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INTRODUCTION

Introduction

Forecasting means predicting future values of a time series using the
current information set given by past and present values of the time
series that is being predicted.

::::

Suppose we have an observed time series x1, . . . , xn. Out task is to
estimate the next value xn+1 or, more generally, the future values

xn+h, h ≥ 1.

::::

The forecast of xn+h made at time n (forecast origin) for h steps ahead
(forecast horizon) is denoted by x̂n(h).
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INTRODUCTION

Point forecasts and prediction intervals

Two popular techniques used for prediction of time series are
Prediction using ARMA models
Exponential smoothing

Both extend easily to the case of GARCH models, although the latter is
regarded as a model-free approach.

As a result, a prediction consists of a point forecast related to a
particular future time period, and a prediction interval, i.e. an interval
within which a future value is expected to lie with a prescribed
probability
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EXPONENTIAL SMOOTHING

What is exponential smoothing?

Exponential smoothing is a popular technique which is used for both
prediction of time series and trend estimation.

::::

We do not necessarily assume that the data come from a stationary
model, although this technique should only be used for non-seasonal
time series showing no systematic trend.

::::

In general the method is better suited to undifferenced price or value
series rather than return series
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EXPONENTIAL SMOOTHING

General idea

Suppose our data represent realizations of rvs X1, . . .Xn, considered
without reference to any concrete parametric model.

::::

The task is to obtain a forecast for Xn+h, h ≥ 1, by weighting the data
from most recent to most distant with a sequence of exponentially
decreasing weights α(1 − α)i, i = 0, 1, . . .

αxn + α(1 − α)xn−1 + α(1 − α)2xn−2 + . . . (1)

where 0 < α < 1 and the weights α(1 − α)i become smaller as i
increases (observations further in the past).

R. PAPPADÀ STATISTICAL METHODS WITH APPLICATION TO FINANCE Forecasting 6 / 27



EXPONENTIAL SMOOTHING

Simple exponential smoothing

As a forecast for Xn+1 we use a prediction of the form

x̂n(1) = αxn + α(1 − α)xn−1 + α(1 − α)2xn−2 + . . . (2)

This is written in terms of an infinite number of past observations, but in
practice there will only be a finite number:

x̂n(1) =
n−1∑
i=0

α(1 − α)ixn−i (3)

= αxn + (1 − α) [αxn−1 + α(1 − α)xn−2 + . . . ]︸ ︷︷ ︸
x̂n−1(1)

= αxn + (1 − α)x̂n−1(1) (4)

the prediction at time t = n is obtained from the prediction at time n − 1
by a simple recursive scheme.
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FORECASTING USING ARMA MODELS Introduction

Prediction based on ARMA models

Given the data up to time n, forecasting will involve the observations
and the fitted residuals up to and including time n.

::::

Denote our sample of n data x1, . . . , xn. As a predictor of Xt+h we
choose x̂n(h) such that the expected value of the squared forecast
errors

E
(
(Xn+h − x̂n(h))2)

is minimized. It can be shown that the ‘best’ forecast in the mean
square sense is the conditional expectation of Xn+h based on the
history of the process up to time n (Fn):

x̂n(h) = E(Xn+h|Fn) = E(Xn+h|Xn,Xn−1, . . . ) (5)
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FORECASTING USING ARMA MODELS Introduction

Prediction based on ARMA models/ 2

The basic idea is that, for h ≥ 1, the prediction in (5), E(Xn+h|Fn), is
recursively evaluated in terms of

E(Xn+h−1|Fn)

In particular, we use the fact that the ‘best’ forecast of all future values
of the innovations an+1, an+2, . . . is its expected value, which is 0.

Point forecasts x̂n(h) can be computed directly from the ARMA model
equation by replacing

i. future values of at by zero
ii. future values of xt by their conditional expectation
iii. present and past values of xt and at by their observed values

(known at time t = n)
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FORECASTING USING ARMA MODELS Examples

Forecasting using an ARMA(1,1) model

Suppose an ARMA(1, 1) model of the form

Xt = µ+ ϕ1(Xt−1 − µ) + at + θ1at−1

has been fitted to the data and the parameters’ estimates are µ̂, ϕ̂1, θ̂1
have been found. At time n + 1 we have

Xn+1 = µ+ ϕ1(Xn − µ) + an+1 + θ1an

The one-step ahead forecast of Xn+1 is

E(Xn+1|Fn) = x̂n(1) = µ̂+ ϕ̂1(xn − µ̂) + θ̂1ân

since E(an+1|Fn) = 0.
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FORECASTING USING ARMA MODELS Examples

Forecasting using an ARMA(1,1) model / 2

For a two-step forecast we get

x̂n(2) =E(µ+ ϕ1(Xn+1 − µ) + an+2 + θ1an+1|Fn)

=µ̂+ ϕ̂1(E(Xn+1|Fn)− µ̂) + E(an+2|Fn) + θ̂1E(an+1|Fn)

=µ̂+ ϕ̂1(x̂n(1)− µ̂)

where x̂n(1) is the one-step ahead forecast. Hence, by replacing
x̂n(1) = µ̂+ ϕ̂1(xn − µ̂) + θ̂1ân, we obtain

x̂n(2) = µ̂+ ϕ̂2
1(xn − µ̂) + ϕ̂1θ̂1ân

at is replaced by the model residual ât

limh→∞ E(Xn+h|Fn) = µ, so that the prediction converges to the
estimate of the unconditional mean
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FORECASTING USING ARMA MODELS Examples

Forecasting using an ARMA(1,1) model / 3

In general, forecasts of two or more steps ahead are expressed as

x̂n(h) = µ̂+ ϕ̂1(x̂n(h − 1)− µ̂) = µ̂+ ϕ̂h
1(xn − µ̂) + ϕ̂h−1

1 θ̂1ân

and the associated forecast error is

en(h) = xn+h − x̂n(h)

For instance, for h = 1,

en(1) = xn+1 − x̂n(1) ≈ an+1

and V(en(1)) = σ2
a .
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FORECASTING USING ARMA MODELS Examples

Forecasting using an AR(1) model

Consider the AR(1) model with mean µ

Xt = µ+ ϕ1(Xt−1 − µ) + at

Suppose that we have data x1, . . . , xn and estimates µ̂ and ϕ̂1. We
know that

Xn+1 = µ+ ϕ1(Xn − µ) + an+1

1-Step Ahead Forecast. Given that the best predictor of an+1 is its
expected value, which is 0, we predict xn+1 by

x̂n(1) = µ̂+ ϕ̂1(xn − µ̂)

or
x̂n(1) = ϕ̂0 + ϕ̂1xn, ϕ̂0 = µ̂(1 − ϕ̂1)
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FORECASTING USING ARMA MODELS Examples

Forecasting using an AR(1) model

The associated forecast error is en(1) = xn+1 − x̂n(1), given by

en(1) = xn+1 − x̂n(1)

= (µ+ ϕ1(xn − µ) + an+1)− (µ̂+ ϕ̂1(xn − µ̂))

= (µ− µ̂) + (ϕ1 − ϕ̂1)xn − (ϕ1µ− ϕ̂1µ̂) + an+1

≈ an+1 (large-sample approximation)

Consequently, the variance of the 1-step ahead forecast error is

Var(en(1)) = Var(an+1) = σ2
a

If at is normally distributed, then a 95% 1-step ahead interval forecast
of xn+1 is

x̂n(1)± 1.96 ×
√

Var(en(1))
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FORECASTING USING ARMA MODELS Examples

AR(1): Multistep Ahead Forecast

2-Step Ahead Forecast. We forecast xn+2 by

x̂n(2) = µ̂+ ϕ̂1(x̂n(1)− µ̂)

= µ̂+ ϕ̂1(ϕ̂1(xn − µ̂)) = µ̂+ ϕ̂2
1(xn − µ̂)

The general formula for the h-step ahead forecast from the AR(1)
model is

x̂n(h) = µ̂+ ϕ̂h
1(xn − µ̂)

If |ϕ̂1| < 1 (stationarity), then as h increases, the forecasts will
approach fast its unconditional mean µ.
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FORECASTING USING ARMA MODELS Examples

AR(p): Multistep Ahead Forecast

Forecasting AR(p) processes is similar. For an AR(2) process (p = 2)

Xt = µ+ ϕ1(Xt−1 − µ) + ϕ2(Xt−2 − µ) + at

we get the one-step ahead forecast

x̂n(1) = µ̂+ ϕ̂1(xn − µ̂) + ϕ̂2(xn−1 − µ̂)

with associated forecast error

en(1) = xn+1 − x̂n(1) ≈ an+1

and the two-step ahead forecast

x̂n(2) = µ̂+ ϕ̂1(x̂n(1)− µ̂) + ϕ̂2(xn − µ̂)
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FORECASTING USING ARMA MODELS Examples

AR(2) Forecast Errors

Using the large-sample approximation again, so µ̂ is replaced by µ and
ϕ̂ by ϕ, the error in the two-step ahead forecast is then

en(2) = xn+2 − x̂n(2) = ϕ1(xn+1 − x̂n(1)) + an+2 = ϕ1an+1 + an+2

The variance of the forecast error is

Var(en(2)) = Var(ϕ1an+1 + an+2)

= ϕ2
1Var(an+1) + Var(an+2)

= (1 + ϕ2
1)σ

2
a

Note that Var(en(2)) ≥ Var(en(1)), meaning that as the forecast horizon
increases the uncertainty in forecast also increases.
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FORECASTING USING ARMA MODELS Examples

Forecasting from MA(q) Models

Consider the MA(1) process, Xt = µ+ at + θ1at−1.
When t = n, the next observation will be Xn+1 = µ+ an+1 + θ1an.

Using estimates µ̂ and θ̂1, and replacing an by the residual ân, the
1-step-ahead forecast is

x̂n(1) = µ̂+ θ̂1ân

with error en(1) = an+1 and Var(en(1)) = σ2
a .

::::

The 2-step-ahead forecast is

x̂n(2) = µ̂

with error en(2) = an+2 + θ1an+1 and Var(en(2)) = (1 + θ2
1)σ

2
a .

Similarly, it can be proved that

x̂n(h) = µ̂, h > 2
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FORECASTING USING ARMA MODELS Examples

Forecasting from MA(q) Models/ 2

For an MA(2) model

Xt = µ+ at + θ1at−1 + θ2at−2

we have
Xn+h = µ+ an+h + θ1an+h−1 + θ2an+h−2

from which we obtain predictions for Xn+h, h ≥ 1:

x̂n(1) = µ̂+ θ̂1ân + θ̂2ân−1

x̂n(2) = µ̂+ θ̂2ân

x̂n(h) = µ̂ h > 2

In general, for an MA(q) model, multistep ahead forecasts go to the
mean after the first q steps.
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FORECASTING USING ARMA MODELS Examples

Prediction Intervals

When making forecasts, the interest is in the uncertainty of the
predictions. To this end, we compute the variance of the forecast error
Var(en(h)). Then, assuming that a1, a2, . . . is Gaussian white noise, a
(1 − α)100% prediction interval for xn+1 is

x̂n(h)± z1−α
2

√
Var(en(h))

where
z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution√

Var(en(h)) is the forecast error’s standard deviation
Note that Var(en(h)) → Var(Xn), the variance of the process, as h → ∞
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FORECASTING USING ARMA MODELS Examples

Forecasting using ARIMA models

Suppose that Xt is ARIMA(1,1,0), so that the model for Yt where

Yt = ∇Xt = Xt − Xt−1

is AR(1). To forecast Xn+k, k ≥ 1
fit an AR(1) model to the Yt process and forecast Yn+k,
k = 1, 2, . . . ; denote the h-step ahead forecast by ŷn(h); for
instance, the 1-step-ahead forecast is ŷn(1)
For h = 1, since

Xn+1 = Xn + (Xn+1 − Xn) = Xn + Yn+1

the 1-step ahead point forecast of Xn+1 is

x̂n(1) = xn + ŷn(1)
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FORECASTING USING ARMA MODELS Problems
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FORECASTING USING ARMA MODELS Problems

Problem 1

An AR(3) model has been fit to a time series. The estimates are
µ̂ = 102, ϕ̂1 = 0.5, ϕ̂2 = 0.2, ϕ̂3 = 0.1. The last four observations were
xn−3 = 104, xn−2 = 101, xn−1 = 102, xn = 99.
Forecast xn+1 and xn+2 using these data and estimates.

[Sol: x̂n(1) = 100.4; x̂n(2) = 100.6]
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FORECASTING USING ARMA MODELS Problems

Problem 2

The MA(2) model Xt = µ+ at + θ1at−1 + θ2at−2 was fit to data and the
estimates are

Parameter Estimate
µ 45
θ1 0.3
θ2 -0.15

The last two values of the observed time series and residuals are

t xt ât

n − 1 39.8 -4.3
n 42.7 1.5

Find the forecasts of xn+1 and xn+2. What is x̂n(h), h ≥ 3?

[Sol: x̂n(1) = 46.1; x̂n(2) = 44.78; x̂n(h) = µ̂, h ≥ 3.]
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FORECASTING USING ARMA MODELS Problems

Problem 3

The following ARMA model has been fit to a time series:

xt = 25 + 0.8xt−1 − 0.3xt−2 + at

where {at} is white noise.
a. Suppose that we are at the end of time period T = 100 and we

know that x100 = 40 and x99 = 38. Determine forecasts for periods
101, 102 from this model at origin 100.

b. Suppose that the observation for time period 101 turns out to be
x101 = 35. Revise your forecasts for period 102 using period 101
as the new origin of time.

[Sol: (a) x̂100(1) = 45.6; x̂100(2) = 49.48 (b) x̂101(1) = 41]
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