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• Comparing survival curves

• Cox Regression
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Survival analysis: objectives

• Estimate time-to-event for a group of individuals, such as time 
until hospitalization or death for a group of patients.

• To compare time-to-event between two or more 
groups, such as treated vs. placebo patients in 
a randomized controlled trial.

• To assess the relationship of co-variables to time-to-event, 
such as: does weight, insulin resistance, or cholesterol 
influence survival time of CV patients?

Aims of Survival Analysis 
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Survival function: 𝑆 𝑡 = 𝑃 𝑇 > 𝑡
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Comparison of two groups of survival data

The logrank test is the most widely used 

method of comparing two or more 

survival curves 

We have to perform an hypothesis test

H0: There is no difference in survival among groups.

The aim is to compare survival times of two (or more) groups of patients: one

exposed to a certain treatment/risk factor another not exposed.
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Comparing survival curves

Do we have any 

reason to claim that 

group 1 (treatment) 

has a significant
better survival 

prognosis than 

group 2 (placebo)?



Block 4.2

We look at 2 groups [→ extensions to several groups are possible]

When are two KM curves statistically equivalent?

→ we need a testing procedure to compare the two curves

→ when we have evidence that the true survival curves are different?

Null hypothesis (H0):  no difference between (true) survival curves 

Goal: To find an expression (depending on the data) from which we know the 

distribution (or at least approximately) under the null hypothesis

Log-rank test

Assumption : Proportional Hazards over time (see later) !
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Example:  remission times (weeks) for two groups 

of leukemia patients
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We expect no 

differences

between

groups under 

H0
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Remark: We could also work with Group 1 

and we would get the same statistic
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Call:

survdiff(formula = Surv(time, status) ~ treatment)

N Observed Expected (O-E)^2/E (O-E)^2/V

treatment=1 21 9 19.3 5.46 16.8

treatment=2 21 21 10.7 9.77 16.8

Chisq= 16.8 on 1 degrees of freedom, p= 4e-05

What does this tell us?
probability of obtaining a test statistic at least as extreme 
as the one that was actually observed, under H0.
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LG test for Several Groups

𝐻0: All survival curves are the same

Molecular classification of multiple myeloma

7 groups based on 

gene expression 

profiling

• Log-rank statistic for > 2 groups involves 

computing variances and covariances of 𝑂𝑖−𝐸𝑖

• 𝐺 (≥2) groups: log-rank statistic ~𝜒2 with 𝐺−1 df
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Cyclin D-1 Cyclin D-2 Hyperdiploid Low bone disease MAF   MMSET

Cyclin D-2 0.723 - - - - -

Hyperdiploid 0.943 0.723 - - - -

Low bone disease 0.723 0.988 0.644 - - -

MAF              0.644 0.447 0.523 0.485 - -

MMSET            0.328 0.103 0.103 0.103 0.723 -

Proliferation 0.103 0.038 0.038 0.062 0.485 0.527

p value adjustment method: BH 

Various choices for the adjustment method

Pairwise comparisons between group 

levels with corrections for multiple 

testing issue [alpha inflation…]

R function: pairwise_survdiff {survminer}
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Stratified Log-rank test

Variation of log rank test: 

• Allows controlling for additional

(stratified:categorical) variable 

[confounder]

• Split data into strata, based on 

values of confounder

• Calculate 𝑂−𝐸 within strata

• Sum 𝑂−𝐸 across strata

useful when the distribution of the stratum 
variable in the two groups is not the same, 
but the impact of the exposure in each 
stratum is the same (same “direction”).
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Stratified log rank test – Example: 

• Remission data

• Stratified variable: 3-level variable (LWBC3) indicating low, medium, or high log white blood 

cell count (coded 1, 2, and 3, respectively)

Treated Group: rx=0 Placebo Group: rx=1

Recap: Non-stratified test : 𝜒2-value of 16.79

and corresponding p-value rounded to 0.0000

Call:

survdiff(formula = Surv(time, status) ~ treatment)

N Observed Expected (O-E)^2/E (O-E)^2/V

treatment=1 21 9 19.3 5.46 16.8

treatment=2 21 21 10.7 9.77 16.8

Chisq= 16.8 on 1 degrees of freedom, p= 4e-05
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fit <- survdiff(Surv(data$V1,data$V2)~data$V5+strata(lwbc3))

fit

Call:

survdiff(formula = Surv(data$V1, data$V2) ~ data$V5 + strata(lwbc3))

N Observed Expected (O-E)^2/E (O-E)^2/V

data$V5=0 21 9 16.4 3.33 10.1

data$V5=1 21 21 13.6 4.00 10.1

Chisq= 10.1 on 1 degrees of freedom, p= 0.001

Always significant, 

same direction of 

the effect,  but

magnitude of the 

effect varies across

strata (varying

sample size..)
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Stratified vs. unstratified approach

Limitations: 

• Sample size may be small within strata

• Categorical stratifying variable and exposure

• Interactions ? 

*At the denominator there is always an estimate of the variance-covariance matrix

* *
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At 10 years the chance of dying in 

the following month is 0.24% 

instantaneous event rate

Again: Hazard Function & Cumulative Hazard Rate

The probability that if you survive to t, you will 

succumb to the event in the next instant.

Risk of event up to time t given that the event

has not occurred before t

Cumulative Hazard Function

(Cumulative Hazard Rate) 

At 10 years the risk of death

~29% (if you survived until

then)

   
t

duuhtH
0

ℎ 𝑡 = lim
∆𝑡→0

𝑃 𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡|𝑇 > 𝑡

∆𝑡
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Hazard function: “force of mortality over time” Hazard function

patients with tuberculosis: risks that increase 

initially, then decrease after treatment. 

patients with acute leukemia who do not respond 

to treatment have an increasing hazard rate

risk after surgery: the main danger is the 

operation itself and this danger 

decreases if the surgery is successful. 

healthy persons between 18 and 40 yrs whose 

main risks of death are accidents. 

bathtub curve : process of human life. High infant 

mortality; then risk approximately constant, and final 

increase.
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constant  
increasing
decreasing

combo

differences 

between survival 

curves are much 

less evident, 

compared to 

differences in the 

corresponding 

hazard functions
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Proportional hazards (PH) assumption
Hazard function

The hazard at any given time for an individual in one group is proportional to the hazard at any given

time for an individual in the other group. If the hazard functions are proportional -> survival functions do 

not cross one another. [log-rank test assumes PH  !!]. There is a test that could be used to verify PH. 
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alternatives to log-rank test

• Wilcoxon

• Tarone-Ware 

• Peto 

• Flemington-
Harrington

Different weights are 

applied to differences 

between expected and 

observed deaths to 

emphasize certain times

more than others…

A common problem in medical applications is how to check for the overall homogeneity of 

survival curves when the PH assumption does not hold.

A treatment may offer a short-term benefit but does not provide long-term advantages.

Using the log-rank test under conditions of non-proportional hazards may lead to misleading 
results. 

1. Weighted log-rank tests: 
2. The supremum (Renyi) tests 

designed to detect differences in 

survival curves which cross. That is, 

an early difference in survival in 
favor of one group is balanced by 

a later reversal.

Or two survival curves cross each other.



Block 4.2

So far, we have discussed methods to compare two or more survival curves, 

both under the PH assumption. 

These methods are useful when the exposure/risk factor is categorical and 

there is at maximum another confounder that is also categorical (with the 

same «direction of effect» of the exposure across strata…). 

Next step will be to introduce a more general regression model (on the scale 

of the hazard function) that will allow us to estimate the joint effect of one or 

more risk factors (in whatever scale of measure) on the time-to-event ot to 

evaluate the specific effect of one exposure of interest adjusting for multiple 

confounders.
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• Estimate time-to-event for a group of individuals, such as time 
until hospitalization or death for a group of patients.

• To compare time-to-event between two or more groups, such 
as treated vs. placebo patients in a randomized controlled 
trial.

• To assess the relationship of co-variables to 
time-to-event, such as: does weight, insulin 
resistance, or cholesterol influence survival time 
of CV patients?

Aims of Survival Analysis 
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David Cox

(among the top five most cited papers for the entire field of science)

Semi-parametric regression

approach that estimates the effect

of covariates on the hazard function
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Logistic regression [binary outcome]:

• ignores information about the time to the event

Linear regression [continuous outcome]:

• not suitable for non-symmetric [>0] distributions
[like follow up times] 

• does not take into account censoring

Poisson regression [event counts/rates ]: 

• #events/RR in a given interval (≠ time to the event) 

Why don’t we use others regression methods ?
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At 10 years the chance of dying in the 

following month is 0.24% 

instantaneous event rate

The dependent variable of the Cox model

The probability that if you survive to t, you will succumb to the event in the next instant.

ℎ 𝑡 = lim
∆𝑡→0

𝑃 𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡|𝑇 > 𝑡

∆𝑡

ℎ 𝑡 = −

𝑑
𝑑𝑡
𝑆 𝑡

𝑆 𝑡

ℎ 𝑡 = −
𝑑

𝑑𝑡
𝑙𝑜𝑔𝑆
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Cox Regression Model

The scale on which linearity is assumed is the log-hazard scale: 

• ℎ0 𝑡 is the baseline hazard function 

• the exponential function represents the effect of the linear combination of 
the covariates X on the hazard 

The aim is to determine the joint effect of the covariates on the hazard or to 
focus on a specific effect.

ℎ 𝑡|𝑋 = ℎ0 𝑡 𝑒𝑥𝑝 𝑋1𝛽1 + 𝑋2𝛽2 + 𝑋3𝛽3 +⋯+ 𝑋𝑝𝛽𝑝

𝑙𝑜𝑔
ℎ 𝑡|𝑋

ℎ0 𝑡
= 𝑋1𝛽1 + 𝑋2𝛽2 + 𝑋3𝛽3 +⋯+ 𝑋𝑝𝛽𝑝
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The dependent variable of the Cox model is the hazard function.

Remind of censored data:  

someone who is followed for 18 months is a part of the computations until the interval that 

contains the censoring time (risk set) and not thereafter (partial likelihood).  

Why exp(linear predictor)?  To avoid negative hazard rates.

• Implies that factors are multiplicative, e.g., treatment reduces the hazard by X %.

• Two covariates multiply in effect

• For biological phenomena it seems to fit well

The model assumes that the risk at time t for subject i is: ℎ𝑖 𝑡|𝑋𝑖 = ℎ0 𝑡 𝑒𝑥𝑝 𝑋𝑖𝛽

The baseline hazard in Cox is estimated “non-parametrically”: 

• estimated on the specific dataset

• does not extrapolate….
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• To estimate b Cox proposed a partial likelihood (PL) procedure based on 
conditional probability:  

• Maximizing the PL function we obtain:

1. Estimates of b

2. Standard errors for b

3. p values for b

(non-parametric estimate of cumulative baseline hazard could be obtained after b estimation)

𝑡 1 , … , 𝑡 𝑛 ordered event times

𝑅𝑗

𝐿 𝛽 =ෑ

𝑗=1

𝑛
𝑒𝑥𝑝 𝑋 𝑡 𝑗 𝛽

σ𝑖∈𝑅𝑗
e𝑥p(𝑋𝑖 𝑡 𝑗 𝛽)

Risk set at time 𝑡 j

𝑋 𝑡 𝑗
covariates for the individual who fails
at time 𝑡 j

In the Cox model the statistical independence between censoring and survival time is obtained 
conditional to the covariates 
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Interpretation of parameter estimates

Let us consider two subjects i e i’: 
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If HR ~1 (95% CI contains 1)  : there is not a significant impact of 

the covariate X on the hazard of event

If HR >1 (95% CI > 1)  : presence or increasing values of X 

increase the hazard of event (=decrease survival)

If HR <1 (95% CI < 1) : presence or increasing values of X decrease

the hazard of event (=increase survival) 

Exp(b)=HAZARD RATIO (HR)
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Impact of gender (M=0,F=1) and level of education (school yrs) with respect to 

time to the first marriage: 

Cox model 

results b se(b)

exp(b)

HR

lower

95% CI 

upper

95% CI 

Gender (F vs M) 0,48 0,20 1,61 1,09 2,40

School years -0,07 0,02 0,93 0,51 0,98

At a given instant in time, the hazard of marriage for women is 1.61 times higher than men (at the same

level of education)

For people (men or women) with an additional +1yr school the hazard of marriage, at a given instant

in time,  is 0.93 times than for those without…

For each «extra» yr of school the hazard of marriage (men or women) at a given instant in time is 7% less. 

At a given instant in time, the hazard of marriage for women is 61% higher than for men (at the 

same level of education)
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Again : proportional hazards (PH) !!
Hazard function

The hazard at any given time for an individual in one group is proportional to the hazard at any given

time for an individual in the other group. If the hazard functions are proportional -> survival functions do 

not cross one another… 
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Cox model assumes proportional hazards (PH). Covariates X have always the 

same relative effect along time:

The function exp(Xb) does not depend on t

         Xβexp...exp 022110 thXXXthXth pp  bbb

Hazard Ratio between two subjects, with covariates X and X* does not depend on t:

   
   

  β*XX
β*X

Xβ
 exp

exp

exp

0

0

th

th

If PH assumption does not hold, «standard» Cox model could be no longer valid

[we could check for this]  [there are extensions] 
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• 𝛽𝑘 is the difference in the log-hazard function comparing two subpopulations differing in 𝑥𝑘
by “1-unit” and  that are similar with respect to all other covariates in the model 

• the effect expressed by 𝛽𝑘 is adjusted for all other covariates in the model, so it has the 
interpretation of a log-relative hazard associated with a change in 𝑥𝑘, holding other 

covariates constant at some fixed value 

• is it possible to compare hypothetical patients with different covariates values and check 

how their estimated survival curves appear; [remind: the baseline hazard depends on the 

study cohort…]

• the Cox PH model is indeed a model for the hazard more than a model for survival time, 

although they are related one-to-one if no competing risks exists 

ℎ𝑖 𝑡|𝑋𝑖 = ℎ0 𝑡 𝑒𝑥𝑝 𝑋𝑖𝛽
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Survival function derived from the Cox regression model 
(no competing risks)

Once the b are estimated, we can obtain the corresponding survival function:

)𝑆 𝑡|𝑥 = 𝑆0 𝑡 exp(𝛽𝑥

The estimate of 𝑆0 𝑡 and a fixed set of values for the explanatory variables produce an 

estimate of the survival function for a specific person or group.

The expression for 𝑆 𝑡|𝑥 shows that proportional hazard functions dictate that the estimated 

survival functions do not intersect.

𝑺𝟎 𝒕 is derived from an estimate of the cumulative baseline hazard (a complex derivation in the 

non-parametric form, similar to the Nelson-Aalen formulation)
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Summary: basic assumptions (all standard methods, KM, log rank & basic Cox):

1. Events of the individuals occur independently of one another

Acceptable in «time to the first event» analyses

2. Hazard of event at any given time for an individual in one group is

proportional to the hazard at that time for an individual in the other group…

hazard functions do not cross one another

what if the ‘treatment’ effect

changes with time* ? 

3. Hazard ratios are independent of time 

*…or we have repeated measures of a covariate ???
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4. Censoring mechanism is «independent» of the event [conditional on 

covariates in Cox]: 

Primary and Secondary end point:

…is that always true???

**

Last (but not least!):

Those still at risk at time t are a random sample of the population at risk at time 

t, for all t…

Are patients that

die before

experiencing the 

primary outcome

similar to the

others?
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David Cox (1924-2022)

Sir David Cox and me 

(London, sept. 2016)

Paul Meier (1924-2011) 

Edward L. Kaplan (1920-2006) 
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Supplementary materials



Block 4.2

Linear Trend test between survival curves

When there is a natural ordering of the groups that we want to compare (i.e: by stage of disease) we can 

make use of a test for linear trend. 

In this case, for example, the research question is whether survival deteriorates with increasing severity 

stage, rather than the more general question whether there are any differences in survival between 

stages.

Survival in patients with cancer of the larynx
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Extended Log-Rank test for G groups (no ordering) 

Conclusion: The hypothesis that all 

four survival curves are equal is clearly 

rejected. We conclude that at least 

one group is different with respect to 

survival
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This test says nothing about how the groups differ; which one is the worst, the 

best, etc... 

That can be further explored with a linear trend test.

• 4 stages of disease recorded at the baseline (the origin)

• 4 stages of disease groups can be ordered in a 

meaningful way

• H1: survival by stage of disease is either

progressively worse or progressively better

• That is, we wish to take advantage of the 

ordinal nature of the stage of the grouping variable
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trend

trend
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Variance-

covariance

matrix

Conclusion: Reject the 

hypothesis that all four 

survival curves are equal 

and conclude that stage is 

positively associated with 

the hazard for death

Q         Var Z      pNorm

-25.80 48.15  -3.7190 0.00020005 ***

$scores

[1] 1 2 3 4

Sum over j 
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Kidney dialysis data

The kidney-dialysis trial was designed to assess the time of the infection in patients with renal insufficiency. In 

43 patients, the catheter was surgically implanted, whereas in 76 patients it was percutaneously placed.

##                      Q         Var         Z     pNorm    
## 1             -3.96355     6.23675 -1.587104 0.1124892    
## n              9.00000 38919.18761  0.045621 0.9636127    
## sqrtN        -13.20293   433.84450 -0.633875 0.5261626    
## S1            -2.46920     4.37254 -1.180837 0.2376674    
## S2            -2.31343     4.20869 -1.127672 0.2594583    
## FH_p=1_q=1    -1.02064     0.10661 -3.125846 0.0017729 ** 
 

Positive differences in favor of the surgical method are 

cancelled out by the negative differences later. 

Instead, the last, F-H test yield significant results. 

The first 5 tests are unable to detect the overall 

differences.

Why?
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F-H: The weight at 𝑘1 = 1 and thereafter is: 𝑆𝑘𝑖−1
𝑝
1 − 𝑆𝑘𝑖−1

𝑞

Weighted Logrank tests 

Consider weighting (Observed - Expected) differently over failure times (k=1,…D). 

This will enable us to inflate early or late differences

[increased power under non-proportional hazards]

Weight Test

1 log-rank

𝑛𝑘
(#pts at risk at k)

Gehan-Breslow
generalized Wilcoxon

𝑛𝑘 Tarone-Ware

S1: መ𝑆𝑘−1
Peto-Peto's modified 

survival estimate

S2: መ𝑆′𝑘−1
modified Peto-Peto (by 

Andersen)

FH Fleming-Harrington

S1 and S2 are based on pooled KM estimates, therefore

weights depend on the survival experience in the pooled sample  

𝑇𝑤 =
σ𝑘=1
𝐷 𝑤𝑘 𝑂𝑘 − 𝐸𝑘

2

σ𝑘=1
𝐷 𝑤𝑘

2𝑉𝑎𝑟𝑘

In R default p (early)=q (late)=1
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Different weights are applied to differences between expected and observed deaths to 

emphasize certain times more than others…

early differences in survival times

S1, S2: early differences more 
robust if many observations 
are censored
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How should weights be chosen?

For scientific inference it is not reasonable to look at the survival curves first, then 

choose weights.

A priori knowledge: is there a reason to believe we will have non PH?

-> If not, go with the logrank test

-> If so, consider what survival differences are most clinically meaningful

(early vs late)

-> Childhood cancer (late differences)

-> Late stage lung cancer remission (early differences) 
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alternatives to log-rank testRenyi Type Tests

A class of tests with power to detect crossing hazards. 

A clinical trial of chemotherapy vs chemotherapy + radiotherapy in the treatment of locally 

unresectable gastric cancer. 45 patients were randomized to each of the two arms and 
followed for about 8 years.

During the initial 1000 days, chemotherapy 

showed a higher survival rate, whereas 
chemotherapy+radiation was associated with an 

increased number of early deaths, which may be 

attributable to the progression of tumors within 

the radiation field or to complications. 

However, chemotherapy+radiation appear to 

offer better prospects for long-term survival during 

the late follow-up period.
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Renyi Type Tests alternatives to log-rank test

Renyi tests are based on sequence of test statistics; greater power to detect crossing hazard rates.

Value of the test statistic [for some weight 

function] at each death time is computed. 

When the hazard rates cross, the absolute 

value of these sequential evaluations will 

have a maximum value at some time point 

[prior to the largest death time].

When this value is ‘too large’, the null hypothesis is 

rejected.

To adjust for the fact that multiple test statistics are 

estimated on the same set of data, a correction is 

made to the critical value of the test. 
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##                      Q         Var        Z    pNorm   
## 1           2.1463e+00  1.9862e+01  0.48159 0.630098   
## n           4.9100e+02  6.0322e+04  1.99913 0.045594 * 
## sqrtN       4.3629e+01  9.8798e+02  1.38803 0.165129   
## S1          5.4126e+00  7.2723e+00  2.00710 0.044739 * 
## S2          5.3864e+00  7.0411e+00  2.02993 0.042364 * 
## FH_p=1_q=1 -8.9383e-02  7.1790e-01 -0.10549 0.915985   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##               maxAbsZ        Var      Q    pSupBr    
## 1              9.8049    19.8617 2.2001 0.0556044 .  
## n            725.0000 60322.4412 2.9519 0.0063169 ** 
## sqrtN         84.1532   987.9774 2.6773 0.0148437 *  
## S1             7.9752     7.2723 2.9574 0.0062054 ** 
## S2             7.8688     7.0411 2.9654 0.0060450 ** 
## FH_p=1_q=1     1.3396     0.7179 1.5811 0.2277168    
 

N.B.: a significant Renyi test statistic do not indicate 

that the global survival rate in the chemotherapy 

only group is significantly greater than the 

chemotherapy + radiation. 

It does mean that there is a significant difference in 

the survival rates between the two groups at some 

time point, but does not imply that one group is 

superior to another. 
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The Cox model assumes that the hazards are proportional (PH), which means that the hazard ratio is 

constant over time with different predictor or covariate levels.

This PH assumption in any covariate is quite a strong assumption. Considering the complexity of biological 

and physiological responses and associations, this assumption has rarely a solid justification.

The two most common ways to assess the PH assumption are:

• Visual assessment by means of the log-cumulative hazard plot

• Testing of scaled Schoenfeld residuals

If PH doesn’t exactly hold for a particular covariate but we fit the PH model anyway, then what we are 

getting is sort of an average HR, averaged over the event times. 

Eventually, if the non-PH variable is a categorical one it could make sense using a stratified approach
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The Stratified Cox Model

Suppose a confounder C has k levels on which we would like to stratify when 

comparing h(t|E) and h(t|not E) where E is an indicator of “exposure”. 

1. A [non-parametric] baseline hazard is estimated within each stratum (solve ev. non PH 

hazard)
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2. If the confounder is controlled using stratification, there is no way to estimate an hazard 

ratio comparing two levels of the confounder. 

3. Stratification generally requires more data to obtain the same precision in coefficient 

estimates
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ℎ𝑖 𝑡|𝑋𝑖 = ℎ0 𝑡 𝑒𝑥𝑝 𝑋𝑖𝛽
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ℎ𝑖 𝑢 𝑑𝑢 = 𝑒𝑥𝑝 𝑋𝑖𝛽 න
0

𝑡

ℎ0 𝑢 𝑑𝑢

𝐻𝑖 𝑡|𝑋𝑖 = 𝑒𝑥𝑝 𝑋𝑖𝛽 𝐻0 𝑡

Cumulative hazard functions

𝑙𝑜𝑔 𝐻𝑖 𝑡|𝑋𝑖 = 𝑋𝑖𝛽 + 𝑙𝑜𝑔 𝐻0 𝑡

If the log-cumulative hazards for individuals with different values

of X are plotted against time, the curves will be parallel if the 

PH assumption is valid. 

• Values of X need to be categorical/grouped

• Just a visual appreciation
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Schoenfeld residuals

Time-varying residuals from the model are added to the corresponding time-invariant coefficient 

estimate b and smoothed. The result is a plot of an estimate of the regression coefficient for the 

covariate over time. If the plot is reasonably flat (there is here a formal test), the PH assumption holds.

The Schoenfeld residuals are the differences 

between that individual's covariate values at 

the event time and the corresponding risk-

weighted average of covariate values among 

all those at risk at that time. 

The word "residual" thus makes sense, as it's the 

difference between an observed covariate 

value and what you might have expected 

based on all those at risk at that time.

𝑠𝑘,𝑗

Schoenfeld residual for covariate Xj at time tk

𝐸 𝑠𝑘,𝑗 + ෡𝛽𝑗 ≈ 𝛽𝑗 𝑡𝑘
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 library(ISwR)

 data(melanom)

status: indicator of the patient’s status by the 

end of the study: 

1=“dead from malignant melanoma”

2= “alive”

3= “dead from other causes” 

days: observation time in days
ulc:    1=present (tumor ulcerated) 2 = absent

thick:  tumor thickness
sex:   1 for women and 2 for men

R code for Cox
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mod.sex <- coxph(Surv(days,status==1)~sex)

summary(mod.sex)

These tests are all 

equivalent in large samples 

but may differ somewhat in 

small-sample cases

Males (=2) have an 

hazard nearly twice

than women (=1)

R code for the Cox Model

Consider a model with the single regressor sex:

##       coef exp(coef) se(coef)     z Pr(>|z|)   
## sex 0.6622    1.9390   0.2651 2.498   0.0125 * 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
##     exp(coef) exp(-coef) lower .95 upper .95 
## sex     1.939     0.5157     1.153      3.26 
##  
## Concordance= 0.59  (se = 0.033 ) 
## Rsquare= 0.03   (max possible= 0.937 ) 
## Likelihood ratio test= 6.15  on 1 df,   p=0.01314 
## Wald test            = 6.24  on 1 df,   p=0.01251 
## Score (logrank) test = 6.47  on 1 df,   p=0.01098 
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mod.cov <- coxph(Surv(days,status==1)~sex+log(thick))

summary(mod.cov)

‘thick’ is the tumor thickness; we use logarithm since

the distribution is asymmetric:

HR of log(thick)=2.18  

each 1 point change in log(thick) 

is associated with a 2.2-fold 

increase in a patient’s risk

R code for the Cox Model
A more elaborate example, involving also a continuous 

covariate: 

Note that taking into account log(thick) 

the effect of sex is reduced…

##              coef exp(coef) se(coef)     z Pr(>|z|)     
## sex        0.4580    1.5809   0.2687 1.705   0.0883 .   
## log(thick) 0.7809    2.1834   0.1573 4.963 6.94e-07 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
##            exp(coef) exp(-coef) lower .95 upper .95 
## sex            1.581     0.6326    0.9337     2.677 
## log(thick)     2.183     0.4580    1.6040     2.972 
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R code for the Cox Model
Assessing the PH Assumption (I)

Conclusion: not strong evidence 

of non-PH. 

This is a good look at gross 

departures, but it is far from a 

formal test…

Adjusting for log(thick) does the 

effect of gender follow a PH 

model?

If the PH assumption holds, 

the log cumulative hazards 

for the two groups, adjusting 

for log(thick), should be 

roughly parallel…

fit1 <- coxph( Surv(days,status==1) ~ log(thick)+ strata(sex))
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Cox model’s

estimate for «overall» 

log thick effect

R code for the Cox Model
Assessing the PH Assumption (II)

check.ph <- cox.zph(mod.cov, transform="km", global=TRUE)

If the PH assumption

holds, then the plot 

of b(t) vs time should

be on a horizontal

line.  

The effect of log(thick) is

gradually decreasing with

time.  

##               rho chisq      p 
## sex        -0.102 0.587 0.4436 
## log(thick) -0.352 5.485 0.0192 
## GLOBAL         NA 6.813 0.0332 

Adjusting for gender, does 

the effect of log(thick) 

follow a proportional 

hazards model?

*P. Grambsch and T. Therneau (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika, 81, 515-26.
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Possible solutions to non-proportionality (I): 

• Stratification: covariates with non PH effects may be used as

strata

- no direct test of association with survival; 

- ok for categorical covariates, discretization for continuous ones

(could be problematic) 

- less efficient analyses (usually larger sample size needed) 

• Partition of the time axis: the PH could be valid in some time 

intervals (landmark analysis)
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• Cox model with time-varying coefficients: model the dependence of beta on time
Not easy to find the appropriate function… interpretation more complex

• Use a different approach: Flexible Parametric Survival and Multi-State Models

Alternative methods: 

Accelerated Failure Time (AFT) Models:

• The survreg function in package survival can fit an accelerated failure time 

model. 

• A modified version of survreg is implemented in the rms package 

(psm function). 

• The eha package also proposes an implementation of the AFT model 

(function aftreg). 

• The NADA package proposes the front end of the survreg function for left-

censored data. 

• The simexaft package implements the Simulation-Extrapolation algorithm for 

the AFT model, that can be used when covariates are subject to 

measurement error. 

• A robust version of the accelerated failure time model can be found 

in RobustAFT. 

• The coarseDataTools package fits AFT models for interval censored data. 

• An alternative weighting scheme for parameter estimation in the AFT model 

is proposed in the imputeYn package. 

• The AdapEnetClass package implements elastic net regularisation for the 

AFT model.

Additive Models:

• Both survival and timereg fit the additive hazards model of Aalen 

in functions aareg and aalen, respectively.

• timereg also proposes an implementation of the Cox-Aalen model 

(that can also be used to perform the Lin, Wei and Ying (1994) 

goodness-of-fit for Cox regression models) and the partly 

parametric additive risk model of McKeague and Sasieni. 

• A version of the Cox-Aalen model for interval censored data is 

available in the coxinterval package. 

• The uniah package fits shape-restricted additive hazards models. 

• The addhazard package contains tools to fit additive hazards 

model to random sampling, two-phase sampling and two-phase 

sampling with auxiliary information.

Flexible survival models:

• flexsurv: Flexible parametric models for time-to-event data

• rstpm2: Smooth Survival Models, Including Generalized Survival 

Models

https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/eha/index.html
https://cran.r-project.org/web/packages/NADA/index.html
https://cran.r-project.org/web/packages/simexaft/index.html
https://cran.r-project.org/web/packages/RobustAFT/index.html
https://cran.r-project.org/web/packages/coarseDataTools/index.html
https://cran.r-project.org/web/packages/imputeYn/index.html
https://cran.r-project.org/web/packages/AdapEnetClass/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/timereg/index.html
https://cran.r-project.org/web/packages/timereg/index.html
https://cran.r-project.org/web/packages/coxinterval/index.html
https://cran.r-project.org/web/packages/uniah/index.html
https://cran.r-project.org/web/packages/addhazard/index.html
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A more elaborate example: binary factor + continuous covariate + stratification variable:

mod.cov.strat <- coxph(Surv(days,status==1)~sex+log(thick)+strata(ulc))

summary(mod.cov.strat)

R code for the Cox Model

Stratifying by the presence 

or absence of ulcer, 

significance of the log(thick) 

has been reduced and sex is 

no longer significant.

##              coef exp(coef) se(coef)     z Pr(>|z|)    
## sex        0.3600    1.4333   0.2702 1.332   0.1828    
## log(thick) 0.5599    1.7505   0.1784 3.139   0.0017 ** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
##            exp(coef) exp(-coef) lower .95 upper .95 
## sex            1.433     0.6977     0.844     2.434 
## log(thick)     1.750     0.5713     1.234     2.483 
##  
## Concordance= 0.673  (se = 0.058 ) 
## Rsquare= 0.063   (max possible= 0.9 ) 
## Likelihood ratio test= 13.3  on 2 df,   p=0.001296 
## Wald test            = 12.88  on 2 df,   p=0.001598 
## Score (logrank) test = 12.98  on 2 df,   p=0.00152 
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We can plot survival curves estimated for 
each strata by using survfit on the output of 

coxph: 

R code for the Cox Model

The default for survfit is to generate 

curves for a pseudoindividual for 

which the covariates are at their 

mean values. 

In the present case, that would 

correspond to a tumor thickness of
1.86 mm and a gender of 1.39 (!)…

… we have been sloppy in not defining 
sex as a factor variable, but that would 

not actually give a different result (HR): 

coxph subtracts the means of the 

regressors before fitting, so a 1/2 coding 

is the same as 0/1, which is what a factor 

with treatment contrasts usually gives.

[But, defining the factor we can define 

“hypothetical” pts with certain values for 
the covariates]
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sex.f <- as.factor(sex)

mod.cov.strat.f <- coxph(Surv(days,status==1)~sex.f+log(thick)+strata(ulc))

summary(mod.cov.strat.f)

Now sex.f2 

indicates that HR 

refers to the 

contrast 

of level “2” 

versus level “1” 

for the factor 

variable sex, 

[the same HR 

value as before] 

R code for the Cox Model

mod.cov.strat.f <- coxph(Surv(days,status==1)~sex.f+log(thick)+strata(ulc)) 
summary(mod.cov.strat.f) 

## Call: 
## coxph(formula = Surv(days, status == 1) ~ sex.f + log(thick) +  
##     strata(ulc)) 
##  
##   n= 205, number of events= 57  
##  
##              coef exp(coef) se(coef)     z Pr(>|z|)    
## sex.f2     0.3600    1.4333   0.2702 1.332   0.1828    
## log(thick) 0.5599    1.7505   0.1784 3.139   0.0017 ** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 

Converting sex into a factor
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To estimate survival curves for subjects with certain values of the covariates, we could use the 

option newdata in survfit:

R code for the Cox Model


