Campaner Lorenzo Ferdinando, Meroi Paolo

L'influenza delle condizioni riproduttive e dei fattori ambientali concomitanti sul torpore e sui modelli di foraggiamento nelle femmine di serotino bruno (*Eptesicus fuscus*)

Jody L. Rintoul, R. Mark Brigham

Obiettivo dello studio

Valutare come le condizioni riproduttive, insieme ai fattori ambientali, influenzano il bilancio energetico in *E. fuscus*

Biologia di *E. fuscus* – Serotino bruno

- È un chirottero della famiglia dei Vespertilionidi
- Diffuso in America del nord, Canada e Messico
- In estate si ripara in alberi o sottotetti
- Si nutre principalmente di insetti
- Si accoppia prevalentemente in autunno con parto in tarda primavera

Introduzione

- Gli animali devono mantenere un bilancio di energia positivo, anche durante le dispendiose fasi della riproduzione attuando diverse strategie
- *E. fuscus* affronta più limiti nell'accumulo di energia rispetto ad altri piccoli mammiferi a causa di:
 - 1. Metodo di locomozione
 - 2. Taglia
 - 3. Dieta

Introduzione

- Ci sono possibili conseguenze negative nell'impiego del torpore
- L'uso del torpore è influenzato da: sesso, condizione riproduttiva, temperatura ambientale, tipo di posatoio e disponibilità di cibo
- È importante capire quali di questi fattori abbiano un impatto maggiore per valutare i potenziali costi fisiologici del torpore in periodo riproduttivo

Introduzione

- Lo sforzo di foraggiamento è influenzato da:
 - Disponibilità di insetti
 - Condizioni atmosferiche
 - Condizione riproduttiva
- La relazione tra la disponibilità di energia e la sua conservazione dovrebbe essere lineare ipotizzando l'assenza di costi fisiologici associati al torpore

Previsioni dello studio

- Le modalità di sfruttamento del torpore dovrebbero variare tra pipistrelli gravidi e in fase di allattamento a causa della variabilità dei fabbisogni e dei costi energetici delle due fasi
- La durata del foraggiamento dovrebbe influenzare la termoregolazione essendo la fonte primaria di energia
- 3. La durata del foraggiamento dovrebbe essere influenzata dalle condizioni ambientali e dalla condizione riproduttiva
- È prevista una relazione inversa tra il successo del foraggiamento e l'impiego del torpore

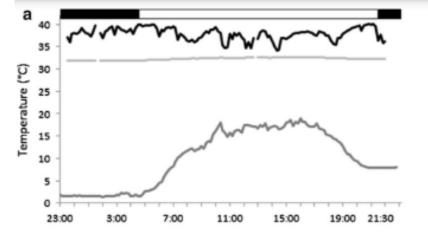
Materiali e metodi

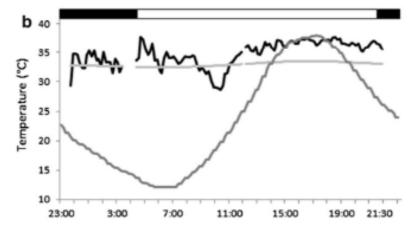
- Selezionati due siti (est e ovest) nella regione del Saskatchewan in Canada
- Situati a meno di 1 Km da un fiume, in zona collinare di prati da pascolo
- 32 femmine di *E. fuscus* sono state equipaggiate di un radiotrasmettitore sensibile alla temperatura per misurare la temperatura corporea (T_{sk}) ogni 10 minuti
- Ne è stata misurata la massa e valutata la condizione riproduttiva (allattanti o gravidi)
- È stata misurata la temperatura ambientale (T_a) vicino al posatoio facendo una media tra quattro termometri posti nei punti cardinali che misuravano ogni 10 minuti

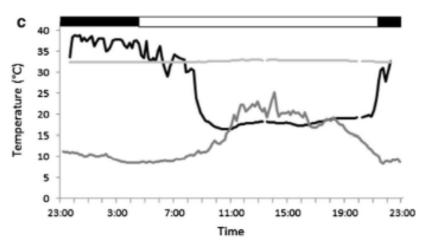
Materiali e metodi

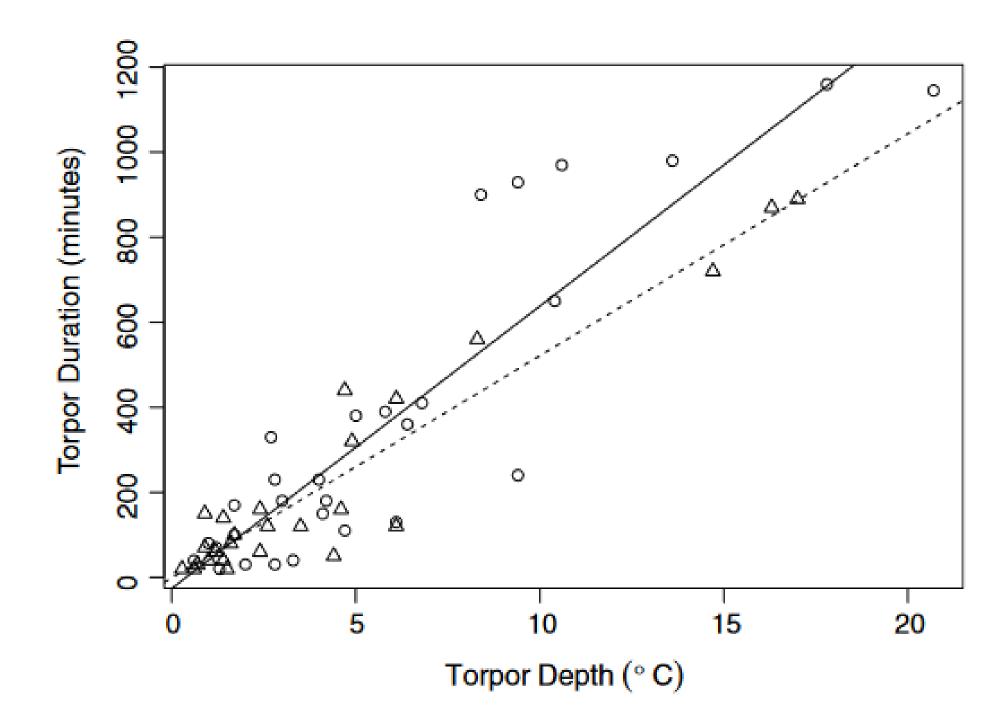
- È stata calcolata la temperatura limite del torpore (T_{onset}) da T_{sk} tramite l'equazione sviluppata da Willis (2007) per ogni *bat day* (un trasmettitore attivo in un individuo per un giorno)
- La condizione di torpore inizia quando T_{sk} risultava > 0,1 °C sotto T_{onset} per almeno 20 minuti
- La profondità del torpore è definita dalla differenza tra T_{onset} e T_{sk}
- La posizione dei pipistrelli durante il foraggiamento è stata ottenuta attraverso la triangolazione. Rilevamenti sul campo hanno permesso di determinare lo stato di moto o di quiete dell'animale

Materiali e metodi – analisi


Variabili incluse per il torpore	Variabili incluse per il foraggiamento
Condizione riproduttiva	Condizione riproduttiva
Min T _a (giorno)	Numero di viaggi
Tipo di posatoio	Durata del torpore
Durata del foraggiamento precedente	Min T _a (notte)
	Velocità media del vento


- Sono stati generati dei modelli a priori, basati sulle ipotesi, per prevedere quali variabili influenzavano da sole le caratteristiche di foraggiamento e torpore
 - Questi modelli sono stati usati per valutare la significatività dei modelli ottenuti con i dati raccolti sul campo


RISULTATI


Termoregolazione

- Sono stati notati tre pattern termoregolatori:
 - □ Pattern normotermici con minime fluttuazioni di T_{sk}
 - □ Occasionale differenza tra T_{onset} e T_{sk} inferiore a 7° C
 - □ Stabile differenza tra T_{onset} e T_{sk} superiore a 10° C
- Almeno un ciclo di torpore nel 65% dei bat days, con una media di 2,4 cicli giornalieri
- È presente una relazione lineare tra profondità e durata del torpore.

Termoregolazione – dati

I pipistrelli appollaiati negli alberi hanno avuto torpori lunghi più del doppio e più profondi rispetto a quelli appollaiati negli edifici.

Table 1 Summary of daily thermoregulatory characteristics of pregnant and lactating Eptesicus fuscus

Thermoregulatory characteristic	Overall		Pregnant		Lactating		House		Tree	
	$\bar{x} \pm \text{SD (range)}$	n, N	$\bar{x} \pm \text{SD (range)}$	n, N	$\bar{x} \pm SD$ (range)	n, N	$\bar{x} \pm SD$ (range)	n, N	$\bar{x} \pm \text{SD (range)}$	n, N
HI (°C)	3.1 ± 3 (0.8–13.7)	30, 79	3.4 ± 3.5 (0.7–17.0)	13, 45	3.6 ± 3.3 (0.8–14.3)	18, 52	2.8 ± 2.4 (1.1–13.3)	22, 55	4 ± 4 (0.8–13.7)	11, 24
Time after return to first torpor bout (min)	$301.2 \pm 316.6 (0-1,256)$	25, 55	$427 \pm 306 (10 - 1,256)$	11, 34	$248 \pm 334 (0 - 1,023)$	16, 36	356.6 ± 342.2 (0-1,256)	16, 40	$153.6 \pm 168 (0 570)$	9, 15
Total duration of torpor (min)	298.5 ± 328.3 (20-1,160)	25, 55	$234 \pm 267 \ (20 - 890)$	11, 34	$386 \pm 392 (20 – 1,160)$	16, 36	200.8 ± 219.2 (20-890)	16, 40	$559 \pm 426.6 (20 - 1,160)$	9, 15
Depth of torpor $(T_{onset} - T_{sk})$ (°C)	$5.1 \pm 4.9 \ (0.3-20.7)$	25, 55	$4.2 \pm 5 \ (0.4 - 18)$	11, 34	$5.5 \pm 4.9 \; (0.2 – 20.7)$	16, 36	$4.1 \pm 4 (0.3 – 17)$	16, 40	$7.8 \pm 6.2 (0.9 – 20.7)$	9, 15
Minimum torpid T_{sk} (°C)	$27.6 \pm 4.9 (12 32.4)$	25, 55	$28.1 \pm 5.3 (14.5 - 32.4)$	11, 34	$27.1 \pm 4.9 (12 32.2)$	16, 36	$28.6 \pm 4 (15.6 – 32.4)$	16, 40	$24.9 \pm 6.2 (12 32)$	9, 15
$T_{\rm a}$ at minimum torpid $T_{\rm sk}$ (°C)	$17.4 \pm 5.8 \ (2.6 - 37.6)$	25, 55	$15.3 \pm 5.4 (2.6 - 24.1)$	11, 34	$19 \pm 4.2 (11.3 – 28.1)$	16, 36	$16.9 \pm 6 \; (2.6 37.6)$	16, 40	$18.9 \pm 4.9 (7.6 – 25.5)$	9, 15
Torpor degree-minutes (°C min)	$1,452.3 \pm 3,039.3$ (4.6–13,319.6)	25, 55	$1,128.7 \pm 2,789.7$ (4.6–11,103.8)	11, 34	$1,742 \pm 3,268.3$ (11.6–13,319.6)	16, 36	$823.5 \pm 2,269$ (4.6–11,103.6)	16, 40	$3,128.9 \pm 4,140.3$ (15.6–13,319.6)	9, 15
Number of torpor bouts	$2.4 \pm 1.5 (1-7)$	25, 55	$2.4 \pm 1.5 (1.0 - 7.0)$	11, 34	$2.3 \pm 1.5 (1.0 – 6.0)$	16, 36	$2.2 \pm 1.2 (1-5)$	16, 40	$3 \pm 2.1 (1-7)$	9, 15

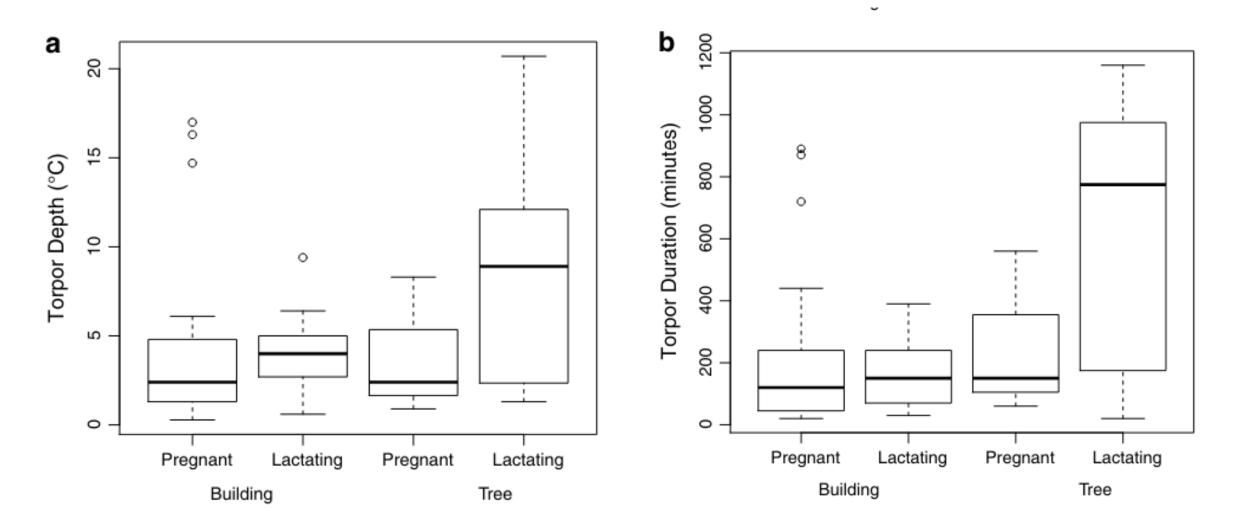
Termoregolazione – parametri informativi

Dopo la modellizzazione, per ogni parametro le variabili informative sono risultate essere le seguenti:

Profondità torpore	Tipo di posatoio
Durata torpore	Tipo di posatoio
Torpore gradi-minuti	Nessuno
Heterothermy Index (HI)	Nessuno

Foraggiamento

- Durata media del foraggiamento per notte = 185.1 ± 87.7 min
- Numero medio di viaggi (pipistrelli allattanti) = 2,4
- Numero medio di viaggi (pipistrelli incinti) = 1,6
- I pipistrelli allattanti foraggiano per 100 min in più rispetto a quelli incinti per notte
- Le variabili informative dei modelli di foraggiamento risultano essere il numero di viaggi e lo stato riproduttivo


Foraggiamento e torpore

Relazione stabilita in due modi:

- 1. Cicli di torpore dopo notte di foraggiamento
 - Nessuna relazione osservata in pipistrelli incinti
 - Debole relazione negativa in pipistrelli allattanti
- 2. Foraggiamento dopo uso di torpore giornaliero
 - Nessuna relazione osservata

Discussione – termoregolazione

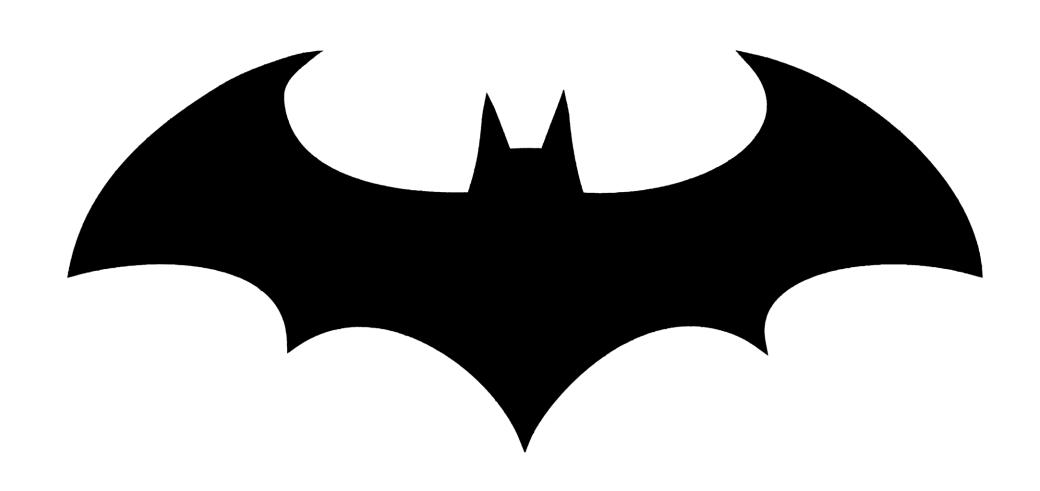
- La condizione riproduttiva non influenza significativamente la frequenza dei torpori
- Il torpore non è influenzato dai parametri ambientali e fisiologici misurati.
- Stato riproduttivo e tipo di posatoio insieme descrivono meglio l'espressione di torpore → pipistrelli allattanti negli alberi hanno avuto cicli più lunghi e profondi di torpore.
- Heterothermy Index non è descritto dal tipo di posatoio ma solo dallo stato riproduttivo \rightarrow il tipo di posatoio non influisce su T_{sk} .

Discussione – termoregolazione

- Cicli di torpore lunghi e profondi permettono maggiori risparmi energetici
- Cicli di torpore brevi e frequenti riducono rischi nello sviluppo fetale e nella produzione di latte
- I pipistrelli studiati hanno effettuato un *trade-off* tra costi del torpore e energia risparmiata

Discussione – foraggiamento

- Pipistrelli allattanti hanno effettuato viaggi più brevi e frequenti → i cuccioli di pipistrello necessitano di calore esterno
- Le osservazioni sono diverse da quelle di altri studi simili → specie, sito e anno potrebbero influenzare l'attività di foraggiamento
- Condizioni riproduttive e numero di viaggi definiscono la durata del foraggiamento
- La durata del torpore, al contrario delle previsioni, non influenza la durata del foraggiamento: le limitazioni nell'accumulo di grasso costringono *E. fuscus* a foraggiare indipendentemente dall'uso di torpore


Foraggiamento e torpore

- La relazione inversa tra foraggiamento e torpore è stata osservata solo per pipistrelli allattanti; questo può avere due spiegazioni:
 - Per pipistrelli incinti è dannoso andare in torpore
 - In condizioni di scarso foraggiamento l'elevata richiesta energetica della produzione di latte costringe all'utilizzo del torpore
- Inoltre, i pipistrelli potrebbero foraggiare il più possibile per sfruttare al massimo la breve stagione di crescita poiché ritardare il parto comporta costi insostenibili

Conclusioni

- La popolazione osservata risponde ad aumenti della richiesta energetica con aumento dei tempi di foraggiamento
- Riproduzione e torpore non sono mutualmente esclusivi
- Sono necessari più studi per valutare a quali temperature corporee (T_b) avvengono danni alla riproduzione o alla produzione di latte → potrebbe essere il caso per pipistrelli allattanti

GRAZIE PER L'ATTENZIONE

