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Abst rac t .  The Directed Acyclic Word Graph (DAWG) is an efficient 
data structure to treat and analyze repetitions in a text, especially 
in DNA genomic sequences. Here, we consider the Compact Directed 
Acyclic Word Graph of a word. We give the first direct algorithm to 
construct it. It runs in time linear in the length of the string on a fixed 
alphabet. Our implementation requires half the memory space used by 
DAWGs. 
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1 Introduct ion 

In the classical string-matching problem for a word w and a text T, we want to 
know if w occurs in T, i.e., if w is a factor of T. In many applications, the same 
text is queried several times. So, efficient solutions are based on data  structures 
built on the text that  serve as an index to look for any word w in T. The typical 
running of various implementations of the search is O([w D (on a fixed alphabet). 
Among the implementations, the suffix tree ([13]) is the most popular. Its size 
and construction time are linear in the length of the text. It has been studied 
and used extensively. Apostolico [2] lists over 40 references on it, a n d  Manber 
and Myers [12] mention several others. Many variants have been developed, like 
su~ix arrays [12], PESTry [11], suffix cactus [10], or suffix binary search trees 
[9]. Besides, the suffix trie, the non-compact version of the suffix tree, has been 
refined to the suffix automaton (Directed Acyclic Word Graph, DAWG). This 
automaton is a good alternative to represent the whole set of factors of a text. 
It is the minimal automaton accepting this set. It has been fully exposed by 
Blumer [3] and Crochemore [7]. As for the suffix tree, its construction and size 
is linear in the length of the text. 

In the genome research field, DNA sequences can be viewed as words over the 
alphabet {a, c, g, t}. They become subjects for linguistic and statistic analysis. 
For this purpose, suffix au tomata  are useful da ta  structures. Indeed, the structure 
is fast to compute and easy to use. 

Meanwhile, the length of sequences in databases grows rapidly and the bot- 
tleneck to using the above data  structures is their size. Keeping the index in main 
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memory is more and more difficult for large sequences. So, having a structure 
using as little space as possible is appreciable for its construction as well as for 
its utilization. Compression methods are of no use to reduce the memory space 
of such indexes because they eliminate the direct access to substrings. On the 
contrary, the Compact Directed Acyclic Word Graph (CDAWG) keeps the direct 
access while requiring less memory space. The structure has been introduced by 
Blumer et al. [4, 5]). The automaton is based on the concatenation of factors is- 
sued from a same context. This concatenation induces the deletion of all states of 
outdegree one and of their corresponding transitions, excepting terminal states. 
This saves 50% of memory space. At the same time, the reduction of the number 
of states (2/3 less) and transitions (about half less) makes the applications run 
faster. Both time and space are saved. 

In this paper, we give an algorithm to build compact DAWGs. This direct 
construction avoids constructing the DAWG first, which makes it suitable for 
the actual DNA sequences (more than 1.5 million nucleotides for some of them). 
The compact DAWG allows to apply standard treatment on sequences twice as 
long in reasonable time (a few minutes). 

In Section 2 we recall the basic notions on DAWGs. Section 3 introduces the 
compact DAWG, also called compact suffix automaton,  with the bounds on its 
size. We show in Section 4 how to build the CDAWG from the DAWG in t ime 
linear in the size of this latter structure. The direct construction algorithm for 
the CDAWG is given in Section 5. A conclusion follows. 

2 D e f i n i t i o n s  

Let S be a nonempty alphabet and S* the set of words over ,U, with ~ as the 
empty word. If w is a word in S*,  Iwl denotes its length, wi its i th letter, and 
wi.j its factor (subword) wiwi+l . . ,  wj. If w = xyz with x, y, z E S*,  then x, y, 
and z denote some factors or subwords of w, x is a prefix of w, and z is a suffix 
of w. S(x) denotes the set of all suffixes of x and F(x) the set of its factors. 

For an automaton,  the tuple (p, a, q) denotes a transition of label a starting 
at p and ending at q. A roman letter is used for mono-letter transitions, a greek 
letter for multi-letter transitions. Moreover, (p, a] denotes a transition from p 
for which a is a prefix of its label. 

Here, we recall the definition of the DAWG, and a theorem about  its imple- 
mentation and its size proved in [3] and [7]. 

D e f i n i t i o n l .  T h e  Suffix A u t o m a t o n  of a word x, denoted DAWG(x), is the 
minimal deterministic automaton (not necessarily complete) that  accepts S(x), 
the (finite) set of suffixes of x. 

For example, Figure 1 shows the DAWG of the word g t a g t a a a c .  States which 
are double circled are terminal states. 

T h e o r e m  2. The size of the DAWG of a word x is O(Ix[) and the automaton can 
be computed in time O(Ixl). The maximum number of states of the automaton 
is  2 l x l  - 1, and the maximum number of edges is 31=1 - 4 .  
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Fig. 1. DA WG(gtagtaaac) 
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Recall that  the right context of a factor u of x is u-iS(x) .  The syntactic 
congruence, denoted by --s(~), associated with S(x) is defined, for x, u, v E E*, 
by: 

u--s(=) v r  u - i S ( z )  = v - l S ( x ) .  

We call classes of factors the congruence classes of the relation --s(x). The 
longest word of a class of factors is called the representative of the class. States of 
DA WG(x) are exactly the classes of the relation --s(,) .  Since this automaton is 
not required to be complete, the class of words not occurring in x, corresponding 
to the empty right context, is not a state of DAWG(x). 

Moreover, we induce a selection among the congruence classes that  we call 
strict classes of factors of -=s(x) and that  are defined as follows: 

D e f i n i t i o n  3. Let u be a word of C, a class of factors of -s(~)-  If at least two 
letters a and b of 5Y exist such that  ua and ub are factors of x, then we say that  
C is a s t r i c t  class o f  f a c t o r s  of -s(~:). 

We also introduce the function endpos x : F(x) -+ I~, defined, for every word 
u, by: 

endposx(u ) = min{lwl [ w prefix of x and u suffix of w} 

and the function length~ defined on states of DAWG(z) by: 

length~:(p) = I 1, with u representative of p. 

The word u also corresponds to the concatenated labels of transitions of the 
longest path from the initial state to p in DAWG(x). The transitions that  
belong to the spanning tree of longest paths from the initial state are called 
solid transitions. Equivalently, for each transition (p, a, q) we have the property: 

(p, a, q) is solid r162 length~(q) = length~(p) + 1. 

The  function length~ works as well for multi-letter transitions, just  replacing 1 in 
the above equivalence by the length of the label of the transition. This extends 
the notion of solid transitions to multi-letter transitions: 

(p, a,  q) is solid ~ length~(q) = length~:(p) + I~l. 

In addititon, we define the sullix link for a state of DAWG(z) by: 
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D e f i n i t i o n 4 .  Let p be a state of DAWG(x), different from the initial state, and 
let u a word of the equivalence class p. The suff ix l ink  of p, denoted by s~ (p), is 
the state q which representative v is the longest suffix z of u such that  u ~s(~) z. 

Note that,  consequently to this definition, we have length~ (q) < length= (p). Then, 
by iteration, suffix links induce suffix paths in DAWG(z), which is an important  
notion used by the construction algorithm. Indeed, as a consequence of the above 
inequality, the sequence (p, s=(p), s~(p), ...) is finite and ends at the initial state 
of DAWG(x). This sequence is called the suffix path ofp. 

3 C o m p a c t  D i r e c t e d  A c y c l i c  W o r d  G r a p h s  

3.1 D e f i n i t i o n  

The compression of DAWGs is based on the deletion of some states and their 
corresponding transitions. This is possible using multi-letter transitions and the 
selection of strict classes of factors defined in the previous section (Definition 3). 
Thus, we define the Compact DAWG as follows. 

D e f i n i t i o n 5 .  The C o m p a c t  D i r e c t e d  Acyc l i c  W o r d  G r a p h  of a word x, 
denoted by CDAWG(z), is the compaction of DAWG(z) obtained by keeping 
only states that  are either terminal states or strict classes of factors according 
to =s(r) ,  and by labeling transitions accordingly. 

Consequently to Definition 3, the strict classes of factors correspond to the states 
that  have an outdegree greater than one. So, we can delete every state having 
outdegree one exactly, except terminal states. Note that  initial and final states 
are terminal states too, so they are not deleted. 

c 
Fig. 2. CDAWG(gtagtaaac) 

The construction of the DAWG of a word including some repetitions shows 
that  many states have outdegree one only. For example, in Figure 1, the DAWG 
of the word g t a g t a a a e  has 12 states, 7 of which have outdegree one; it has 18 
transitions. Figure 2 displays the result after the deletion of these states, using 
multi-letter transitions. The resulting automaton has only 5 states and 11 edges. 
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According to experiments to construct DAWGs of biological DNA sequences, 
considering them as words over the alphabet 27 = {a, c,g, t}, we got that  more 
than 60% of states have an outdegree one. So, the deletion of these states is 
worth, it provides an important saving. The average analysis of the number of 
states and edges is done in [5] in a Bernouilly model of probability. 

When a state p is deleted, the deletion of outgoing edges is realized by adding 
the label of the outgoing edge of the deleted state to the labels of its incoming 
edges. For example, let r, p and q be states linked by transitions (r, b,p) and 
(p, a, q). We replace the edges (r, b,p) and (p, a, q) by the edge (r, ba, q). By 
recursion, we extend this method to every multi-letter transition (r, a ,  p). 

In the example (Figure 1), one can note that, inside the word g t a g t a a a c ,  
occurrences of g are followed by ta ,  and those of t and gt  by a. So, g t a  is the 
representative of state 3 and it is not necessary to create states for g and (gt or 
t ) .  Then, we directly connect state I to state 3 with edges (I,gta,3) and (I,1;a,3). 
States 1 and 2 are so deleted. 

The suffix links defined on states of DAWGs remain valid when we reduce 
them to CDAWGs because of the next lemma. 

L e m m a 6 .  I f  p is a state of CDAWG(x),  then sx(p) is a state of CDAWG(x).  

3.2 Size bounds  

By Theorem 2 DAWG(x) is linear in Ixl. As we shall see below (Section 3.3), 
labels of multi-letter transitions are implemented in constant space. So, the size 
of CDAWG(x) is also O(Ixl). Meanwhile, as we delete many states and edges, 
we review the exact bounds on the number of states and edges of CDAWG(x). 
They are respectively denoted by States(x) and Edges(x). 

C o r o l l a r y T .  Given x E 27", i f  Ixl = O, then States(x) = 1; if  Ixl = 1, then 
States(x) = 2; else [x] > 2, then 2 <_ States(x) < Ixl § 1 and the upper bound is 
reached when x is in the form a I~l, where a E Z.  

C o r o l l a r y 8 .  Given x E •*, i f  Ix I = O, Edges(x) = O; if  Ix [ = 1, Edges(x) - 1; 
else Ixi > 2, then Edges(z) < 2Ix I - 2 and this upper bound is reached when x 
is in the form alxl-lc, where a and c are two different letters o f f .  

3.3 Implementat ion  and Results  

Transition matrices and adjacency lists are the classical implementations of au- 
tomata.  Their principal difference lies in the implementation of transitions. The 
first one gives a direct access to transitions, but requires O(States(x) x card(Z)).  
The second one stores only the exact number of transitions in memory, but needs 
O(log card(~))  time to access them. When the size of the alphabet is big and 
the transition matrix is sparse, adjacency lists are preferable. Otherwise, like 
for genomic sequences, transition matrix is a better choice, as shown by the 
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experiments below. So, we only consider here transition matrices to implement 
CDAWGs. 

We now describe the exact implementation of states and edges. We do this 
on a four-letter alphabet, so characters take 0.25 byte. We use integers encoded 
with 4 bytes. For each state, to encode the target state of outgoing edges, tran- 
sitions matrices need a vector of 4 integers. Adjacency lists need, for each edge, 
2 integers, one for the target state and another one for the pointer to the next 
edge. 

The basic information required to construct the DAWG is composed of a 
table to implement the function s, and one boolean value (0.125 byte) for each 
edge to know if it is solid or not. For the CDAWG, in order to implement multi- 
letter transitions, we need one integer for the endpos~ value of each state, and 
another integer for the label length of each edge. And that is all. 

Indeed, we can find the label of a transition by cutting off the length of this 
transition from the endpos x value of its ending state. Then, we got the position of 
the label in the source and its length. Keeping the source in memory is negligible 
considering the global size of the automaton (0.25 byte by character). This is 
quite a convenient solution also used for suffix trees. Figure 3 displays how the 

S ta t e  N u m b e r  - - - - - - - - ~ ( ~ - - - - - -  length~ 

endposx - - - - - - - -~ - - - - - - - -  8x 

~ gtaaac "~ 

g t : aac  

Fig. 3. Data Structure of CDAWG(gtagtaaac) 

states of CDAWG(gtagtaaac) are implemented. 
Then, respectively for transitions matrices and adjacency lists, each state 

requires 20.5 and 17.13 bytes for the DAWG, and 40.5 and 41.21 bytes for the 
CDAWG. As a reference, suffix trees, as implemented by McCreight [13], need 
28.25 and 20.25 bytes per state. Moreover, for CDAWG and suffix trees the 
source has to be stored in main memory. Theoretical average numbers of states, 
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calculated by Blumer et al. ([5]), are 0.54n for CDAWG, 1.62n for DAWG, and 
1, 62n for suffix trees, when n is the length of x. This gives respective sizes in 
bytes per character of the source: 45.68 and 32.70 for suffix trees, 33.26 and 27.80 
for DAWGs, and 22.40 and 22.78 for CDAWGs. 

Considering the complete data structures required for applications, the func- 
tion endposx has to be added for the DAWG and the suffix tree. In addition, 
the occurrence number of each factor has to be stored in each state for all the 
structures. Therefore, the respective sizes in bytes per character of the source 
become : 58.66 and 45.68 for suffix trees, 46.24 and 40.78 for DAWGs, and 24.26 
and 24.72 for CDAWGs. 

Source Ixl 
X 

chro II 807188 
coli 499951 
bs 1 183313 
bs 115 49951 
random 500000 
:andom 100000 
random 50000 
random 10000 
theor, aver. ratios 

JYb s t a t e s  . N b  t r a n s t t s o r t $  _Nb t r a r t s g t s o n s  m e m o r y  
~1 N b  s t a t e s  

dawg cdawg dawg cdawg dawg cdawg gain 
1,64 0,54 2,54 1,44 1,55 2 ,66  50,36% 
1,64 0,54 2,54 1,44 1 ,53 2 ,66  51,95% 
1,66 0,50 2,50 1 ,34 1 ,50  2 ,66  54,78% 
1,64 0,54 i2,54 1,44 1,55 2 ,66  50,16% 
1,62 0,55 2,54 1 ,47 1 ,57 2 ,68  49,53% 
1,62 0,55 2,55 1 ,47 1 ,57  2 ,68  49,35% 
1,62 0,54 2,54 1,46 1 ,56 2 ,68  49,68% 
1,62 0,54 2,54 1,46 1 ,56 2 ,68  49,47% 
1,63 0,54 2,541 1,46 1,56 2,67 50,55% 

Table 1. Statistic table with account between DAWG and CDAWG. 

Moreover, Table 1 compares sizes of DAWG and CDAWG meant for applica- 
tions to DNA sequences. Sizes for random words of different lengths and [,U[ = 4 
are also given. DNA sequences are Saccharomyces cerevisiae yeast chromosome 
II (chro II), a contig of Escherichia Coil DNA sequence (coli), and contigs 1 
and 115 of Bacillus Subtilis DNA sequence (bs). Number of states and edges 
according to the length of the source and the memory space gain are displayed. 
Theoretical average ratios are given, calculated from Blumer et al. ([5]). First, 
we observe there are 2/3 less states in the CDAWG, and near of half edges. 
Second, the memory space saving is about 50%. Third, the number of edges by 
state is going up to 2.66. With a four-letter alphabet, this is interesting because 
the transition matrix becomes smaller than adjacency lists. At the same time, 
we keep a direct access to transitions. 

4 C o n s t r u c t i n g  C D A W G  from D A W G  

The DAWG construction is fully exposed and demonstrated in [3] and [7]. As we 
show in this section, the CDAWG is easily derived from the DAWG. 
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Indeed, we just need to apply the definition of the CDAWG recursively. This 
is computed by the function Reduction, given below. Observe that,  in this func- 
tion, state(p, a] denotes the state pointed to by the transition (p, a]. The com- 
putation is done with a depth-first traversal of the automaton, and runs in time 
linear in the number of transitions of DAWG(x).  Then, by theorem 2, the com- 
putation also runs in time linear in the length of the text. 

However, this method needs to construct the DAWG first, which spends 
time and memory space proportional to DAWG(x),  though CDAWG(x) is sig- 
nificantly smaller. So, it is better to construct the CDAWG directly. 

Reduct ion  (state E) returns (ending state, length of redirected edge) 
1. I f  (E not marked) Then 
2. For all existing edge (E, a] Do 
3. (state(E, a] , Ilabel( ( E, a])l) (-- Reduction(state(E, a]); 
4. mark(E) 4-- TRUE; 
5. I f  (E is of outdegree one) Then 
6. Let (E, a] this edge; 
7. Re turn  (state(E, a] , 1 + Ilabel((E, a])l); 
8. Else 
9. Re turn  (E,1); 

5 Direc t  C o n s t r u c t i o n  of C D A W G  

In this section, we give the direct construction of CDAWGs and show that  the 
running time is linear in the size of the input word x on a fixed alphabet. 

5.1 A l g o r i t h m  

Since the CDAWG of x is a minimization of its suffix tree, it is rather natural 
to base the direct construction on McCreight's algorithm [13]. Meanwhile, prop- 
erties of the DAWG construction are also used, especially suffix links (notion 
that  is different from the suffix links of McCreight's algorithm), lengths, and 
positions, as explained in the previous section. 

First, we introduce the notions used by the algorithm, some of them are 
taken from [13]. The algorithm constructs the CDAWG of the word x of length 
n, noted x0.~-l.  The automaton is defined by a set of states and transitions, 
especially with I and F, the initial and final states. A partial path represents a 
connected sequence of edges between two states of the automaton. A path is a 
partial path that  begins at I. The label of a path is the concatenation of the 
labels of corresponding edges. 

The locus, or exact locus, of a string is the end of the path labeled by the 
string. The contracted locus of a string a is the locus of the longest prefix of c~ 
whose locus is defined. 



124 

P r e l i m i n a r y  A lgo r i t hm Basically, the algorithm to build CDAWG inserts the 
paths corresponding to all the suffixes of x from the longest to the shortest. We 
define sufi as the suffix x/n-1  of x. We denote by ,4i the automaton constructed 
after the insertion of all the sufj for 0 _< j <_ i. 

[~ ]  bbabbc 

~ abbabbc 

. . . . . .  ~. bbabbc ~ )'~--J' ~176176176176176176 o~ 

. . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . :  

aobba bc 

Fig. 4. Construction of CDAWG(aabbabbc) 

Figure 4 displays four steps of the construction of CDA WG(aabbabbc). In this 
Figure (and the followings), the dashed edges represent suffix links of states, 
which are used subsequently. We initialize the automaton ,4~ with states I and 
F. At step i (i > 0), the algorithm inserts a path corresponding to suf i in ,4/-1 
and produces ,4i. The algorithm satisfies the following invariant properties: 

P I :  at the beginning of step i, all suffixes sufj, 0 _< j < i, are paths in ,4/-i .  
P2:  at the beginning of step i, the states of ,4i- i  are in one-to-one correspondence 

with the longest common prefixes of pairs of suffixes longer than sufj. 

We define head/as the longest prefix of suf i which is also a prefix of sufj for 
some j < i. Equivalently, headi is the longest prefix of suf i which is also a path 
of `4/-1. We define taih as head~i lsufi" At step i, the preliminary algorithm has 
to insert taili from the locus of head/in Ai-1 (see Figure 5). 

To do so, the contracted locus of head/ in ,4/_1 is found with the help of 
function SlowFind that compares letter-to-letter the right path of ,4/_ 1 to suf i. 
This is similar to the corresponding McCreight's procedure, except on what 
is explained below. Then, if necessary, a new state is created to split the last 
encountered edge, state that is the locus of head/. The automaton B of Figure 4, 
displays the creation of state 1 during the insertion of SUfl=abbabbr Note that, 
if an already existing state matches the strict class of factor of head/, the last 
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Fig. 5. Scheme of the insertion of a su] i in .A,-1. 

encountered edge is split in the same way, but it is redirected to this state. Such 
an example appears in the same example (case D): the insertion of SUfs=bbr 
induces the redirection of the edge (2,babbc,F) that  becomes (2,b,3). Then, an 
edge labeled by tai~ is created from the locus of headi to F. We can write the 
preliminary algorithm as follows: 

Pre l iminary  A l g o r i t h m  
1. For all su~ (i E[O..n-1]) D o  
2. (q, 7) ~-- SlowFind(I); 
3. I f  (7 = r Then  
4. insert (q, taili,F); 
5. Else 
6. create v locus of headi splitting (q, 7] 

and insert (v,tai~,F); 
or redirect (q, 7] onto v, 
the last created state; 

7. End For all; 
8. mark terminal states; 

Note first that  SlowFind returns the last encountered state. This keeps ac- 
cessible the transition (q, 3'] that  can be split if this state is not an exact locus. 

Second, as in the DAWG construction, if a non-solid edge is encountered 
during SlowFind, its target state has to be duplicated in a clone and the non- 
solid edge is redirected to this clone. But, if the clone has just been created at 
the previous step, the edge is redirected to this state. Note that,  in the two cases, 
the redirected transition becomes solid. 

Finally, when taili = ~ at the end of the construction, terminal states are 
marked along the suffix path of F. 

From the above discussion, a proof of the invariance of properties P1 and P2 
can be derived. Thus, at the end of the algorithm all subwords of x and only 
these words are labels of paths in the automaton (property P1). By property P2, 
states correspond to strict classes of factors (when the longest common prefix of 
a pair of suffixes is not equal to any of them) or to terminal states (when the 
contrary holds). This gives a sketch of the correctness of the algorithm. 
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The running time of the preliminary algorithm is O(Izl 2) (with an imple- 
mentation by transition matrix), like is the sum of lengths of all suffixes of the 
word z .  

L i n e a r  A l g o r i t h m  To get a linear-time algorithm, we use together properties 
of DAWGs construction and of suffix trees construction. The main feature is the 
notion of suffix links. They are defined as for DAWGs in Section 2. They are the 
clue for the linear-running-time of the algorithm. 

Three elements have to be pointed out about suffix links in the CDAWG. 
First, we do not need to initialize suffix links. Indeed, when SUfo is inserted, 
z0 is obviously a new letter, which directly induces s ,  (F)=I. Note that  s ,(I)  is 
never used, and so never defined. Second, traveling along the suffix path of a 
state p does not necessarily end at state I. Indeed, with multi-letter transitions, 
if s , (p)=I  we have to treat the suffix a - l a  (a E s where a is the representative 
of p. And third, suffix links induce the following invariant property satisfied at 
step i: 

P3:  at the beginning of step i, the suffix links are defined for each state of Ai-1 
according to Definition 4. 

The next remark allows redirections without having to search with SlowFind 
for existing states belonging to a same class of factors. 

Remark. Let aft  have locus p and assume that  q = s,(p) is the locus of/3. Then, 
p is the locus of suffixes of a/3 whose lengths are greater than ]/3 I. 

The algorithm has to deal with suffix links each time a state is created. 
This happens when a state is duplicated, and when a state is created after the 
execution of SlowFind. 

In the duplication, suffix links are updated as follows. Let w be the clone 
of q. In regard to strict classes of factors and Definition 4, the class of w is 
inserted between the ones of q and s,  (q). So, we update suffix links by setting 
sz(w)--s~:(q) and sx(q)-w. 

Moreover, the duplication has the same properties as in the DAWG construc- 
tion. Let (p, 7, q) be the transition redirected during the duplication of q. We 
can redirect all non-solid edges that  end the partial path 7 and that  start  from 
a state of the suffix path of p. This is done until the first edge that  is solid. We 
are helped in this operation by the function FastFind, similar to the one used 
in McCreight's algorithm [13], that  goes through transitions just comparing the 
first letters of their labels. This function returns the last encountered state and 
edge. Note that  it is not necessary to find each time the partial path 7 from a 
suffix of p, we just need to take the suffix link of the last encountered state and 
the label of the previous redirected transition. 

Let t9 be the representative of a state of the suffix path of p. Observe that  
the corresponding redirection is equivalent to insert suf/+l~l_10 I. Indeed, all Ol>- 
erations done after this redirection will be the same as for the insertion of suf/, 
since they go through the same path. 
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O:2 

Fig. 6. Scheme of the search using suffix links 

After the execution of SlowFind, if state v is created, we have to compute its 
suffix link. Let 7 be the label of the transition starting at q and ending at v. To 
compute the suffix link, the algorithm goes through the path having label 7 from 
the suffix link of q, s = s~(q). The operation is repeated if necessary. Figure 6 
displays a scheme of this search. The thick dashed edges represent paths in the 
automaton,  and the thin dashed edge represents the suffix link of q. This search 
will allow to insert, as for the duplication, the suffixes sufj, for i < j < i+ Ihead{ I. 
To travel along the path, we use again the function FastFind. Let r and (r, r 
be the last state and transition encountered by FastFind. If r is the exact locus 
of 7, it is the wanted state, and we set then s~ (v) = r. Else, if (r, r is a solid 
edge, then we have to create a new node w. The edge (r, r is split, it becomes 
(r, r w), and we insert the transition (w,taili ,F). Else, (r, r is non-solid. Then, 
it is split and becomes (r, r v). In the two last cases, since s~ (v) is not found, we 
run FastFind again with s~ (r) and r and this goes on until s~ (v) is eventually 
found, that  is, when r = e. 

The discussion shows how suffix links are updated to insure that  property 
P3 is satisfied. The operations do not influence the correctness of the algorithm, 
sketched in the last section, but yield the following linear-time algorithm. Its 
time complexity is discussed in the next section. 

Linear  Algor i thm 
1. p ~-- I; i<--0; 
2. Whi le  not end of x Do 
3. (q, 7) r SlowFind(p); 
4. I f  (7 = e) Then  
5. insert (q, tail~,F); 
6. sx(F) <-- q; 
7. I f  (q # [) Then  p 6-- sx(q) Else p e-- I; 
8. Else 
9. create v locus of head, splitting (q, 7]; 
10. insert (v,tail~,F); 
11. sx(F) <--- v; 
12. find r = sx(v) with FastFind; 
13. p ~-- r; 
14. update i; 
15. End While;  
16. mark terminal states; 
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5.2 Complex i ty  

T h e o r e m 9 .  The algorithm that builds the C D A W G  of a word x of  ~* can 
be implemented in t ime O(l=l) and in space o(1=1 x card(~7)) with a transition 
matrix, or in t ime o(1=1 • log card(Z)) and in space O(Ixl) with adjacency lists. 
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i l j  k 

@ .|  
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Fig. 7. Positions of labels when suf i is inserted 

Sketch of  t he  p roo f  
It can be proved that each step of the algorithm leads to increase strictly variables 
j or k in the generic situation displayed in Figure 7. These variables respectively 
represent the index of the current suffix being inserted, and a pointer on the 
text. These variables never decrease. Therefore, the total running time of the 
algorithm is linear in the length of x. 

6 Conclusion 

We have considered the Compact Direct Acyclic Word Graph, which is an effi- 
cient compact data structure to represent all suffixes of a word. There are many 
data structures representing this set. But, this one allows an interesting space 
gain compared to the well-known DAWG, which is a reference. Indeed, on the 
one hand, the upper bounds are of Ix[ + 1 states and 2Ix[-  2 transitions. This 
saves [z[ states and [z[ transitions of the DAWG, which leads to faster utilisation. 
On the other hand, experiments on genomic DNA sequences and random strings 
display a memory space gain of 50% according to the DAWG. Moreover, when 
the size of the alphabet is small, transition matrices do not take more space than 
adjacency lists, keeping direct access to transitions. Thus, we can construct the 
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data  structure of twice larger strings, keeping them in main memory, which is 
actually important  to get efficient treatments. 

This work shows that the CDAWG can be constructed directly. The algorithm 
is linear in the length of the text. Of course, it is easier to compute, by reduction, 
the CDAWG from the DAWG. On the contrary, our algorithm saves time and 
space simultaneously. 
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