
Network modeling

Network as a dependent variable

Conditions Network Outcome
formation effect

In longitudinal studies: co-evolution of networks and behaviors

Network (t)

Behavior (t)
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An example: friendship network



Why do ties occur?
Multiple social/network processes (I) - dependence of ties on other ties and attributes

Explain the emergence of network structure (macro-level) by local (micro-level)

processes

Reciprocity

Social exchange theory (?)

Game theory (?)

...

Transitivity (?)

Balance theory (?)

Trust
Safety
...

Left: what we observed. Right: theoretical argument



Why do ties occur?
Multiple social/network processes (II) - dependence of ties on attributes

Explain the emergence of network structure (macro-level) by local (micro-level)

processes

Homophily (?)

Meeting opportunity
Affinity/Attraction (?)

Organizational foci (?)

...

Dyadic attributes
Other relationships

Network proximity
Physical proximity (geography)

...

Left: what we observed. Right: theoretical argument



Why do we need statistical network models?

Distinction between a dependent variable (network ties/individual outcome)

and explanatory variables (endogenous: network ties, individual outcome,

exogenous: indvidual and dyadic attributes)

Combinations of multiple mechanisms of tie formation/attachment: test
theories controlling for alternative explanations

Assessment of uncertainties in inference

Combine structure and attributes to explain the network formation (and
possible evolution)



Why have network models been developed?

Standard statistical setting

Sampling from a population

Set of variables associated
with
a set of entities

Independence assumption



Why have network models been developed?

Standard statistical setting

Sampling from a population

Set of variables associated
with
a set of entities

Independence assumption

Network analysis setting

One group of entities and
relations

Set of variables associated
with
a set of pairs of entities that
overlap

Dependence assumption



Some notation

N = {1, . . . , n}: set of nodes (also referred as to vertices, actors)

X (sometimes I can also use Y ): space of all the possible networks defined on N

x: observed adjacency matrix

xij : cell of the adjacency matrix indicating if there is a relation between i and j

focus on binary relations
xij =

{
1 if there is a tie from i to j
0 otherwise

G(V,E) is a (random) graph with a node set V and an edge set E

Capital letters to denote the corresponding random variables
X random network and Xij random tie variable

Lower Greek letters denote parameters (e.g. θ) and a hat is used for their
estimates (e.g. θ̂)

Capital Greek letters to denote the parameter space (e.g. Θ)



Network models

Def.: A network model is a probability distribution

{P (x; θ), x ∈ X , θ ∈ Θ}

indexed by the parameter θ and defined over the space of all possible networks
X

The richness of network models derives largely from how we choose to specify
P (x; θ)

Uniform distribution on a set of graphs (random graph models)

Specification based on mechanisms reproducing characteristics of observed
networks (preferential attachment model, small-world model)

Formulation to test the endogenous and exogenous generative mechanisms
of a network
(e.g., QAP regression, ERGMs, SAOMs)



The notion of Random Graphs

Let G = (V,E) be a graph. If E (and perhaps V) is a random set, then G
is a random graph
I Can consider G to be a random variable on some set G of possible graphs
I we can write the graph probability mass function (pmf) as P (G = g)

Let X be the adjacency matrix of the random graph G. Then X is a
random matrix
I W can write the graph pmf as P (X = x)
I Xij is a binary random variable which indicates the state of the (random) i,j

edge
I P (Xij = xij) is the probability of the Xij edge state



Classical Random Graphs
The n,m family (Erdos-Renyi, size/density conditional uniform graph
(CUG)): a graph is chosen uniformly at random from the collection of all
graphs which have n vertices and m edges.
I let M be the maximum possible number of edges in G which is equal to

M =
n(n− 1)

2
, then:

I P (G = g|n,m) =

(
M

m

)−1

I the model assign non-null probability to networks with the same number of
edges m (and null probability to all networks with a number of edges 6= m)

The n, p family (homogeneous Bernoulli graphs again proposed by erdos
and Renyi): a graph is constructed by connecting n nodes randomly.

Each edge is included in the graph with probability p = P (Xij = 1), with
the presence or absence of any two distinct edges in the graph being
independent
I P (G = g|n, p) = pm(1− p)n(n−1)/2−m

the two models are equivalent for large n (e.g., asymptotic Poisson
distribution of the degree)



Classical Random Graphs /2

The parameter p in this model can be thought of as a weighting function;
as p increases from 0 to 1, the model becomes more likely to include
graphs with more edges

In particular, the case p = 0.5 corresponds to the case where all 2(n
2)

graphs on n vertices are chosen with equal probability

A graph G(n, p) has on average

(
n

2

)
p edges

The distribution of the degree of any particular vertex v is binomial

I P (deg(v) = k) =

(
n− 1

k

)
pk(1− p)n−1−k

I Since P (deg(v) = k)→ npke−np

k!
as n→ infinity and np= constant.

This distribution is Poisson for large n and np = const.



Small-world networks

Two properties:

Small distance between most
nodes
→ average path length

High level of clustering (two
nodes with a common neighbor
are more likely to be adjacent)
→ clustering coefficients



Small-world networks

Two properties:

Small distance between most
nodes
→ average path length

High level of clustering (two
nodes with a common neighbor
are more likely to be adjacent)
→ clustering coefficients



Milgram’s experiment

Chains: from 2 to 10 intermediaries, with a median of 5

1Milgram, S. (1967). The small world problem.
Psychology today, 2(1), 60-67.

http://snap.stanford.edu/class/cs224w-readings/milgram67smallworld.pdf
http://snap.stanford.edu/class/cs224w-readings/milgram67smallworld.pdf


Small-world model

1Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of
‘small-world’networks.
nature, 393(6684), 440-442.

A ring lattice (high level of transitivity,

large distances) is randomly rewired

With only few rewires, the
average distances drop
dramatically while the level of
cohesion stays relatively high

One of the most cited “stylized”
network models

https://www.nature.com/articles/30918.
https://www.nature.com/articles/30918.
https://www.nature.com/articles/30918.


Rewiring

1Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of
‘small-world’networks.
nature, 393(6684), 440-442.

1 Start: ring of n vertices, each
connected to its k nearest
neighbors

2 Choose a vertex and the edge to
its nearest neighbor in a
clockwise sense

3 With probability p, reconnect this
edge to a vertex chosen uniformly
at random over the ring;
otherwise leave the edge in place

4 Repeat this process by moving
clockwise around the ring,
considering each vertex in turn
until one lap is completed

5 Circulate around the ring until
each edge in the original lattice
has been considered

https://www.nature.com/articles/30918.
https://www.nature.com/articles/30918.
https://www.nature.com/articles/30918.


Preferential attachment

1Simon, H. A. (1955). On a class of skew distribution functions.
Biometrika, 42(3/4), 425-440.
1Price, D. (1965). Networks of scientific papers. Science, 149(3683),
510-515.
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Preferential attachment model

1Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random
networks. science, 286(5439), 509-512.

Nodes are step-wise included to
the graph

Probability of a new node j to
connect to an existing node i is
proportional to their degree:

pi =
dj∑

v′∈V dv′

Because this feature is irrespective
of the network size, the resulting
networks are labeled “scale-free”

https://www.science.org/doi/full/10.1126/science.286.5439.509
https://www.science.org/doi/full/10.1126/science.286.5439.509


Stochastic blockmodels
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The vertex set V ∈ {1..N} is
mapped to a set of blocks
B ∈ {1..k}
A k × k matrix P indicates the
edge probability of ties within and
between blocks (communities)

Diagonal blocks the probability
within-group ties (on the left:
5.1%), off-diagonal blocks that of
between-groups ties (0.1%)

P =

It can be used as a generative
network model to generate test
cases for clustering algorithms



What should a good network model do?

“A good model needs to be both estimable from data and a reasonable
representation of that data, to be theoretically plausible about the type of
effects that might have produced the network, and to be amenable to examining
which competing effects might be the best explanation of the data.”

Robins and Morris (2007)
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One empirical, one random network: How do they
differ?

Empirical
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Ideas?



Comparison of two networks

Density: ratio between the number of ties present and the possible number
of ties

Degree: number of ties incident to a node (for directed networks: indegree
and outdegree)

Isolates: a node with zero degree (indegree and outdegree)

Degree centralization: a measure of the variance of the degree
(range [0,1], 0 all the actors have the same degree, 1 one actor completely
dominates the others)

Geodesic distance: the length of the shortest path between two nodes

Diameter: the largest geodesic distance between any two pair of nodes



Comparison of two networks; N = 183, M = 590
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Graphs generated from the ER model are different
from the real network

There are rarely isolated nodes

There are too few reciprocal and triadic structures

The degree distribution does not have a long tail

The centralization is too low

The distances between nodes is too small
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What about the other models?

Model Criticism

Small world Low degree variance, poor representation of groups

Preferential attachment Disregard other network features
(e.g., distances and clustering)

Blockmodel Disregard other network features
(e.g., degrees, distances)



Testing network (tie formation) mechanisms

The ER model is too simplistic to represent observed networks

Still it can be useful to test network mechanisms, e.g.

i j

Reciprocity
i j

h

Transitivity

i j

Homophily

If we observe a large enough number of a network feature/local
configuration
(e.g., reciprocal/mutual dyads, transitive triads or homophilous dyads),
we have evidence for the corresponding mechanism

What does “large enough” mean?



Conditional Uniform Graph (CUG) tests

Is a certain network feature more prevalent than expected by chance?

I Operationalization of a network feature (“more prevalent”)

I Definition of hypotheses (H0: less prevalent or equally present, H1: more
prevalent)

I Definition of a reference/null network model (“expected by chance”)

Steps:

1 Calculate the number of local configurations on the observed network
(statistic := number of local configurations)

2 Generate networks from the reference model and
compute the value of the statistic for each generated network

3 Calculate a non-parametric p-value by comparing the empirical to the
generated statistics

The simplest reference distribution is the G(n,m) model
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CUG test: example
Evidence for/against social mechanisms in an advice network? ?

https://www.stats.ox.ac.uk/

~snijders/siena/

36 partners in a Northeastern US corporate law
firm

Advice relation:
“Think back over the past year, consider all the lawyers in your

Firm. To whom did you go for basic professional advice?”

Friendship relation (not shown in the picture):
“Would you go through this list, and check the names of those

you socialize with outside work. You know their family, they

know yours, for instance. I do not mean all the people you are

simply on a friendly level with, or people you happen to meet

at Firm functions.”

Vertex attributes:
office (green=Boston; yellow=Hartford; violet=Providence)

school (circle=Harvard, Yale; Triangle: Ucon; Square: other)

years with the firm (node area)

https://www.stats.ox.ac.uk/~snijders/siena/
https://www.stats.ox.ac.uk/~snijders/siena/


CUG test: example
Evidence for/against social mechanisms in an advice network? ?

Is there evidence for reciprocity?

Is there evidence for transitivity?

Is there evidence for school homophily?

Reference/Null model: G(n,m), n = 36, m = 395

Full description and data download:
https://www.stats.ox.ac.uk/~snijders/siena/

https://www.stats.ox.ac.uk/~snijders/siena/


CUG test: example
Is there evidence for reciprocity?

1 Number of observed mutual dyads: M = 106

2 Generate networks form G(36, 395) and compute M

M = 63 M = 54 M = 75

...

M =
...



CUG test: example
Is there evidence for reciprocity? Yes!

3. Calculate a non-parametric p-value

0

200

400

600

50 70 90 110
Mutual dyads

None of the random networks has equal or more mutual dyads (p-value =
0)

Under a significance level of α = 0.05 we consider this result significant



CUG test: example
Is there evidence for transitivity? Yes!

0
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600

1250 1500 1750 2000 2250
Transitive triads

None of the random networks has equal or more transitive triads (p-value
= 0)

Under a significance level of α = 0.05 we consider this result significant



CUG test: example
Is there evidence for school homophily? No!

0
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400

600

800

100 120 140
School homphilous dyads

7.8% of the random networks has equal or more school homophilous dyads
(p-value = 0.078)

Under a significance level of α = 0.05 we consider this result not significant



Limitations of CUG tests

CUGs allow testing hypotheses using a reference model conditioning on
some network statistics

CUGs have two limitations

1 Given combinatorial complexity, CUGs are difficult to compute when large
sets of conditioning statistics are considered

2 We cannot “generalize” test results to the phenomenon we are analyzing.
We can only claim that the observed value for the test feature is unlikely
conditionally on some considered statistics

E.g., we can claim:

Reciprocal ties are more likely to occur in the observed network than in
random networks with m edges



Limitations of CUG tests

CUGs allow testing hypotheses using a reference model conditioning on
some network statistics

CUGs have two limitations

1 Given combinatorial complexity, CUGs are difficult to compute when large
sets of conditioning statistics are considered

2 We cannot “generalize” results to the observed network. We can only claim
that the observed value for the test feature is unlikely conditionally on some
considered statistics

E.g., we cannot claim:

Reciprocal ties are likely to occur in the observed networkin the observed
network than in random networks with m edges



Good network models

‘A good model needs to be both estimable from data and a reasonable
representation of that data, to be theoretically plausible about the type of
effects that might have produced the network, and to be amenable to examining
which competing effects might be the best explanation of the data.’ (Robins
and Morris, 2007)

CUGs are not the best options to model network data given their limitations



Descriptives vs generative goals

Descriptive: numerical summary measures
I Nodal level: e.g., centrality
I Configuration level: e.g., triad census
I Network level: e.g., centralization, clustering (aka community detection)

Generative: micro foundations for macro patterns
I Global patterns are locally emergent
I Recover underlying dynamic processes from cross-sectional data
I Test hypotheses (on tie formation mechanisms)
I Extrapolate and simulate from model



Some considerations: multiple mechanisms

Different (social) processes can lead to similar macro signatures

For example: ” typically observed in social nets can be a result of
I Sociality - highly active persons create clusters
I Homophily - assortative mixing by attribute creates clusters
I Transitive triad closure - triangles create clusters

Want to be able to fit these terms simultaneously, and identify the independent
effects of each process on the overall outcome.



Some considerations: multiple mechanisms

Example: Two theories about the process that generates 3-cycles in an
undirected graph

1 Homophily: People tend to chose friends who are like them, in grade, race,
etc. (birds of a feather), triad closure is a by-product

2 Transitivity: People who have friends in common tend to become friends
(friend of a friend), closure is the key process
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