
Direct Construction of
Compact Directed Acyclic Word Graphs

Maxime CROCHEMORE and Renaud VI~RIN

Institut Gaspard Monge
Universit6 de Marne-La-Vall6e,

2, rue de la Butte Verte, F-93160 Noisy-Le-Grand.
http ://www-igm .univ-mlv. fr

Abst rac t . The Directed Acyclic Word Graph (DAWG) is an efficient
data structure to treat and analyze repetitions in a text, especially
in DNA genomic sequences. Here, we consider the Compact Directed
Acyclic Word Graph of a word. We give the first direct algorithm to
construct it. It runs in time linear in the length of the string on a fixed
alphabet. Our implementation requires half the memory space used by
DAWGs.

Keywords: pattern matching algorithm, suffix automaton, DAWG, Com-
pact DAWG, suffix tree, index on text.

1 Introduct ion

In the classical string-matching problem for a word w and a text T, we want to
know if w occurs in T, i.e., if w is a factor of T. In many applications, the same
text is queried several times. So, efficient solutions are based on data structures
built on the text that serve as an index to look for any word w in T. The typical
running of various implementations of the search is O([w D (on a fixed alphabet).
Among the implementations, the suffix tree ([13]) is the most popular. Its size
and construction time are linear in the length of the text. It has been studied
and used extensively. Apostolico [2] lists over 40 references on it, a n d Manber
and Myers [12] mention several others. Many variants have been developed, like
su~ix arrays [12], PESTry [11], suffix cactus [10], or suffix binary search trees
[9]. Besides, the suffix trie, the non-compact version of the suffix tree, has been
refined to the suffix automaton (Directed Acyclic Word Graph, DAWG). This
automaton is a good alternative to represent the whole set of factors of a text.
It is the minimal automaton accepting this set. It has been fully exposed by
Blumer [3] and Crochemore [7]. As for the suffix tree, its construction and size
is linear in the length of the text.

In the genome research field, DNA sequences can be viewed as words over the
alphabet {a, c, g, t}. They become subjects for linguistic and statistic analysis.
For this purpose, suffix au tomata are useful da ta structures. Indeed, the structure
is fast to compute and easy to use.

Meanwhile, the length of sequences in databases grows rapidly and the bot-
tleneck to using the above data structures is their size. Keeping the index in main

117

memory is more and more difficult for large sequences. So, having a structure
using as little space as possible is appreciable for its construction as well as for
its utilization. Compression methods are of no use to reduce the memory space
of such indexes because they eliminate the direct access to substrings. On the
contrary, the Compact Directed Acyclic Word Graph (CDAWG) keeps the direct
access while requiring less memory space. The structure has been introduced by
Blumer et al. [4, 5]). The automaton is based on the concatenation of factors is-
sued from a same context. This concatenation induces the deletion of all states of
outdegree one and of their corresponding transitions, excepting terminal states.
This saves 50% of memory space. At the same time, the reduction of the number
of states (2/3 less) and transitions (about half less) makes the applications run
faster. Both time and space are saved.

In this paper, we give an algorithm to build compact DAWGs. This direct
construction avoids constructing the DAWG first, which makes it suitable for
the actual DNA sequences (more than 1.5 million nucleotides for some of them).
The compact DAWG allows to apply standard treatment on sequences twice as
long in reasonable time (a few minutes).

In Section 2 we recall the basic notions on DAWGs. Section 3 introduces the
compact DAWG, also called compact suffix automaton, with the bounds on its
size. We show in Section 4 how to build the CDAWG from the DAWG in t ime
linear in the size of this latter structure. The direct construction algorithm for
the CDAWG is given in Section 5. A conclusion follows.

2 D e f i n i t i o n s

Let S be a nonempty alphabet and S* the set of words over ,U, with ~ as the
empty word. If w is a word in S*, Iwl denotes its length, wi its i th letter, and
wi.j its factor (subword) wiwi+l . . , wj. If w = xyz with x, y, z E S*, then x, y,
and z denote some factors or subwords of w, x is a prefix of w, and z is a suffix
of w. S(x) denotes the set of all suffixes of x and F(x) the set of its factors.

For an automaton, the tuple (p, a, q) denotes a transition of label a starting
at p and ending at q. A roman letter is used for mono-letter transitions, a greek
letter for multi-letter transitions. Moreover, (p, a] denotes a transition from p
for which a is a prefix of its label.

Here, we recall the definition of the DAWG, and a theorem about its imple-
mentation and its size proved in [3] and [7].

D e f i n i t i o n l . T h e Suffix A u t o m a t o n of a word x, denoted DAWG(x), is the
minimal deterministic automaton (not necessarily complete) that accepts S(x),
the (finite) set of suffixes of x.

For example, Figure 1 shows the DAWG of the word g t a g t a a a c . States which
are double circled are terminal states.

T h e o r e m 2. The size of the DAWG of a word x is O(Ix[) and the automaton can
be computed in time O(Ixl). The maximum number of states of the automaton
is 2 l x l - 1, and the maximum number of edges is 31=1 - 4 .

118

(

C

t a

C

Fig. 1. DA WG(gtagtaaac)

r

)

Recall that the right context of a factor u of x is u-iS(x) . The syntactic
congruence, denoted by --s(~), associated with S(x) is defined, for x, u, v E E*,
by:

u--s(=) v r u - i S (z) = v - l S (x) .

We call classes of factors the congruence classes of the relation --s(x). The
longest word of a class of factors is called the representative of the class. States of
DA WG(x) are exactly the classes of the relation --s(,) . Since this automaton is
not required to be complete, the class of words not occurring in x, corresponding
to the empty right context, is not a state of DAWG(x).

Moreover, we induce a selection among the congruence classes that we call
strict classes of factors of -=s(x) and that are defined as follows:

D e f i n i t i o n 3. Let u be a word of C, a class of factors of -s(~)- If at least two
letters a and b of 5Y exist such that ua and ub are factors of x, then we say that
C is a s t r i c t class o f f a c t o r s of -s(~:).

We also introduce the function endpos x : F(x) -+ I~, defined, for every word
u, by:

endposx(u) = min{lwl [w prefix of x and u suffix of w}

and the function length~ defined on states of DAWG(z) by:

length~:(p) = I 1, with u representative of p.

The word u also corresponds to the concatenated labels of transitions of the
longest path from the initial state to p in DAWG(x). The transitions that
belong to the spanning tree of longest paths from the initial state are called
solid transitions. Equivalently, for each transition (p, a, q) we have the property:

(p, a, q) is solid r162 length~(q) = length~(p) + 1.

The function length~ works as well for multi-letter transitions, just replacing 1 in
the above equivalence by the length of the label of the transition. This extends
the notion of solid transitions to multi-letter transitions:

(p, a, q) is solid ~ length~(q) = length~:(p) + I~l.

In addititon, we define the sullix link for a state of DAWG(z) by:

119

D e f i n i t i o n 4 . Let p be a state of DAWG(x), different from the initial state, and
let u a word of the equivalence class p. The suff ix l ink of p, denoted by s~ (p), is
the state q which representative v is the longest suffix z of u such that u ~s(~) z.

Note that, consequently to this definition, we have length~ (q) < length= (p). Then,
by iteration, suffix links induce suffix paths in DAWG(z), which is an important
notion used by the construction algorithm. Indeed, as a consequence of the above
inequality, the sequence (p, s=(p), s~(p), ...) is finite and ends at the initial state
of DAWG(x). This sequence is called the suffix path ofp.

3 C o m p a c t D i r e c t e d A c y c l i c W o r d G r a p h s

3.1 D e f i n i t i o n

The compression of DAWGs is based on the deletion of some states and their
corresponding transitions. This is possible using multi-letter transitions and the
selection of strict classes of factors defined in the previous section (Definition 3).
Thus, we define the Compact DAWG as follows.

D e f i n i t i o n 5 . The C o m p a c t D i r e c t e d Acyc l i c W o r d G r a p h of a word x,
denoted by CDAWG(z), is the compaction of DAWG(z) obtained by keeping
only states that are either terminal states or strict classes of factors according
to =s(r) , and by labeling transitions accordingly.

Consequently to Definition 3, the strict classes of factors correspond to the states
that have an outdegree greater than one. So, we can delete every state having
outdegree one exactly, except terminal states. Note that initial and final states
are terminal states too, so they are not deleted.

c
Fig. 2. CDAWG(gtagtaaac)

The construction of the DAWG of a word including some repetitions shows
that many states have outdegree one only. For example, in Figure 1, the DAWG
of the word g t a g t a a a e has 12 states, 7 of which have outdegree one; it has 18
transitions. Figure 2 displays the result after the deletion of these states, using
multi-letter transitions. The resulting automaton has only 5 states and 11 edges.

120

According to experiments to construct DAWGs of biological DNA sequences,
considering them as words over the alphabet 27 = {a, c,g, t}, we got that more
than 60% of states have an outdegree one. So, the deletion of these states is
worth, it provides an important saving. The average analysis of the number of
states and edges is done in [5] in a Bernouilly model of probability.

When a state p is deleted, the deletion of outgoing edges is realized by adding
the label of the outgoing edge of the deleted state to the labels of its incoming
edges. For example, let r, p and q be states linked by transitions (r, b,p) and
(p, a, q). We replace the edges (r, b,p) and (p, a, q) by the edge (r, ba, q). By
recursion, we extend this method to every multi-letter transition (r, a , p).

In the example (Figure 1), one can note that, inside the word g t a g t a a a c ,
occurrences of g are followed by ta , and those of t and gt by a. So, g t a is the
representative of state 3 and it is not necessary to create states for g and (gt or
t) . Then, we directly connect state I to state 3 with edges (I,gta,3) and (I,1;a,3).
States 1 and 2 are so deleted.

The suffix links defined on states of DAWGs remain valid when we reduce
them to CDAWGs because of the next lemma.

L e m m a 6 . I f p is a state of CDAWG(x), then sx(p) is a state of CDAWG(x).

3.2 Size bounds

By Theorem 2 DAWG(x) is linear in Ixl. As we shall see below (Section 3.3),
labels of multi-letter transitions are implemented in constant space. So, the size
of CDAWG(x) is also O(Ixl). Meanwhile, as we delete many states and edges,
we review the exact bounds on the number of states and edges of CDAWG(x).
They are respectively denoted by States(x) and Edges(x).

C o r o l l a r y T . Given x E 27", i f Ixl = O, then States(x) = 1; if Ixl = 1, then
States(x) = 2; else [x] > 2, then 2 <_ States(x) < Ixl § 1 and the upper bound is
reached when x is in the form a I~l, where a E Z.

C o r o l l a r y 8 . Given x E •*, i f Ix I = O, Edges(x) = O; if Ix [= 1, Edges(x) - 1;
else Ixi > 2, then Edges(z) < 2Ix I - 2 and this upper bound is reached when x
is in the form alxl-lc, where a and c are two different letters o f f .

3.3 Implementat ion and Results

Transition matrices and adjacency lists are the classical implementations of au-
tomata. Their principal difference lies in the implementation of transitions. The
first one gives a direct access to transitions, but requires O(States(x) x card(Z)).
The second one stores only the exact number of transitions in memory, but needs
O(log card(~)) time to access them. When the size of the alphabet is big and
the transition matrix is sparse, adjacency lists are preferable. Otherwise, like
for genomic sequences, transition matrix is a better choice, as shown by the

121

experiments below. So, we only consider here transition matrices to implement
CDAWGs.

We now describe the exact implementation of states and edges. We do this
on a four-letter alphabet, so characters take 0.25 byte. We use integers encoded
with 4 bytes. For each state, to encode the target state of outgoing edges, tran-
sitions matrices need a vector of 4 integers. Adjacency lists need, for each edge,
2 integers, one for the target state and another one for the pointer to the next
edge.

The basic information required to construct the DAWG is composed of a
table to implement the function s, and one boolean value (0.125 byte) for each
edge to know if it is solid or not. For the CDAWG, in order to implement multi-
letter transitions, we need one integer for the endpos~ value of each state, and
another integer for the label length of each edge. And that is all.

Indeed, we can find the label of a transition by cutting off the length of this
transition from the endpos x value of its ending state. Then, we got the position of
the label in the source and its length. Keeping the source in memory is negligible
considering the global size of the automaton (0.25 byte by character). This is
quite a convenient solution also used for suffix trees. Figure 3 displays how the

S ta t e N u m b e r - - - - - - - - ~ (~ - - - - - - length~

endposx - - - - - - - -~ - - - - - - - - 8x

~ gtaaac "~

g t : aac

Fig. 3. Data Structure of CDAWG(gtagtaaac)

states of CDAWG(gtagtaaac) are implemented.
Then, respectively for transitions matrices and adjacency lists, each state

requires 20.5 and 17.13 bytes for the DAWG, and 40.5 and 41.21 bytes for the
CDAWG. As a reference, suffix trees, as implemented by McCreight [13], need
28.25 and 20.25 bytes per state. Moreover, for CDAWG and suffix trees the
source has to be stored in main memory. Theoretical average numbers of states,

122

calculated by Blumer et al. ([5]), are 0.54n for CDAWG, 1.62n for DAWG, and
1, 62n for suffix trees, when n is the length of x. This gives respective sizes in
bytes per character of the source: 45.68 and 32.70 for suffix trees, 33.26 and 27.80
for DAWGs, and 22.40 and 22.78 for CDAWGs.

Considering the complete data structures required for applications, the func-
tion endposx has to be added for the DAWG and the suffix tree. In addition,
the occurrence number of each factor has to be stored in each state for all the
structures. Therefore, the respective sizes in bytes per character of the source
become : 58.66 and 45.68 for suffix trees, 46.24 and 40.78 for DAWGs, and 24.26
and 24.72 for CDAWGs.

Source Ixl
X

chro II 807188
coli 499951
bs 1 183313
bs 115 49951
random 500000
:andom 100000
random 50000
random 10000
theor, aver. ratios

JYb s t a t e s . N b t r a n s t t s o r t $ _Nb t r a r t s g t s o n s m e m o r y
~1 N b s t a t e s

dawg cdawg dawg cdawg dawg cdawg gain
1,64 0,54 2,54 1,44 1,55 2 ,66 50,36%
1,64 0,54 2,54 1,44 1 ,53 2 ,66 51,95%
1,66 0,50 2,50 1 ,34 1 ,50 2 ,66 54,78%
1,64 0,54 i2,54 1,44 1,55 2 ,66 50,16%
1,62 0,55 2,54 1 ,47 1 ,57 2 ,68 49,53%
1,62 0,55 2,55 1 ,47 1 ,57 2 ,68 49,35%
1,62 0,54 2,54 1,46 1 ,56 2 ,68 49,68%
1,62 0,54 2,54 1,46 1 ,56 2 ,68 49,47%
1,63 0,54 2,541 1,46 1,56 2,67 50,55%

Table 1. Statistic table with account between DAWG and CDAWG.

Moreover, Table 1 compares sizes of DAWG and CDAWG meant for applica-
tions to DNA sequences. Sizes for random words of different lengths and [,U[= 4
are also given. DNA sequences are Saccharomyces cerevisiae yeast chromosome
II (chro II), a contig of Escherichia Coil DNA sequence (coli), and contigs 1
and 115 of Bacillus Subtilis DNA sequence (bs). Number of states and edges
according to the length of the source and the memory space gain are displayed.
Theoretical average ratios are given, calculated from Blumer et al. ([5]). First,
we observe there are 2/3 less states in the CDAWG, and near of half edges.
Second, the memory space saving is about 50%. Third, the number of edges by
state is going up to 2.66. With a four-letter alphabet, this is interesting because
the transition matrix becomes smaller than adjacency lists. At the same time,
we keep a direct access to transitions.

4 C o n s t r u c t i n g C D A W G from D A W G

The DAWG construction is fully exposed and demonstrated in [3] and [7]. As we
show in this section, the CDAWG is easily derived from the DAWG.

123

Indeed, we just need to apply the definition of the CDAWG recursively. This
is computed by the function Reduction, given below. Observe that, in this func-
tion, state(p, a] denotes the state pointed to by the transition (p, a]. The com-
putation is done with a depth-first traversal of the automaton, and runs in time
linear in the number of transitions of DAWG(x). Then, by theorem 2, the com-
putation also runs in time linear in the length of the text.

However, this method needs to construct the DAWG first, which spends
time and memory space proportional to DAWG(x), though CDAWG(x) is sig-
nificantly smaller. So, it is better to construct the CDAWG directly.

Reduct ion (state E) returns (ending state, length of redirected edge)
1. I f (E not marked) Then
2. For all existing edge (E, a] Do
3. (state(E, a] , Ilabel((E, a])l) (-- Reduction(state(E, a]);
4. mark(E) 4-- TRUE;
5. I f (E is of outdegree one) Then
6. Let (E, a] this edge;
7. Re turn (state(E, a] , 1 + Ilabel((E, a])l);
8. Else
9. Re turn (E,1);

5 Direc t C o n s t r u c t i o n of C D A W G

In this section, we give the direct construction of CDAWGs and show that the
running time is linear in the size of the input word x on a fixed alphabet.

5.1 A l g o r i t h m

Since the CDAWG of x is a minimization of its suffix tree, it is rather natural
to base the direct construction on McCreight's algorithm [13]. Meanwhile, prop-
erties of the DAWG construction are also used, especially suffix links (notion
that is different from the suffix links of McCreight's algorithm), lengths, and
positions, as explained in the previous section.

First, we introduce the notions used by the algorithm, some of them are
taken from [13]. The algorithm constructs the CDAWG of the word x of length
n, noted x0.~-l. The automaton is defined by a set of states and transitions,
especially with I and F, the initial and final states. A partial path represents a
connected sequence of edges between two states of the automaton. A path is a
partial path that begins at I. The label of a path is the concatenation of the
labels of corresponding edges.

The locus, or exact locus, of a string is the end of the path labeled by the
string. The contracted locus of a string a is the locus of the longest prefix of c~
whose locus is defined.

124

P r e l i m i n a r y A lgo r i t hm Basically, the algorithm to build CDAWG inserts the
paths corresponding to all the suffixes of x from the longest to the shortest. We
define sufi as the suffix x/n-1 of x. We denote by ,4i the automaton constructed
after the insertion of all the sufj for 0 _< j <_ i.

[~] bbabbc

~ abbabbc

. ~. bbabbc ~)'~--J' ~176176176176176176 o~

. :

aobba bc

Fig. 4. Construction of CDAWG(aabbabbc)

Figure 4 displays four steps of the construction of CDA WG(aabbabbc). In this
Figure (and the followings), the dashed edges represent suffix links of states,
which are used subsequently. We initialize the automaton ,4~ with states I and
F. At step i (i > 0), the algorithm inserts a path corresponding to suf i in ,4/-1
and produces ,4i. The algorithm satisfies the following invariant properties:

P I : at the beginning of step i, all suffixes sufj, 0 _< j < i, are paths in ,4/-i .
P2: at the beginning of step i, the states of ,4i- i are in one-to-one correspondence

with the longest common prefixes of pairs of suffixes longer than sufj.

We define head/as the longest prefix of suf i which is also a prefix of sufj for
some j < i. Equivalently, headi is the longest prefix of suf i which is also a path
of `4/-1. We define taih as head~i lsufi" At step i, the preliminary algorithm has
to insert taili from the locus of head/in Ai-1 (see Figure 5).

To do so, the contracted locus of head/ in ,4/_1 is found with the help of
function SlowFind that compares letter-to-letter the right path of ,4/_ 1 to suf i.
This is similar to the corresponding McCreight's procedure, except on what
is explained below. Then, if necessary, a new state is created to split the last
encountered edge, state that is the locus of head/. The automaton B of Figure 4,
displays the creation of state 1 during the insertion of SUfl=abbabbr Note that,
if an already existing state matches the strict class of factor of head/, the last

125

Fig. 5. Scheme of the insertion of a su] i in .A,-1.

encountered edge is split in the same way, but it is redirected to this state. Such
an example appears in the same example (case D): the insertion of SUfs=bbr
induces the redirection of the edge (2,babbc,F) that becomes (2,b,3). Then, an
edge labeled by tai~ is created from the locus of headi to F. We can write the
preliminary algorithm as follows:

Pre l iminary A l g o r i t h m
1. For all su~ (i E[O..n-1]) D o
2. (q, 7) ~-- SlowFind(I);
3. I f (7 = r Then
4. insert (q, taili,F);
5. Else
6. create v locus of headi splitting (q, 7]

and insert (v,tai~,F);
or redirect (q, 7] onto v,
the last created state;

7. End For all;
8. mark terminal states;

Note first that SlowFind returns the last encountered state. This keeps ac-
cessible the transition (q, 3'] that can be split if this state is not an exact locus.

Second, as in the DAWG construction, if a non-solid edge is encountered
during SlowFind, its target state has to be duplicated in a clone and the non-
solid edge is redirected to this clone. But, if the clone has just been created at
the previous step, the edge is redirected to this state. Note that, in the two cases,
the redirected transition becomes solid.

Finally, when taili = ~ at the end of the construction, terminal states are
marked along the suffix path of F.

From the above discussion, a proof of the invariance of properties P1 and P2
can be derived. Thus, at the end of the algorithm all subwords of x and only
these words are labels of paths in the automaton (property P1). By property P2,
states correspond to strict classes of factors (when the longest common prefix of
a pair of suffixes is not equal to any of them) or to terminal states (when the
contrary holds). This gives a sketch of the correctness of the algorithm.

126

The running time of the preliminary algorithm is O(Izl 2) (with an imple-
mentation by transition matrix), like is the sum of lengths of all suffixes of the
word z .

L i n e a r A l g o r i t h m To get a linear-time algorithm, we use together properties
of DAWGs construction and of suffix trees construction. The main feature is the
notion of suffix links. They are defined as for DAWGs in Section 2. They are the
clue for the linear-running-time of the algorithm.

Three elements have to be pointed out about suffix links in the CDAWG.
First, we do not need to initialize suffix links. Indeed, when SUfo is inserted,
z0 is obviously a new letter, which directly induces s , (F)=I. Note that s ,(I) is
never used, and so never defined. Second, traveling along the suffix path of a
state p does not necessarily end at state I. Indeed, with multi-letter transitions,
if s , (p)=I we have to treat the suffix a - l a (a E s where a is the representative
of p. And third, suffix links induce the following invariant property satisfied at
step i:

P3: at the beginning of step i, the suffix links are defined for each state of Ai-1
according to Definition 4.

The next remark allows redirections without having to search with SlowFind
for existing states belonging to a same class of factors.

Remark. Let aft have locus p and assume that q = s,(p) is the locus of/3. Then,
p is the locus of suffixes of a/3 whose lengths are greater than]/3 I.

The algorithm has to deal with suffix links each time a state is created.
This happens when a state is duplicated, and when a state is created after the
execution of SlowFind.

In the duplication, suffix links are updated as follows. Let w be the clone
of q. In regard to strict classes of factors and Definition 4, the class of w is
inserted between the ones of q and s, (q). So, we update suffix links by setting
sz(w)--s~:(q) and sx(q)-w.

Moreover, the duplication has the same properties as in the DAWG construc-
tion. Let (p, 7, q) be the transition redirected during the duplication of q. We
can redirect all non-solid edges that end the partial path 7 and that start from
a state of the suffix path of p. This is done until the first edge that is solid. We
are helped in this operation by the function FastFind, similar to the one used
in McCreight's algorithm [13], that goes through transitions just comparing the
first letters of their labels. This function returns the last encountered state and
edge. Note that it is not necessary to find each time the partial path 7 from a
suffix of p, we just need to take the suffix link of the last encountered state and
the label of the previous redirected transition.

Let t9 be the representative of a state of the suffix path of p. Observe that
the corresponding redirection is equivalent to insert suf/+l~l_10 I. Indeed, all Ol>-
erations done after this redirection will be the same as for the insertion of suf/,
since they go through the same path.

127

O:2

Fig. 6. Scheme of the search using suffix links

After the execution of SlowFind, if state v is created, we have to compute its
suffix link. Let 7 be the label of the transition starting at q and ending at v. To
compute the suffix link, the algorithm goes through the path having label 7 from
the suffix link of q, s = s~(q). The operation is repeated if necessary. Figure 6
displays a scheme of this search. The thick dashed edges represent paths in the
automaton, and the thin dashed edge represents the suffix link of q. This search
will allow to insert, as for the duplication, the suffixes sufj, for i < j < i+ Ihead{ I.
To travel along the path, we use again the function FastFind. Let r and (r, r
be the last state and transition encountered by FastFind. If r is the exact locus
of 7, it is the wanted state, and we set then s~ (v) = r. Else, if (r, r is a solid
edge, then we have to create a new node w. The edge (r, r is split, it becomes
(r, r w), and we insert the transition (w,taili ,F). Else, (r, r is non-solid. Then,
it is split and becomes (r, r v). In the two last cases, since s~ (v) is not found, we
run FastFind again with s~ (r) and r and this goes on until s~ (v) is eventually
found, that is, when r = e.

The discussion shows how suffix links are updated to insure that property
P3 is satisfied. The operations do not influence the correctness of the algorithm,
sketched in the last section, but yield the following linear-time algorithm. Its
time complexity is discussed in the next section.

Linear Algor i thm
1. p ~-- I; i<--0;
2. Whi le not end of x Do
3. (q, 7) r SlowFind(p);
4. I f (7 = e) Then
5. insert (q, tail~,F);
6. sx(F) <-- q;
7. I f (q # [) Then p 6-- sx(q) Else p e-- I;
8. Else
9. create v locus of head, splitting (q, 7];
10. insert (v,tail~,F);
11. sx(F) <--- v;
12. find r = sx(v) with FastFind;
13. p ~-- r;
14. update i;
15. End While;
16. mark terminal states;

128

5.2 Complex i ty

T h e o r e m 9 . The algorithm that builds the C D A W G of a word x of ~* can
be implemented in t ime O(l=l) and in space o(1=1 x card(~7)) with a transition
matrix, or in t ime o(1=1 • log card(Z)) and in space O(Ixl) with adjacency lists.

X

I

s~

I he'];'- 1

i l j k

@ .|
@-.-,..|169

Fig. 7. Positions of labels when suf i is inserted

Sketch of t he p roo f
It can be proved that each step of the algorithm leads to increase strictly variables
j or k in the generic situation displayed in Figure 7. These variables respectively
represent the index of the current suffix being inserted, and a pointer on the
text. These variables never decrease. Therefore, the total running time of the
algorithm is linear in the length of x.

6 Conclusion

We have considered the Compact Direct Acyclic Word Graph, which is an effi-
cient compact data structure to represent all suffixes of a word. There are many
data structures representing this set. But, this one allows an interesting space
gain compared to the well-known DAWG, which is a reference. Indeed, on the
one hand, the upper bounds are of Ix[+ 1 states and 2Ix[- 2 transitions. This
saves [z[states and [z[transitions of the DAWG, which leads to faster utilisation.
On the other hand, experiments on genomic DNA sequences and random strings
display a memory space gain of 50% according to the DAWG. Moreover, when
the size of the alphabet is small, transition matrices do not take more space than
adjacency lists, keeping direct access to transitions. Thus, we can construct the

129

data structure of twice larger strings, keeping them in main memory, which is
actually important to get efficient treatments.

This work shows that the CDAWG can be constructed directly. The algorithm
is linear in the length of the text. Of course, it is easier to compute, by reduction,
the CDAWG from the DAWG. On the contrary, our algorithm saves time and
space simultaneously.

References

1. A. Anderson and S. Nilsson. Efficient implementation of suffix trees. So]tware,
Practice and Experience, 25(2):129-141, Feb. 1995.

2. A. Apostolico. The myriad virtues of subword trees. In A. Apostolico & Z. Galil,
editor, Combinatorial Algorithms on Words., pages 85-95. Springer-Verlag, 1985.

3. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, and J. Seiferas.
The smallest automaton recognizing the subwords of a text. Theoret. Comput.
Sci., 40:31-55, 1985.

4. A. Blumer, J. Blumer, D. Haussler, and R. McConnell. Complete inverted files
for efficient text retrieval and analysis. Journal o] the Association for Computing
Machinery, 34(3):578-595, July 1987.

5. A. Blumer, D. Haussler, and A. Ehrenfeucht. Average sizes of suffix trees and
dawgs. Discrete Applied Mathematics, 24:37-45, 1989.

6. B. Clift, D. Haussler, R. McDonnell, T.D. Schneider, and G.D. Stormo. Sequence
landscapes. Nucleic Acids Research, 4(1):141-158, 1986.

7. M. Crochemore. Transducers and repetitions. Theor. Comp. Sci., 45:63-86, 1986.
8. M. Crochemore and W. Rytter. Text Algorithms, chapter 5-6, pages 73-130. Ox-

ford University Press, New York, 1994.
9. R. W. Irving. Suffix binary search trees. Technical report TR-1995-7, Computing

Science Department, University of Glasgow, April 1995.
10. J. Karkkainen. Suffix cactus : a cross between suffix tree and suffix array. CPM,

937:191-204, July 1995.
11. C. Lefevre and J-E. Ikeda. The position end-set tree: A small automaton for word

recognition in biological sequences. CABIOS, 9(3):343-348, 1993.
12. U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.

SIAM J. Comput., 22(5):935-948, Oct. 1993.
13. E. McCreight. A space-economical suffix tree construction algorithm. Journal of

the ACM, 23(2):262-272, Apr. 1976.
14. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249-260, 1995.

