
Exact And Approximate Pattern Matching In The Streaming Model

Benny Porat
Bar-Ilan University

bennyporat@gmail.com

Ely Porat
Bar-Ilan University

porately@cs.biu.ac.il

Abstract— We present a fully online randomized algorithm for
the classical pattern matching problem that uses merely O(log m)
space1, breaking the O(m) barrier that held for this problem
for a long time. Our method can be used as a tool in many
practical applications, including monitoring Internet traffic and
firewall applications. In our online model we first receive the
pattern P of size m and preprocess it. After the preprocessing
phase, the characters of the text T of size n arrive one at a time
in an online fashion. For each index of the text input we indicate
whether the pattern matches the text at that location index or not.
Clearly, for index i, an indication can only be given once all
characters from index i till index i + m − 1 have arrived. Our
goal is to provide such answers while using minimal space, and
while spending as little time as possible on each character (time
and space which are in O(poly log(n))).

We present an algorithm whereby both false positive and false
negative answers are allowed with probability of at most 1

n3 . Thus,
overall, the correct answer for all positions is returned with a
probability of 1

n2 . The time which our algorithm spends on each
input character is bounded by O(log m), and the space complexity
is O(log m) words.

We also present a solution in the same model for the pat-
tern matching with k mismatches problem. In this problem, a
match means allowing up to k symbol mismatches between
the pattern and the subtext beginning at index i. We provide
an algorithm in which the time spent on each character is
bounded by O(k2poly(log m)), and the space complexity is
O(k3poly(log m)) words.

1. INTRODUCTION

The pattern matching problem is a prominent problem in
computer science, and involves finding all the instances of
a pattern string P , of length m, as a subword (contiguous
substring) in text string T , of length n (we assume m < n).
This problem , as well as many variations of it, has been
extensively investigated in the past. The naive algorithm tries
match every index of the text to the pattern. This algorithm
runs in O(nm) time. Knuth, Morris, and Pratt [13], and
Boyer and Moore [3] have designed algorithms that require
only linear time (proportional to the text) for solving this
problem. KMP algorithm can be easily adapted to the online
model.

In addition to time complexity, space is another impor-
tant aspect of problem solutions. Both Knuth, Morris, and
Pratt [13], and Boyer and Moore [3] algorithms require at
least O(m) space. Galil and Seiferas [11] suggested the

1This work was supported by BSF and ISF

first time-space optimal algorithm for the pattern matching
problem. Their algorithm works in linear time in relation
to the size of the input, and requires only a constant-size
memory space in addition to the space occupied by the
pattern and text. Following their paper a lot of effort has
been devoted to that subject [6], [5], [7], [17], [10].

In [4] we have presented a black box algorithm that can
convert most of the offline pattern matching algorithm to the
online model, however this conversion required O(m) space.
We also proved that a deterministic online pattern matching
algorithm must use at least O(m) space. This means that
in order to break the O(m) space lower bound, we must
randomize. Rabin and Karp [15] presented a randomized
on-line algorithm that solves the pattern matching problem
in linear time. They use fingerprints in order to check if there
is a match at a given position in constant time. However, in
order to maintain the fingerprint, they needed to save the
last m character of the text.

Fast approximate string matching is a central problem
of modern data intensive applications. Its applications are
many and varied, from computational biology and large scale
web searching to searching multimedia databases and digital
libraries. As a result, string matching has to continuously
adapt itself to the problem at hand. Simultaneously, the need
for asymptotically fast algorithms grows every year with the
explosion of data available in digital form.

A great deal of progress has been made in finding fast
algorithms for a variety of important forms of approximate
matching. One of the most studied is the Hamming distance,
which measures the number of mismatches between two
strings. Given a text t of length n and a pattern p of
length m, the task is to report the Hamming distance at
every possible alignment. O(n

√
m log m) time solutions

based on repeated applications of the FFT were given
independently by both Abrahamson and Kosaraju in 1987
[1], [14]. Particular interest has been paid to a bounded
version of this problem called the k-mismatch problem.
Here a bound k is given and we need only report the
Hamming distance if it is less than or equal to k. If
the number of mismatches is greater than the bound, the
algorithm need only report that fact and not give the actual
Hamming distance. In 1985 Landau and Vishkin suggested a
beautiful O(nk) algorithm that is not FFT based which uses
constant time LCA operations on the suffix tree of p and

2009 50th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/09 $26.00 © 2009 IEEE

DOI 10.1109/FOCS.2009.11

315

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on April 26,2023 at 14:12:18 UTC from IEEE Xplore. Restrictions apply.

t [16]. This was subsequently improved to O(n
√

k log k)
time by a method based on filtering and FFTs again [2].
Approximations within a multiplicative factor of (1 + ε) to
the Hamming distance can also be found in O(n/ε2 log m)
time [12].

In this paper we suggest a randomized online algorithm
for solving the pattern matching problem. Our method uses
only O(log m) space (we neither save the pattern nor the
text), and the running time for each character is bounded
by O(log m), however in the average case we spend just
a constant time for each character. In addition we present
another randomized algorithm for solving the k-mismatch
problem. The running time of our algorithm is bounded
by O(k2poly(log m)) for each character, and the space
complexity is bounded by O(k3poly(log m)).

Solving the online pattern matching problem with optimal
space is very interesting from a theoretical point of view. For
a long time it seemed impossible to solve the problem with
less than O(m) space even for randomized algorithms. In
addition, the problem has many applications in several areas.
An example can be taken from the world of intelligence.
When the amount of information is tremendous it quickly
becomes impossible to save all the information and then
search it. Thus, having the ability to search online for
patterns in the vast amounts of information, and save only
the information where the specific pattern occurred, has great
advantages. Other examples are applications that need to
monitor Internet traffic, or firewall applications that need
to monitor all the information that goes through a specific
computer and to block the dangerous information, such as
viruses and maleware connections. Another area that can use
our method is robotics. When a robot obtains data from its
sensors every nanosecond and must immediately react, only
limited computing time and space can be used. Several other
motivations for our method include automatic stock market
analysis and computational biology.

Although the space complexity improvement seems mi-
nor, it’s very significant. Usually the patterns can not fit
inside the fast cache memory. Thus, for every arriving
character the algorithm will need to access the RAM in order
to compere it to the pattern. RAM accesses are relatively
expensive and cause a great slowdown of the algorithm.

The structure of this paper is as follows: we start with
some definitions of fingerprint in section 2. Some related
work is presented in section 3. We continue with a high
level description of our method in section 4. In section 5 our
final algorithm for the classical pattern matching problem is
present. We present in section 6 a solution for the pattern
matching problem with exactly 1-mismatch, by using the
algorithm form section 5. We conclude with an algorithm
for solving the pattern matching problem with k-mismatches
in section 7.

2. FINGERPRINTS

We define the concept of fingerprint, one of the basic
components of our suggested method.

Definition 1: A fingerprint of a string S is a small string
φ(S) with the following properties:

1) φ is a function of S. In particular, if two strings are
equal, then so are their fingerprints.

2) Pr(φ(S1) = φ(S2)) << 1 for random strings S1 �= S2

Example 1: Let S = s1, s2, ...sl be a string, one can
define the fingerprint φr1...rl

of S to be φr1...rl,p(S) =
(
∑l

i=1 siri) mod p for random r1, ...rl ∈ Fp and a prime
p.

Definition 2: We define sliding fingerprint to be a finger-
print that satisfies the two following conditions:

1) It is possible to compute the fingerprint of
s1, s2, ...sl, sl+1, (φ(s1, s2, ...sl, sl+1)) from the fin-
gerprint of s1, s2, ...sl, (φ(s1, s2, ...sl)) and sl+1.

2) For any 0 < i < l it is possible to compute the fin-
gerprint of s1+i, s2+i, ...sl (φ(s1+i, s2+i, ...sl)) from
the fingerprint of s1, s2, ...sl, (φ(s1, s2, ...sl)) and the
fingerprint of s1, s2, ...si, (φ(s1, s2, ...si)).

It is easy to see that the fingerprint from example 1 is not
a Sliding Fingerprint.

Definition 3: Let S = s1, s2, ...sl and let p ∈ Θ(N4).
Define the polynomial fingerprint of S to be φ(S)r,p =
(
∑l

i=1 sir
i) mod p for some random r ∈ Fp.(Rabin and

Karp [15], used this fingerprint)
Lemma 1: The polynomial fingerprint is a Sliding Fin-

gerprint.
Proof: Lets S = s1, s2, ...sl+1,p ∈ Θ(N4) and r ∈ Fp.

The first condition is simple. Let q be the polynomial
fingerprint of s1, s2, ...sl.
By definition:

q = s1r + s2r
2 + ... + slr

l mod p

We add sl+1r
l+1 to both sides of the equation to get:

q + sl+1r
l+1 = s1r + s2r

2 + ... + slr
l + slr

l+1 mod p

This is exactly the fingerprint of s1, s2, ...sl, sl+1.
For the second condition, let q1 be the polynomial finger-

print of s1, s2, ...sl and let q2 be the polynomial fingerprint
of s1, s2, ...si.
By definition:

q1 = s1r + s2r
2 + ... + slr

l mod p and q2 =
s1r + s2r

2 + ... + sir
i mod p

By subtracting the two fingerprint and dividing them by
ri we get:

q1−q2
ri = si+1r

i+1−i + si+2r
i+2−i + ... + sl−i

l =
si+1r + si+2r

2 + ... + sl−i
l

This is exactly the fingerprint of si+1, si+2, ...sl. ��

316

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on April 26,2023 at 14:12:18 UTC from IEEE Xplore. Restrictions apply.

Theorem 1: Lets S1 and S2 be two strings of length m ≤
n, p ∈ Θ(N4), and φr,p be a polynomial fingerprint. The
probability that φr,p(S1) = φr,p(S2) is less than 1

n3 .
Proof: To satisfy the equation φr,p(S1) = φr,p(S2), it

is enough to satisfy φr,p(S1)−φr,p(S2) = 0. If we view this
equation as a function on r, we get a polynomial modulo
p with degree m. The number of r ∈ Fp that satisfy this
equation is at most m. We choose r randomly from Fp so
the probability we choose such an r is less than m

n4 ≤ n
n4 =

1
n3 . ��

Denote by |φ|, the length of the string that φ is calculated
for.

Henceforth, when we speak of a Sliding Fingerprint, we
refer to the polynomial fingerprint.

3. RELATED WORK

Rabin and Karp [15] used fingerprinting in the late 80’s to
solve the pattern matching problem. Their main idea is very
simple: at each text position they calculate the fingerprint
of the last m characters and compere it to the fingerprint
of the pattern. They use a Sliding Fingerprint in order to
do this in linear time. As shown in section 2, in order to
deterministically slide the fingerprint to the next position,
they needed to save the last m character of the text.

Knuth, Morris and Pratt [13] were the first to achieve
a deterministic linear time algorithm for this problem. The
major insight that enabled them to get that result was using
the information from the fact that position i matches the
pattern in the first l character to facilitate the computation
of the next position. In our work we will use one of their
lemmas

In order to present the lemma we need to first define the
shortest period.

Definition 4: Let S = s1, s2, ...sn be a string of length
n. A prefix Sp = s1, s2, ...sl of S is define to be a period
of S, iff si = si+l for 0 ≤ i ≤ n − l.

Lemma 2: Let T = t1, t2, ...tn be a text of length n, P =
p1, p2, ...pm a pattern of length m, and let 1 ≤ l ≤ m. We
denote by Pl = p1, p2, ...pl the prefix of the pattern with
length l. Denote the shortest period of Pl as periodPl

. If Pl

matches the text at a given index i, then there can not be a
match between position i to i + |periodPl

|.(|S| refer to the
length of S)

Proof: By contradiction, assume that there is a match
for a given index j such that i < i + j < i + |periodPl

|. Pl

matches T at position i and at position i+j. From transitivity
we get that Pl matches itself at position j. This means that
p0, p1, ...pj−1 is a period of the pattern, but j < |periodPl

|,
in contradiction to the minimality of periodPl

. ��

4. OUR METHOD’S FOUNDATION

In this section we present an idea for solving the online
pattern matching problem with minimal space. This idea
is the heart of our algorithm. Our idea combines the key
features of the KMP [13] algorithm and the Rabin-Karp [15]
algorithm to achieve an online algorithm that uses less space.

As mentioned in the previous section, the problem with
the Rabin-Karp algorithm is that it saves the last m charac-
ters in order to “slide” the fingerprint to the next position. It
seems hard to slide the fingerprint without saving the last m
characters so our method does not do it. When Rabin-Karp’s
algorithm is done with the i’th character, and advances to
the next position in the text, it does not use any of the
information gathered when processing the previous index.
The KMP algorithm, on the other hand, puts that information
to good use. For example, having a match at the i’th index
indicates we know the last m characters, so there is no point
in saving them. In addition, by the lemma 2 we know that
there can’t be another match until position i + |periodP |,
where periodp is the shortest period of P .

We present an idea for an algorithm that try to solve the
pattern matching problem. This algorithm assumes a very
stringent restriction whereby the following two conditions
must be fulfilled in order to operate.

1) The pattern must match at the first position of the text.
2) The distance between every two successive match

position is exactly |periodP |
In section 5 we extend our algorithm to handle all cases.

(This algorithm actually verified that T is of the form
(periodP)s).

Algorithm - Verifying if T = (periodP)s

• In the preprocessing phase: We calculate the Sliding
Fingerprint on the pattern,φp and on the shortest period
of the pattern,φperiodP

.
• In the online phase: we will slide a fingerprint, φ, over

the entire text. For all places in which the fingerprint
of the pattern is equal to φ we announce a ’match’;
otherwise, we announce ’not match’. In order to slide
the fingerprint over the text with less space we work as
follows:

– Calculate the fingerprint of the first m characters
of the text, φ.

– While φ = φp, slide φ by |periodP | characters,
by deducting φperiodP

from the fingerprint, and
adding the next few symbols. (The pattern matches
the text, and we know the fingerprint of the period
of the pattern, hence we can slide.)

– If we did not get to the end of the text, abort. (We
do not handle this case.)

Theorem 2: If the algorithm does not return “abort”, then
the returned answer is correct:

317

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on April 26,2023 at 14:12:18 UTC from IEEE Xplore. Restrictions apply.

1) For all i for which the algorithm announces ‘match’,
there is indeed a match with high probability.

2) For all i for which the algorithm announces ‘no
match’, with high probability there is no match.

Proof:

1) The proof follows from the definition of Sliding Fin-
gerprint.

2) Lemma 2 tells us that if there is a match at a certain
position, then there can not be a match at the next
|periodP | positions. This is the number of positions
following a match where a fingerprint is not checked
by our algorithm.
The problem is, if we mistakenly announces a match,
we will slide over |periodp| position that could be
a matches. However this case occur just after ’false
positive’, which with high probability does not happen.

��
One problem with this suggested algorithm is that it

requires the text and pattern to satisfy stringent restrictions
that generally are not guaranteed.

5. CORRECT ALGORITHM

As mentioned above, our idea for solving the pattern
matching problem with less space works only in the case
where the distance between each two consecutive occur-
rences of the pattern in the text is exactly |periodP |, and
the pattern matches the first text position. More formally,
in order for our idea to work the following two conditions
must be fulfilled:

1) The pattern must match at the first position of the text.
2) The distance between every two successive match

positions is exactly |periodP |.
The reason for the first condition, is that our algorithm

needs a starting point where the pattern matches the text.
In order to solve this, we will consider log m subpatterns,
P1, P2, ...Plog m. i.e Let P = p1, p2, ...pm be the pattern,
the i’th subpattern is defined as Pi = p1, p2, ...p2i . For each
0 ≤ i ≤ log m we will denote the period of Pi by periodPi

.
Our algorithm will try to find all the subpatterns instead of
just the whole pattern. For its starting point it will be enough
to find a position in which the smallest subpattern will match
the text. It has length 1, hence it is very easy to find that
position.

When our algorithm finds some position where Pi is a
match, it tries to match Pi+1 from the same starting point of
Pi. If Pi+1 is not match at that position, the algorithm will
use the information that Pi is match in order to proceed.
From the fact that Pi matches at that position, lemma 2
ensures us that Pi can not match at the next |periodPi

|
symbols, and hence neither can Pi+1. Pi can only match
in a jump which is an integer factor of |periodPi

| or after
|Pi| steps. Pi+1 can not match in a location where Pi does
not match. Therefore we want to check only in jumps of

|periodPi
| until there is no longer an overlap with the area

where Pi matches. We know the fingerprint of the periodPi
,

therefore we can slide by |periodPi
| characters. In the case

where Pi+1 does not match, and we do not have an overlap
with the Pi occurrence, we abort our algorithm.

This will be the ”heart” of our algorithm, we refer to
this algorithm as a ”process”. A process lives on a specific
substring of the text, from the position it is started until it
aborts.

In order to be able to find all the locations where the
subpatterns match, we compute the Sliding Fingerprint on
each subpattern, and the Sliding Fingerprint on its period, in
the preprocessing stage. Consequently, overall we will need
to save 2 log m Sliding Fingerprints.

Here is a formalization of how ”process” work.

Process:
• Initialize an empty sliding fingerprint φ.
• For each character that arrive.

– Extend φ to include the new character.
– If |φ| = 2i and φ �= φi for some 0 ≤ i ≤ log m.

∗ If φ has at least |periodPi−1 | length overlaps
with the last match, slide φ by |periodPi−1 |
characters.

∗ Else, abort

Lemma 3: A process finds all the matches between the
pattern and the substring of his text with high probability.

Proof: Immediate from lemma 2 and theorem 2. ��
In a location where our process aborts, we want to start a

new process. The problem is what happens if there a match
that starts in the substring of the first process and ends in
the substring of the second process.

Definition 5: We define a text location to be a checkpoint,
if there is 1 ≤ i ≤ log m such that a matches of Pi to the
text end at this location. We will also refer to this checkpoint
by the length of the match, i.e. a 2i-checkpoint.

Lemma 4: Let T ′ = ti, ...tj be the substring of some
process, and let τ be the index of the last checkpoint that
the process found. There can not be a match that starts in
location k, such that i ≤ k ≤ τ , which is not contained in
T ′

Proof: Immediate from the way the process operates.
��

From lemma 4, we know that we need to start a new
process in the last checkpoint of each process. The problem
is we don’t know in advance that a specific checkpoint is the
last of some process. So we will start a new process at every
checkpoint. If our process will reach another checkpoint
we will abort the process that was started on the previews
checkpoint. This ensures that we start a new process on the
last checkpoint of each process. Later we will prove that we
will not have more then O(log m) “processes” in parallel.

318

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on April 26,2023 at 14:12:18 UTC from IEEE Xplore. Restrictions apply.

When a process creates a new process, we refer to the
new process as a “son process” of the creator process. We
also refer to the creator process as a “father process” of the
“son process”.

The outline of our algorithm is as follows:

Final - Algorithm
• In the preprocessing: Initialize an empty sliding fin-

gerprint, φ, and for each 0 ≤ i ≤ log m, calculate the
sliding fingerprint φi, of Pi, and the sliding fingerprint
φi,period, of the period of Pi.

• In the online phase:
– Start a new process.
– For any character that arrive, send it to all the

process.
– If some process ’abort’ start new process.
– If some process, A reach to a checkpoint:

∗ Stop the ’son-process’ of A (if has)
∗ Start a new ’son-process’ for A.

Theorem 3: The number of processes that run in parallel
is no more then 3 log m

To prove the above theorem, we first prove a few lemmas.

Definition 6: We define l−process as a process that starts
on some l−checkpoint.

We note that due to the way the algorithm works, each
process has at most one “son process” at a given time.

Our proof contains two parts:

1) An l−process can not create a 2l−process while its
father is alive.

2) An l−process can not have a “great-grandson” that is
also an l−process while it is alive.

Lemma 5: Define ’A’ to be our main process, assume ’A’
create an l−process ’B’. With at most 2l−1 character from
the checkpoint that created ’B’. One of the following two
conditions must occur:

1) The process ’A’ gets to a new checkpoint, and all of
its descendants stop.

2) The process ’A’ reaches ’abort’

Hence, process ’B’ and ’A’ can not live more then 2l − 1
characters in parallel.

Proof: After 2l − 1 characters, there are no overlaps
between the last match and the fingerprint, φ, that A
computes. This guarantees that after 2l − 1 characters, if
’A’ does not get to a new checkpoint, it will abort. If it does
get to a new checkpoint, it stops all of its descendant. ��

Lemma 6: In order for a process to create an l−process,
it must live at least l character.

Proof: Immediate from the definition of an l−process.
An l−process is a process that is created on a checkpoint
that was on a match of length l. In order for a process to get
to a match of length l, it must see at least l characters. ��

Lemma 7: An l−process can not create a 2l−process
while its father is alive.

Proof: We define ’A’ and ’B’ as before, We proved in
lemma 5 that process ’B’ and ’A’ can not live more then
2l − 1 characters in parallel. We also proved in lemma 6
that in order for process ’B’ to create a 2l-process, it must
live at least 2l characters. Hence, process ’B’ can not create
a 2l−process while process ’A’ is alive. ��

Lemma 8: An l−process can not have a great-grandson
that is also an l−process while it is alive.

Proof: Again, we define ’A’ and ’B’ as before. Assume
’A’ is the first process of length l. We prove that ’A’ and
’B’ live at most 2l − 1 characters in parallel. So, ’B’ can
also create an l−process, ’C’, as a ”son process”. However,
in order for ’C’ to also create an l− process, it must wait l
characters from the time it was created. overall 2l characters
from the time ’B’ was created. This means ’A’ is no longer
alive. ��

Conclusion 1: The number of processes that run in par-
allel is no more then 3 log m

Proof: Hence we have just log m available length for
each process, and we prove that there are at most 3 processes
for each length. We get that there are less then 3 log m
processes working in parallel. ��

Theorem 4:

• The space complexity of our algorithm is O(log m).
• The running time of our algorithm is bounded by

O(log m) per character.

Proof:

• Space Complexity: All the fingerprints from our pre-
processing use O(log m) space. In addition, each pro-
cess saves another fingerprint. We have at most log m
processes in parallel, hence we save in addition at most
log m fingerprints. Overall we use O(log m) space.

• Running Time: Each process spends O(1) time for
each new character that arrives, and each time there
are at most 3 log m processes running. Thus, overall,
the running time of our algorithm is O(log m) per
character. ��

Theorem 5: The probability that the algorithm gives a
false answer is less then 1

n2

Proof: Our algorithm announces a match only after
the fingerprint of the pattern matches the fingerprint of
the last m text characters. We have already shown that
the probability of two different string having the same
fingerprint is less then 1

n3 . We calculate the fingerprint on
n strings, for each position. Using the union bound, the
probability to get a wrong answer in at least one index is
less then the sum of the probabilities of an error in each
position. Overall the error probability is less then 1

n2 . ��

319

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on April 26,2023 at 14:12:18 UTC from IEEE Xplore. Restrictions apply.

6. PATTERN MATCHING WITH 1-MISMATCH

In this section we present an online algorithm for finding
all the text location that match the pattern with exactly one
mistake. Our solution uses the online exact pattern matching
algorithm as a black-box. We denote the online exact pattern
matching algorithm by Exact PM.

Lets T = t0, t1, ...tn−1 be the text and P =
p0, p1, ...pm−1 be the pattern, and let q1, q2, ...ql be l prime
numbers such that

∏l
i=1 qi > m. We will create l groups

of partitions to the text in the following way. For the i’th
group, we will partition the text to qi partitions. The j’th
partition of the i’th group of the text will be denoted by
Tqi,j . It will consist all characters tτ such that τ mod qi = j.
For example, for qi = 2 the group will consist both
T2,0 = t0, t2, t4... and T2,1 = t1, t3, t5... . We partition the
pattern in the same way.

At every text location we want to match every partition of
the pattern to its corresponding text partition. The problem
is that in the τ ’th position of the text, the corresponding
partition of some subpattern is not the same as in the
τ + 1’th position. i.e the corresponding partition of P2,0 =
p0, p2, ...p2i... at the m’th position of the text (m is even)
is t0, t2, ...t2i... but at the m + 1 position of the text is
t1, t3, ...t2i+1... . If we just align P2,0 with T2,0 we will not
got the the different between p0, p2, ...pm and t1, t3, ...tm+1

that is needed at the m + 1 position. So we need to align
every partition of the pattern, Pqi,j , to qi text shifts.

For each pattern partition Pqi,j , run qi processes of
Exact PM. Denote the σ’th process of the subpattern Pqi,j ,
for 0 ≤ σ < qi, by Processqi,j,σ. Processqi,j,σ will try
to match Pqi,j to the text by considering the text as if it
starts from the σ character. More precisely, when the τ ’th
character of the text arrives, it goes as input to the process
Processqi,j,σ only if τ mod qi = j − σ.

For a specific alignment of the pattern and the text, only
one of the shifts of each specific partition of the pattern
Pqi,j interests us. i.e in the m position we interest to
match T2,0 with P2,0 and T2,1 with P2,1 but not T2,0 with
P2,1. For each qi and σ, denote by numOfNotMatchqi,σ

the number of j’s for which Pqi,j does not match in
this alignment. In alignment that end in the τ character,
σ = ((τ + 1) mod m) mod qi for all qi ∈ {q1, ...ql}.

For each alignment, if for all qi,
numOfNotMatchqi,σ = 0, we will announce a ’match’.
Otherwise if for all qi, numOfNotMatchqi,σ = 1, we
will announce ’there is exactly 1-mismatch’. Otherwise, we
will announce ’more than 1-mismatch’.

More formally the outline of our algorithm is as follow:

Algorithm - 1-mismatch
• In the preprocessing: Initialize a process of Ex-

act PM, for each qi ∈ {q1, q2, ...ql}, 0 ≤ j < qi

and 0 ≤ σ < qi. We denote each such process by
Processqi,j,σ .

• In the online phase: Send the τ character to each
Processqi,j,σ such that τ mod qi = j − σ.

– If some Processqi,j,σ return ’not match’

∗ numOfNotMatchqi,σ =
numOfNotMatchqi,σ + 1

– At the end of each position τ , let σ = ((τ +
1) mod m) mod qi.

∗ If numOfNotMatchqi,σ = 0 for all qi ∈
{q1, ...ql}. - announce a ’match’

∗ If numOfNotMatchqi,σ = 1 for all qi ∈
{q1, ...ql}. - announce ’there is exactly 1-
mismatch’

∗ Else - announce ’more than 1-mismatch’.
∗ assign 0 to numOfNotMatchqi,σ for all qi ∈

{q1, ...ql}. (for the next alignment)

We had qi partitions that needed qi shifts for each i. So
overall we run

∑l
i=1 q2

i processes of Exact PM.

At each text location τ , for each qi ∈ {q1, q2, ...ql} and
0 ≤ j < qi there is exactly one σ such that τ mod qi = j−σ.
Therefore no symbol can go as input to two difference pro-
cesses with the same subpattern. There are exactly

∑l
i=1 qi

different subpatterns. So overall we run Exact PM
∑l

i=1 qi

times at each character.
Lemma 9: There exists a constant c such that for any x,

there exist x
log m prime numbers, between x, and cx.

Lemma 10: Let q1, q2, q3...q log m
log log m

be log m
log log m prime

numbers between log m and c log m for some constant c.

Then
∏ log m

log log m

i=1 qi > m.

Proof: For all i, qi ≥ log m. Hence
∏ log m

log log m

i=1 qi >
∏ log m

log log m

i=1 log m = log m
log m

log log m = m. We got,
∏ log m

log log m

i=1 qi > m ��
Lemma 11: Let q1, q2, q3...q log m

log log m
be log m

log log m prime
numbers between log m and c log m for some constant

c. Then,
∑ log m

log log m

i=1 qi ∈ O(log2 m
log log m) and

∑ log m
log log m

i=1 q2
i ∈

O(log3 m
log log m).

Proof: For every i, qi ≤ c log m. Hence
∑ log m

log log m

i=1 qi ≤
∑ log m

log log m

i=1 c log m = c log2 m
log log m = O(log2 m

log log m).
For every i, qi ≤ c log m, and q2

i ≤ c2 log2 m.

Hence
∑ log m

log log m

i=1 q2
i ≤ ∑ log m

log log m

i=1 c2 log2 m = c2 log3 m
log log m =

O(log3 m
log log m).

��
Lemma 12: At a specific alignment of the pattern with

the text, the number of mismatches is exactly one iff for
every qi all the subpatterns Pqi,j , 0 ≤ j < qi match at this
alignment, except for exactly one.

320

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on April 26,2023 at 14:12:18 UTC from IEEE Xplore. Restrictions apply.

Proof: First, If two subpatterns Pqi,j , Pqi,j′ are not
matches then it immediately yields more then 1-mismatch.
In addition, if for all j, Pqi,j matches at this alignment, then
there is a match at this position.

Assume, in contradiction, that there exists more then
one mismatch but for every qi there is no more than
one subpattern Pqi,j that does not match. Consider two
mismatches at positions i1, i2, for all qi they both map
to the same subpattern Pqi,j . otherwise there is more then
one subpattern Pqi,j that does not match. Consequently
i1 mod qi = i2 mod qi for every qi. Hence

∏l
i=1 qi > m

By the Chinese Remainder Theorem we get i1 = i2, a
contradiction. ��

Lemma 13: If there is exactly 1 mismatch then our algo-
rithm easily finds the exact position that mismatch.

Proof: Immediate from the Chinese Remainder Theo-
rem. ��

Theorem 6:
• The space complexity of the 1−mismatch algorithm is

O(log4 m
log log m).

• The running time of the 1−mismatch algorithm is
bounded by O(log3 m

log log m) per character.
Proof:

• Space Complexity: we run in parallel
∑log m

i=1 q2
i ∈

O(log3 m
log log m) processes of Exact PM. each process take

O(log m) space. Therefore the total amount of space
used is O(log4 m

log log m).
• Running Time: As was shown earlier, the number

of processes of Exact PM that run on each character
is bounded by

∑log m
i=1 qi ∈ O(log2 m

log log m). The running
time for each character of the Exact PM is bounded
by O(log m). Overall we get that the running time for
each character is bounded by O(log3 m

log log m). ��
7. PATTERN MATCHING WITH k-ERRORS

In this section we solve the pattern matching with k
errors problem. The time complexity of our solution is
bounded by O(k2poly(log m)) per character. Our algorithm
uses group testing combined with the 1-mismatch algorithm
from section 6.

The group testing problem can be described as follows.
Consider a set of n items, each of which can be defective
or non-defective. The task is to identify the defective items
using a minimum number of tests. Each test works on
a group of items simultaneously and returns whether that
group contains at least one defective item or not. If a
defective item is present in a group then the test result is
said to be positive, otherwise it is negative.

Group testing has a long history dating back to at least
1943 [9]. In this early work the problem of detecting
syphilitic men for induction into the United State military
using the minimum number of laboratory tests was consid-
ered. Subsequently a large literature has built up around

the subject and we refer the interested reader to [8] for
a comprehensive survey of the topic. We use a slightly
different version of the group testing problem. In our version
the tests return positive, if there is exactly one defective item
in the group, and negative otherwise. We obtain the test
result by the 1-mismatch algorithm presented in section 6.

A group is actually a partition of the string. We say that
pi is in some group, if a part in that group contains pi.

In the remainder of this section we show how the groups
are chosen, and how the number of mismatches up to k at
every location can be determined as a result of our group
testing.

Let q1, q2, ...ql be l prime numbers such that
∏l

i=1 qi >
mk. Exactly as in the previous section, construct l partition
groups of the text in the following way. For the i’th group,
we will partition the text into qi partitions. The j partition
of the i’th group contains all the characters τ such that
τ mod qi = j. Overall we build

∑l
i=1 qi partitions of the

text. We partition the pattern in the same way.
As seen in section 6, at every position there is exactly one

partition of the pattern that corresponds to each partition
of the text. Each such couple will be a group, in the
group testing problem. From the previous section, we know
how we can match each couple. Now we will use the 1-
mismatch algorithm as a black-box instead of the exact
pattern matching algorithm. The time for each character will
be bounded by (

∑l
i=1 qi) · O(log3 m

log log m).
As in section 6 we need to match each partition of the

pattern Pqi,l in qi shifts. So overall the space complexity
will be (

∑l
i=1 q2

i) · O(log4 m
log log m).

The outline of our algorithm is as follow:

Algorithm - k−errors

• In the preprocessing: Initialize a process of
1−mismatch, for each qi ∈ {q1, q2, ...ql}, 0 ≤ j < qi

and 0 ≤ σ < qi. we denote each such process by
Processqi,j,σ .

• In the online phase: Send the τ character to each
Processqi,j,σ such that τ mod qi = j − σ.

• At the end of each alignment:

– Exclude all the mismatch from all the process that
return ’there is exactly 1-mismatch’. Denote their
number by d

– If d > k - announce ’their is more than k
mismatches’.

– Else if all other mismatches can explain by the d
mismatches we found, announce ’d-mismatches’.

– Else announce ’their is more than k mismatches’

Lemma 14: Let pj be some character from the pattern.
At any alignment between the pattern and the text. For each
group of k indices, i1, i2, ..., ik, and for each 1 ≤ j < m.
pj maps at this location to at least one partition where
i1, i2, ..., ik does not occur.

321

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on April 26,2023 at 14:12:18 UTC from IEEE Xplore. Restrictions apply.

Proof: In contradiction, let assume that there exist some
group i1, i2, ..., ik and a position j, such that for every par-
tition that j belongs to there exist some τ ∈ i1, i2, ..., ik that
belong to the same partition. Each partition is associate with
some prime number qi ∈ {q1, q2, ...ql}, and

∏l
i=1 qi > mk.

From the pigeonhole principle, there is some τ ∈ i1, i2, ..., ik
such that, τ and j belong together to e partition such that,∏e

i=1 qi ≥ m. From the Chinese Reminder Theorem we
have that j = τ , in contradiction. ��

Conclusion 2: If there are at most k mismatches, each
mismatch will be mapped to at least one partition where
all the other mismatches do not belong. So, using the 1-
mismatch algorithm on these partitions, will discover all the
mismatches.

Lemma 15: It is possible to observe if the pattern does
not match up to k error at each alignment.

Proof: For a specific alignment. Let d be the number
of partitions that had exactly one mismatch, and let d′ > k
be the number of mismatches.

• If d > k, it means that we have found more then k
mismatches. Hence we observe that the pattern does
not match at this location with up to k errors.

• If d ≤ k, let i1, i2, ...id be the d locations where we
found a mismatch, and let j be some position of a
mismatch that we have not found. From Lemma 14 we
know that there will be a partition that contains index
j but dos not contain any of the the d mismatches that
we noticed. In this partition there are more then one
mismatch, otherwise we would notice it. Hence we will
not be able to explain why there is a mismatch in that
partition. But from conclusion 2 we know that if there
are less then k mismatches, we will be able to explain
every partition that does not match. Hence we observed
that the pattern does not match up to k errors at this
location.

��
Lemma 16: Let q1, q2, ...ql be l prime numbers greater

then log m. In order for
∏l

i=1 qi > mk, it is necessary that
l ∈ O(k log m

log log m)

Proof: For all i, qi ≥ log m, hence
∏l

i=1 qi ≥
∏l

i=1 log m = logl m. Using l = k log m
log log m we have

log m
k log m

log log m = mk. ��
Lemma 17: Let q1, q2, q3...q k log m

log log m
be k log m

log log m prime
number between log m and ck log m for some constant

c. Then
∑ k log m

log log m

i=1 qi ∈ O(k2 log2 m
log log m) and

∑ k log m
log log m

i=1 q2
i ∈

O(k3 log3 m
log log m).

Proof: For every i, qi ≤ ck log m. Hence
∑ k log m

log log m

i=1 qi ≤ ∑ k log m
log log m

i=1 ck log m = ck2 log2 m
log log m =

O(k2 log2 m
log log m)

For every i, qi ≤ ck log m. Hence
∑ k log m

log log m

i=1 q2
i ≤

∑ k log m
log log m

i=1 (ck log m)2 = c2k3 log3 m
log log m = O(k3 log3 m

log log m)
��

Theorem 7:

• The space complexity of the k−mismatch algorithm is
O(k3poly(log m)).

• The running time of the k−mismatch algorithm is
bounded by O(k2poly(log m)) per character.

Proof:

• Space Complexity: We run in parallel
∑k log m

i=1 q2
i ∈

O(k3 log3 m
log log m) processes of the 1-mismatch algorithm.

Each process requires log4 m space, making the overall
space requirement O(k3poly(log m)).

• Running Time: As we have shown, the number of pro-
cesses of the 1-mismatch algorithm for each character is
bounded by

∑k log m
i=1 qi ∈ O(k2 log2 m

log log m). The running
time for each character of the 1-mismatch algorithm is
bounded by O(log3 m). Overall the time required per
character is bounded by O(k2poly(log m)). ��

8. CONCLUSION AND OPEN PROBLEM

We suggested an online algorithm that solves the pattern
matching problem with O(log m) space. The running time
of our algorithm is bounded by O(log m) per character. Also
we present an online algorithm for the pattern matching
with k-mismatches problem that uses O(k3poly(log m))
space, and the running time per character is bounded by
O(k2poly(log m)).

REFERENCES

[1] K. Abrahamson. Generalized string matching. SIAM J. Comp.,
16(6):1039–1051, 1987.

[2] A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for
string matching with k mismatches. In J. of Algorithms, pages
257–275, 2004.

[3] R.S. Boyer and J.S. Moore. A fast string searching algorithm.
Comm. ACM, 20:762–772, 1977.

[4] R. Clifford, K. Efremenko, B. Porat, and E. Porat. A black
box for online approximate pattern matching. Proc. of the
Symposium on Combinatorial Pattern Matching (CPM), pages
143–151, 2008.

[5] M. Crochemore and D. Perrin. Two-way string-matching. J.
ACM, 38(3):650–674, 1991.

[6] M. Crochemore and W. Rytter. Squares, cubes, and time-space
efficient string-searching. Algorithmica, 13(5):405–425, 1995.

[7] M. Crochemore. String-matching on ordered alphabets. Theor.
Comput. Sci., 92(1):33–47, 1992.

[8] D.Z. Du and F.K. Hwang. Combinatorial Group Testing and
its Applications, volume 12 of Series on Applied Mathematics.
World Scientific, 2nd edition, 2000.

[9] R. Dorfman. The detection of defective members of large
populations. The Annals of Mathematical Statistics, 14(4):436–
440, 1943.

[10] L. Gasieniec, W. Plandowski, and W. Rytter. The zooming
method: a recursive approach to time-space efficient string-
matching. Theor. Comput. Sci., 147(1-2):19–30, 1995.

322

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on April 26,2023 at 14:12:18 UTC from IEEE Xplore. Restrictions apply.

[11] Z. Galil and J. Seiferas. Time-space-optimal string match-
ing (preliminary report). In STOC ’81: Proceedings of the
thirteenth annual ACM symposium on Theory of computing,
pages 106–113, New York, NY, USA, 1981. ACM.

[12] Piotr Indyk. Faster algorithms for string matching problems:
Matching the convolution bound. pages 166–173, 1998.

[13] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching
in strings. SIAM J. Comp., 6:323–350, 1977.

[14] S. Rao Kosaraju. Efficient string matching. Manuscript, 1987.
[15] R.M. Karp and M.O. Rabin. Efficient randomized pattern-

matching algorithms. IBM Journal of Res. and Dev., pages
249–260, 1987.

[16] G. M. Landau and U. Vishkin. Efficient string matching with
k mismatches. Theoretical Computer Science, 43:239–249,
1986.

[17] W. Rytter. On maximal suffixes and constant-space linear-
time versions of kmp algorithm. Theor. Comput. Sci., 299(1-
3):763–774, 2003.

323

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on April 26,2023 at 14:12:18 UTC from IEEE Xplore. Restrictions apply.

