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OBSERVATIONAL COSMOLOGY:  



BAYESIAN AND FREQUENTIST STATISTICS

● Probability as frequency:
The classical approach to statistics defines the probability of an event as 
“the number of times the event occurs over the total number of trials, in the 
limit of an infinite series of equiprobable repetitions.”

● Probability as degree of belief:
The Bayesian viewpoint is based on the simple and intuitive tenet that: 
“probability is a measure of the degree of belief about a proposition”.



BAYESIAN AND FREQUENTIST STATISTICS
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Or “Robust constraints on tensor perturbations from cosmological data: a comparative analysis from 
Bayesian and frequentist perspectives” https://arxiv.org/pdf/2405.04455



BAYESIAN AND FREQUENTIST STATISTICS

O



BAYES’ THEOREM

O

Note: P(A|B) reads “the probability of A given B”
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PRIORS

The rationale is that we should assign equal probability to equal states of knowledge. However, 
flat priors are not always as harmless as they appear. One reason is that a flat prior on a 
parameter θ does not correspond to a flat prior on a non–linear function of that parameter, ψ(θ). 
The two priors are related by



PRIORS



POSTERIOR ESTIMATION



POSTERIOR ESTIMATION

Over the past years many sampling techniques have 
been developed to overcome this issue (See this for a 
review). The general idea is sample the parameter space 
in a clever way in order to map out the high-probability 
volumes. The methods can be divided in: 

- Monte Carlo Markov Chains methods: e.g. 
Metropolis-Hastings (Metropolis+1953), Emcee 
(Foreman-Mackey+2010)

- Nested sampling methods: e.g. Multinest 
(Feroz+2009,2013), Polychord (Handley+2015)

In both case the density of the sampled points is 
proportional to the parameter posterior we seek to 
estimate

From
 Feroz+13

Markov Chain

Target 
distribution



MCMC: METROPOLIS-HASTING ALGORITHM



SAMPLING THE PARAMETER SPACE

From
 Lem

os+22 (nice paper) to understand and 
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SAMPLING THE PARAMETER SPACE



BURN-IN



CHECKING CONVERGENCE



INTERPRETING THE OUTPUT



GOODNESS OF FIT

The goodness of fit is often estimated from the best-fit parameter values using a 𝜒2 statistic (which is 
formally correct only for Gaussian distributions):

 
 

where C is the data covariance matrix. This method does not account for the uncertainties on the 
estimated parameters 𝜗. 

To assess the goodness of fit from the  𝜒2
best-fit one computes p( 𝜒2 > 𝜒2

BF| 𝜈  )  the probability to exceed 
the 𝜒2

BF, assuming a 𝜒2-distribution with 𝜈 degree of freedom: 𝜈 =N. Data points - N. effective 
parameters. The number of effective parameters, for correlated parameters and/or for a 
prior-informed analysis, is smaller than the total number of  free parameters.



EFFECTIVE NUMBER OF D.O.F.

Distribution of the best-fit 𝜒2values recovered 
from 100 mock data realizations generated 
from the best-fit model of the data. The red 

histogram in the inset plot shows the posterior 
distribution for the effective number of degrees 

of freedom obtained by fitting a  𝜒2  to the 
histogram. (DES Collaboration 20)

Effective number of constrained parameters:

From Joachimi et al 2021



GOODNESS OF FIT

A more rigorous way to assess the goodness of fit which 
account for both the data and model uncertainty rely on 
the Posterior Predictive Distribution:

The method consists of drawing simulated values from the 
posterior predictive distribution of replicated data and 
comparing these mock samples to the real data to assess 
their likelihood to be observed (see e.g. Doux+2021)

Parameter posteriors

Likelihood

Observed value

PPD for different models
3𝜎 limits of the PPDs

PPD for the observed cluster count in the 
highest 𝜆/z bin of the DES Y1 data for 4 

different model (Costanzi+21)



TENSION METRICS 

Asses the level of tension (or agreement) between posteriors derived from different data sets might 
not be trivial in a multi-dimensional parameter space.

E.g. 1d marginalized 
posteriors which seem to 
be in agreement ...

Credit A. Saro



TENSION METRICS 

Asses the level of tension (or agreement) between posteriors derived from different data sets might 
not be trivial in a multi-dimensional parameter space.

E.g. 1d marginalized 
posteriors which seem to 
be in agreement ...

… might hide tensions in 
higher dimension space 
due to “projection effects”

Credit A. Saro



TENSION METRICS 

There is no a unique “metric” to assess the level of tension/agreement between data sets, and 
there exist a number of technique which can be roughly splitted in:

(Lemos+2020; see also e.g. Grandis+16, Charnock+17, 
Raveri+20)

Require the computation of the 
evidence:

In general can be computed 
directly from the parameter 
posteriors.
Require good sampling of the tails 
of the distributions



TENSION METRICS 

Bayes Ratio:

In that expression, zD is the Bayesian Evidence, L is 
the likelihood of observing the data given model M and 
parameter values Θ, and π is the prior probability of 
those parameters given the model.

Jeffrey’s scale

ln R < 2.3 Strong Tension (10:1 
odds)

-2.3< ln R <-1.2 Substantial tension 
(3:1 odds)

ln R>-1.2 Agreement

Caveat:  the value of ln R depends 
strongly on the choice of parameter prior 
ranges



Parameter difference technique:

i) Compute the parameter difference probability 
distribution: 

ii) Determine posterior mass above the 
iso-probability contour for no shift, Δ𝜃 = 0

The advantage of this technique is that it can be 
readily computed directly from the MCMC chains 
of experiment A and B

TENSION METRICS 

Toy model for a two parameter difference 
distribution. Credit M. Raveri

Iso-probability contour for Δ𝜃 = 0



Deviance Information Criterion:

The model with the lower DIC either fits better the 
data - lower 〈𝜒2〉- or has a lower level of complexity 
- lower〈𝜒2〉 -𝜒2

MaxP. It can be easily computed 
directly from the parameter posteriors 

MODEL SELECTION

To determine which model is preferred by a given data set a simple comparison of 𝜒2s might not be 
sufficient (e.g. if the two models have a different number of parameters, or different priors )  
Two widely used techniques for model selection are the evidence ratio and deviance information 
criterion:

Bayes Evidence Ratio:

The evidence is larger for a model if more of its 
parameter space is likely and smaller for a model 
with large areas in its parameter space having 
low likelihood values, even if the likelihood 
function is sharply peaked.


