diamond \alpha$ (ω) (ω) ωΑυ ωΑυ (υ) α where v is new to this path of the tree

$$\begin{array}{cccc}
\sim (\Box p \supset \Box \Box p) & (n) & \text{NTF} \\
\Box p & (n) & 1 \\
\sim \Box \Box p & (n) & 1 \\
\Diamond \sim \Box p & (n) & 3, & MN \\
nAk & 4, \Diamond R & \text{(to keep track of accessibility)} \\
\sim \Box p & (k) & 4, \Diamond R
\end{array}$$

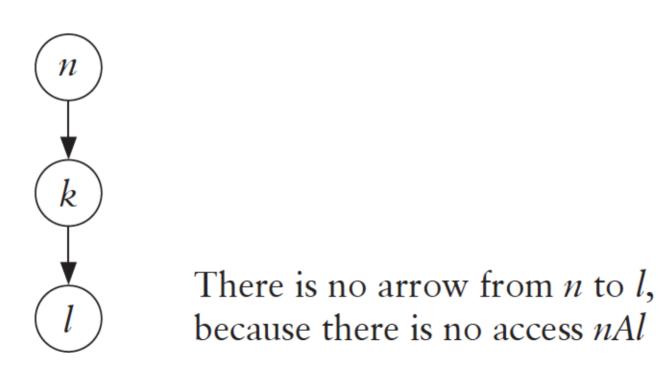
8. p (k) 2, 5, □R (two entries are needed to justify this)
9. kAl 7, ◊R (see line 5 above)

6, MN

9. kAl 7, $\Diamond R$ 10. $\sim p$ (l) 7, $\Diamond R$

6.

- Note that n has no access to I, so we cannot apply $\square R$ to close the tree.



From K to S5

(Normal modal logic. Logics built from K)

- Call PTr the propositional rules for trees
- Call MN the modal equivalences
- Together they are the SW (single world) Ptr + MN

-So: **S5**Tr = SW + (\diamondsuit S5, \square S5, \square T)

K

K

 The logic obtained with the restricted rules above is K.

 $\mathbf{K}\mathsf{Tr} = \mathsf{SW} + (\Diamond \mathsf{R}, \Box \mathsf{R})$

Consider ($p \rightarrow \Box \Diamond P$) in K

1.
$$\sim(p\supset\Box\Diamond p)$$
 (n) NTF
2. p (n) 1
3. $\sim\Box\Diamond p$ (n) 1
4. $\Diamond\sim\Diamond p$ (n) 3, MN
5. nAk 4, $\Diamond R$
6. $\sim\Diamond p$ (k) 4, $\Diamond R$
7. $\Box\sim p$ (k) 6, MN

• In **K** we cannot go any further.

Because the world k has access to no other world.

(No world has been generated from k).

Note:

A world does not even have generated access to itself!

- K is a very limited logic.
- Richer logics can be built by adding new filler rules (□ rules).

We consider some of these logics:

Т

S4

Br

S5

How good is K as a logic for possibility?

 \rightarrow For example, intuitively, (p $\rightarrow \Diamond$ p) should be valid.

Can it be proved in **K**?

What formula is K valid? Can you find one?

• For example, the necessitation of tautologies, like:

Or formulas such as:

Т

T

• The logic **T** is obtained by adding a filler rule to **K**, the rule \Box T.

 \Box T is the same as in S5.

• TTr = SW + (\Diamond R, \Box R, \Box T)

Consider ($\square P \rightarrow P$). It is **T**-Valid, but not **K**-valid.

(Crucial formula for the difference)

1.
$$\sim (\Box p \supset p)$$
 (n) NTF
2. $\Box p$ (n) 1
3. $\sim p$ (n) 1

4.
$$p$$
 (n) 2, $\square \mathbf{T}$

• Also $(p \rightarrow \Diamond p)$ can be proved now.

Can T prove (□p → □□p) ?

S4

S4

Logic **S4** is obtained adding another filler rule to **T**, the Rule: $\square\square R$.

S4Tr = SW + (
$$\Diamond$$
R, \Box R, \Box T, $\Box\Box$ R)

The rule $\square \mathbf{R}$ makes you move an entire formula $\square p$ in another accessible world (not just the formula p).

$$(\Box\Box \mathbf{R})$$
 $\Box\alpha$ (ω) $\omega A \upsilon$ \vdots $\Box\alpha$ (υ)

The crucial formula, distinguishing **S4** from **T** is: $(\Box p \rightarrow \Box\Box P)$

1.
$$\sim (\Box p \supset \Box \Box p)$$
 (n) NTF
2. $\Box p$ (n) 1
3. $\sim \Box \Box p$ (n) 1
4. $\Diamond \sim \Box p$ (n) 3, MN
5. nAk 4, $\Diamond R$
6. $\sim \Box p$ (k) 4, $\Diamond R$
7. $\Diamond \sim p$ (k) 6, MN
8. p (k) 2, 5, $\Box R$
9. kAl 7, $\Diamond R$
10. $\sim p$ (l) 7, $\Diamond R$

Applying $\square R$ we can proceed:

11.12.

 $\Box p$

p

X

(k) 2, 5, $\square\square \mathbf{R}$

(*l*) 9, 11, \Box **R**

Can T prove (p→□◊p)?

Can S4 prove it?

Br

• The logic \mathbf{Br} is obtained by adding a different filler rule to \mathbf{T} (not to S4!)*, the rule $\square \mathbf{SymR}$.

* There is a mistake in Girle's book.

$$BrTr = SW + (\Diamond R, \Box R, \Box T, \Box SymR)$$

□SymR allows the exemplification of □p (like □R), but
 backwards with respect to accessibility.

$$\begin{array}{ccc}
(\square \operatorname{Sym} R) & \square \alpha & (\upsilon) \\
 & \omega A \upsilon \\
 & \vdots \\
 & \alpha & (\omega)
\end{array}$$

The crucial formula distinguishing **Br** from **T** is: $(P \rightarrow \Box \Diamond P)$. In the last line we need $\Box SymR$

1.
$$\sim(p\supset\Box\Diamond p)$$
 (n) NTF
2. p (n) 1
3. $\sim\Box\Diamond p$ (n) 1
4. $\Diamond\sim\Diamond p$ (n) 3, MN
5. nAk 4, $\Diamond R$
6. $\sim\Diamond p$ (k) 4, $\Diamond R$
7. $\Box\sim p$ (k) 6, MN
8. $\sim p$ (k) 7, \Box T
9. $\sim p$ (n) 5, 7, \Box SymR

Can T, Br, or S4 prove (◊p→ □◊p)?

S5

• We already know **S5**.

• It can be obtained by the rules we gave at the beginning, or by adding a new rule to **S4**.

 S5 is obtained (in a new way) by adding a different filler rule (a new

 rule) to S4.

• **S5**Tr = SW + (♦R, □R, □T, □□R, □□**SymR**).

The rule: \square SymR is similar to \square R (S4) but backwards.

(as \square SymR (Br) is \square R backwards)

$$(\Box \Box \operatorname{Sym} R) \qquad \Box \alpha \quad (\upsilon)$$

$$\omega A \upsilon$$

$$\vdots$$

The crucial formula of **S5** is $(\lozenge P \rightarrow \Box \lozenge P)$

1.

$$\neg(\Diamond p \supset \Box \Diamond p)$$
 (n)
 NTF

 2.
 $\Diamond p$
 (n)
 1

 3.
 $\neg \Box \Diamond p$
 (n)
 1

 4.
 $\Diamond \neg \Diamond p$
 (n)
 3, MN

 5.
 nAk
 4, $\Diamond R$

 6.
 $\neg \Diamond p$
 (k)
 4, $\Diamond R$

 7.
 nAl
 2, $\Diamond R$

 8.
 p
 (l)
 2, $\Diamond R$

 9.
 $\Box \neg p$
 (k)
 6, MN

 10.
 $\neg p$
 (k)
 6, MN

 11.
 $\Box \neg p$
 (n)
 5, 9, $\Box SymR$

 12.
 $\neg p$
 (l)
 5, 11, $\Box R$

The orthodox strategy

• **Hintikka** strategy (used so far) generates logics adding filler **rules**.

 The orthodox strategy generates logics by adding properties to the accessibility relation between worlds. So far, given worlds w, n, we had that wAn only if w generates n.

 Now we are going to enrich the accessibility relation A with formal properties, so that wAn even in cases in which n is not generated from w. For example, A can be <u>reflexive</u> (Refl): for every world: wAw

This gives, in another way, the logic T:

 $Ttr = SW + (\lozenge R, \square R, Refl)$

• Take ($\square P \rightarrow P$) (characteristic of T)

1.
$$\sim (\Box p \supset p)$$
 (n) NTF
2. $\Box p$ (n) 1
3. $\sim p$ (n) 1
4. nAn Refl
5. p (n) 2, 4, $\Box R$

• If we also add <u>transitivity</u> (Trans) to T, S4 is obtained.

Trans = if wAn and nAk, then wAk

S4Tr = SW + (◊R, □R, Refl, Trans)

Consider $(\Box p \rightarrow \Box \Box P)$ (characteristic of S4)

1.
$$\sim (\Box p \supset \Box \Box p)$$
 (n) NTF

 2. $\Box p$
 (n) 1

 3. $\sim \Box \Box p$
 (n) 1

 4. $\diamond \sim \Box p$
 (n) 3, MN

 5. nAk
 4, $\diamond R$

 6. $\sim \Box p$
 (k) 4, $\diamond R$

 7. $\diamond \sim p$
 (k) 6, MN

 8. p
 (k) 2, 5, $\Box R$

 9. kAl
 7, $\diamond R$

 10. $\sim p$
 (l) 7, $\diamond R$

 11. nAl
 5, 9, Trans

 12. p
 (l) 2, 11, $\Box R$

 If <u>symmetry</u> (Sym) is added to T we obtain Br (In Br we have reflexivity, but not transitivity)

Sym = if wAn, then nAw

BrTr = SW + (◊R, □R, Refl, Sym)

S5 is obtained by having all these properties:
 <u>reflexivity</u>, <u>transitivity</u>, <u>and <u>symmetry</u>.
 (equivalence relation)
</u>

S5Tr = SW + (◊R, □R, Refl,Trans, Sym)

Consider ($\Diamond P \rightarrow \Box \Diamond P$) (Characteristics of S5)

1.

$$\sim (\lozenge p \supset \Box \lozenge p)$$
 (n) NTF

 2.
 $\lozenge p$
 (n) 1

 3.
 $\sim \Box \lozenge p$
 (n) 1

 4.
 $\lozenge \sim \lozenge p$
 (n) 3, MN

 5.
 nAk
 4, $\lozenge R$

 6.
 $\sim \lozenge p$
 (k) 4, $\lozenge R$

 7.
 nAl
 2, $\lozenge R$

 8.
 p
 (l) 2, $\lozenge R$

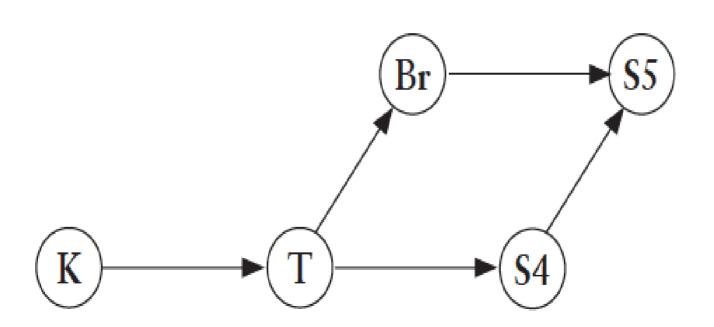
 9.
 $\Box \sim p$
 (k) 6, MN

 10.
 kAn
 5, Sym

 11.
 kAl
 10, 7, Trans

 12.
 $\sim p$
 (l) 11, 9, $\Box R$

Relations among the main normal modal logics:



Finite modalities

Consider a formula O...OP

Where O...O stand for a finite sequence of modal operators, for example: $\triangle \Box \Box \Diamond \Box \Diamond \Diamond P$

 $\Box \Diamond \Box$

• IN S4 there are equivalences (see the book for details) that allow to simplify any of those sequences to just **seven modalities** plus their negation (14 in total):

 $\Diamond \Box \Diamond$

Modal equivalences in S4

$$\Box p \equiv \Box p$$

$$\Diamond \Diamond p \equiv \Diamond p$$

$$\Box \Diamond \Box \Diamond p \equiv \Box \Diamond p$$

$$\Diamond \Box \Diamond \Box p \equiv \Diamond \Box p$$

• In S5 there are only **three modalities** plus their negations (6 in total):

/ □ ◊

• Given the equivalences, in S5, in any sequence of modal operators we *may delete all but the last* to gain an equivalent formula.

Counterexamples

- Counterexamples in S5 are as before.
- The definition is the same:

A system is a counter-example to a formula's being valid iff the formula is **false in at least one world in the system**.

• But for the other logics we need to change it considering accessibility relations.

Counterexamples in K

• Consider ($\square P \rightarrow P$). It has an open tree in K.

1.	$\sim (\Box p \supset p)$	(n)	NTF
2.	$\Box p$	(n)	1
3.	~p	(n)	1

There is only one world in this system: n

• n accesses no world (not even itself).

• P(n) = 0 (because we have -P in n)

• What is the value of $\Box P$ in n?

 $\Box P$ is true in n, if P is true in all worlds to which n has access.

• if n has no access to worlds, then $\Box P(n) = 1$ (namely, $\Box P$ is true in n).

- Why?
- Because □*P* can be read, intuitively, as:

"you cannot even see a single w world in which P is false"

 If there is access o no world, then this is the case. So □P is true. By contrast,

♦P reads:

"You can see at least one world in which P is true."

If no world can be accessed, then this is false.

• So we obtain:

 $\Box P$ is true in n and P is false in n.

• So we have a counterexample to $(\Box P \rightarrow P)$

 \rightarrow Accessibility is crucial to establish that $\Box P$ is true in n

Remember that if n has access to no world, then $\Diamond P$ is false in n.

So the system (and counterexample in K) is:

	nAk		nAl
	n	\boldsymbol{k}	1
p	0	1	0
q	0	0	1
(p & q)	0	0	0
$\Diamond p$	1	0	0
$\Diamond q$	1	0	0
$\Diamond(p \& q)$	0	0	0

Counterexamples in T

Consider the formula $\Box \Diamond P \rightarrow \Diamond \Box P$. Its tree in T is: 1. $\sim (\Box \Diamond p \supset \Diamond \Box p)$ (n) NTF

 $\Box\Diamond p$

~ <> □ p

 $\square \sim \square p$

 $\Diamond p$

◇~p

3. 4.

2.

- 5. 6. ~ \[\p
- 7. 8.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

- nAk9. 10. 11.
 - ~p $\Diamond p$
 - $\sim \Box p$ **◇~**p

kAj

p

nAi

p

 $\Diamond p$

 $\sim \Box p$

◇~p

iAm

~p

iAx

p

- kAl ~p
- (l)
- (k) (k) 11, MN (k) 12, ◊R

(j)

(i)

(*i*)

(i)

(*i*)

(n) 1

(n) 1

(n) 3, MN

(n) 6, MN 7, ◊R 7, **◊**R (k) 2, 8, \square R $4, 8, \square R$

12, **♦**R

10, ◊R

10, ◊R

5, ♦R

5, ◊R

 $2, 17, \square R$

 $4, 17, \square R$

20, MN

21, ◊R

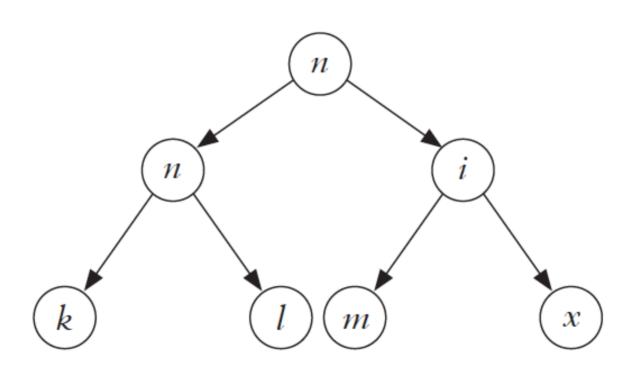
19, ◊R

(m) 21, $\Diamond \mathbf{R}$

(x) 19, \Diamond R

- (n) 2, \Box T (n) 4, \Box T

These are the accessibility relations among the worlds.



 Building a T-counterexample based on this tree is difficult.

 But we can proceed differently:
 we can try to directly build a system making the antecedent of the formula true in n, and the consequent false in n.

With accessibility relations defined accordingly.

Note:

When there are too many worlds (more than 3), it is better to proceed directly with a system of worlds, without the tree.

Counterexample to $\Box \Diamond P \rightarrow \Diamond \Box P$

	nAk	nAn	kAk	
	n	k		
p				(n)
$\Diamond p$				\bigcirc
$\Diamond p$ $\Box \Diamond p$	1			lack
$\Box p$				$\binom{k}{k}$
$\Diamond\Box p$	0			

 $\Diamond P$ must be true in both worlds if $\Box \Diamond P$ is true in n. $\Box P$ must be false in both worlds, if $\Diamond \Box P$ is false in n.

	nAk	nAn	kAk
	n	k	
p			
$\Diamond p$	1	1	
$\Box \Diamond p$	1		
$\Box p$	0	0	
$\Diamond \Box p$	0		

 Since □P is false in k, P must also be false in K (K has access only to itself)

(This makes $\Box P$ false also in n, since n accesses both n and k)

	nAk	nAn	kAk
	n	k	
p		0	
$\Diamond p$	1	1	
$\Box \Diamond p$	1		
$\Box p$	О	O	
$\Diamond \Box p$	0		

• But there is a problem:

since k has only access to itself, and P is false in k, $\Diamond P$ should also be false in k.

Against the model above.

• If we change it, and put $\Diamond P = 0$ in k, then $\Box \Diamond P$ is false in n (since nAk).

But then we do not have a counterexample.

The solution is making the accessibility relations more complex, adding kAn, and putting P true in n.

		nAk	e kAn	nAn	kAk	
		n	k			
	p	1	0			$\binom{n}{}$
	$\Diamond p$	1	1			
	$]\Diamond p$	1				•
	$\Box p$	0	0			$\binom{1}{h}$
\Diamond	$\Box p$	0				$\binom{k}{k}$

This gives a counterexample in T.

- In general, T requires reflexivity, and we have it.

Although it is **not obligatory** for the accessibility relation to be symmetric in T, it is **permissible**.

→ Remember what we said about frames!

 Since the relation in this system is also transitive, reflexive and symmetric,
 this is also a countermodel also for S4 and for S5. Indeed, in general:

a counterexample in a stronger system is also a counter example for a weaker system, but not always *vice versa*.

 \rightarrow For example, an S4 counterexample is always also a K.counterexample.

The converse is not always false (but sometimes it can).

→ Remember what we said about frames!

The end