
Suffix Cactus:
A Cross b e t w e e n Suffix Tree and Suffix Array*

J u h a Ks163

Department of Computer Science, P. O. Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki, Finland.

E-mail: Juha.Karkkainen@cs.Helsinki.FI
URL: http://www.cs.helsinki.fi/~tpkarkka

A b s t r a c t . The suffix cactus is a new alternative to the suffix tree and
the suffix array as an index of large static texts. Its size and its per-
formance in searches lies between those of the suffix tree and the suffix
array. Structurally, the suffix cactus can be seen either as a compact
variation of the suffix tree or as an augmented suffix array.

1 I n t r o d u c t i o n

The suffix tree is one of the most impor tan t da t a s t ructures in stringology. The
suffix tree is an index-like s t ruc ture formed from a string tha t allows many kinds
of fast queries about the string. W h a t makes the suffix tree a t t rac t ive is t ha t its
size and its const ruct ion t ime are linear in the length of the text [19, 14, 17].
Suffix trees have a wide variety of applications. Apostolico [4] cites over forty
references on suffix trees, and Manber and Myers [13] ment ion several newer
ones.

The application, tha t we are most ly interested in in this paper , is the use of a
suffix tree as an index of a large static text to allow fast searches. The basic search
type is s tr ing matching, i.e. searching for the occurrences of a pa t te rn s tr ing
in the text. Other useful forms of queries include regular expression match ing
and approx imate str ing matching. Examples of very large texts requiring fast
searching are electronic dictionaries [8], and biological sequence databases [16].

To work efficiently, the whole suffix tree must fit in the main memory. Thus
the space requirement of the suffix tree is an impor tan t issue. Gonnet , Baeza-
Yates and Snider [8] have studied the use of suffix trees with only a small par t
at a t ime in the main memory, but m a n y applications slow down unacceptably.
The exact size of the suffix tree depends on the implementat ion and the type of
the text. A typical size for a t ight implementa t ion on english text is about 15
bytes per text symbol.

The suffix array [13, 8] is a da t a s t ructure which, like the suffix tree, allows
fast searches on a text. The size of an efficient implementat ion of a suffix array,
including the text itself, is only 6 bytes per text symbol. In s tr ing match ing the

* Work supported by the Academy of Finland.

192

performance of suffix arrays is comparable to suffix trees, but other types of
searches, such as regular expression matching, are slower on suffix arrays.

In this paper we present a new suffix-tree-like da ta s tructure called the suffix
cactus. The size of a suffix cactus, 10 bytes per text symbol, lies between the
sizes of suffix trees and suffix arrays. The same holds for the performance in
many applications, such as regular expression matching.

The suffix cactus offers an interesting new point of view to the family of
suffix structures. The structure of the suffix cactus has similarities with both
the suffix tree and the suffix array. The suffix cactus could be described either
as a compact version of the suffix tree or as a suffix array augmented with some
extra information. The suffix cactus can therefore be called a cross between the
suffix tree and the suffix array.

Recently, Anderson and Nilsson [2, 3], and Irving [9] have introduced new
alternative da ta structures. The level compressed trie of Andersson and Nilsson
takes about 12 bytes per text symbol and has matching properties comparable
to the suffix cactus. The suffix binary search tree of Irving takes 14 bytes per
text symbol and is similar to the suffix array in matching problems.

1.1 Bas i c D e f i n i t i o n s

Let T = t i t2 . . . t ,~ be a string over alphabet ,U. A substring of T is a string
T~ = t~ t i+l . . . t j for some 1 < i < j < n. The string T~ = T~ = t i . . . t ,~ is a

suffix of string T and the string T j = T j = tl �9 . . t j is a prefix of string T. Let S
and T be two strings and let j be the largest number for which S j = T j. Then
the string S j = T j is called the longest common prefix of S and T and its length
j is denoted LCP(S, T).

A trie (see e.g. Knuth [11]) is a rooted tree with the following properties.

1. Each node, except the root, contains a symbol of the alphabet.
2. No two children of the same node contain the same symbol.

A node v represents the string which is formed by catenating the symbols con-
tained by the nodes on the path from the root to v, inclusive. Due to the second
property, no two nodes may represent the same string. Note that , if a node v
represents string S, then the ancestors of v represent the prefixes of S. The depth
of a node v, denoted by DEPTH(v), is the length of the pa th from the root to v,
i.e., the length of the string that v represents.

The suffix trie S T r (T) of text T is a t r i e whose leaves represent the suffixes
of T. The nodes of suffix trie S T r (T) represent exactly the set of substrings of
T, because every substring of the text is a prefix of some suffix, i.e. T~ -- (T~) j .
An example suffix trie, for the string cabacca$, is shown in Fig. 1.

The size of the suffix trie for a text of length n is O(n 2) which makes it
impractical for large texts. However, the suffix tree and the suffix cactus are
basicly more compact (linear size) versions of the suffix trie. In Section 2 we will
define the suffix cactus using the above description of the suffix trie.

E
E

193

] E

3 E,
O

,3

:3

g
'3

Fig. 1. The suffix trie of the string cabacca$. The symbol $ is an extra symbol used
for making all suffixes end in a leaf. The suffix $ is omitted from the trie.

1.2 M a t c h i n g

Let a string T of length n be the text and a string P of length m the pattern. The
problem of string matching is to find the occurrences of string P as a subtring
of T. It can be solved in linear t ime by scanning text T using, e.g., the Knuth-
Morr is-Prat t algorithm [12]. For a large static text, a faster solution can be
achieved by preprocessing the text. Suffix trees, suffix arrays and suffix cactuses
are suitable preprocessing structures.

In regular expression matching the goal is to find all substrings of text T
that match a given regular expression. A similar problem is approximate string
matching where, given a string P and an integer k, one wants to find the sub-
trings T~ of text T such that the edit distance between P and Ti is at most k.
Both of these problems can be solved by scanning the text. Regular expression
matching takes O(n) t ime (excluding the preprocessing of the regular expression)
[1] and approximate string matching O(kn) t ime [7, 18].

Baeza-Yates and Gonnet have described methods to use the suffix tree to
do both regular expression matching [5] and approximate string matching [6].
The lat ter idea was also independently mentioned in [10, Remark 2]. Both of
these methods are based on scanning one suffix of T at a t ime to find whether
it has a matching prefix. The methods take advantage of the fact that , if a set
of suffixes has a common prefix of length d, then the state of the scan after the
first d characters is the same for all of the suffixes. Therefore that par t of the
scan needs to be done only once. The suffix tree provides the information about
common prefixes. It can be replaced by another suffix structure.

The above method for approximate string matching is more efficient than the
basic text scan method only with short pat terns and small values of k. However,
Myers [15] has developed a method to do efficient approximate string matching
even with long pat terns and large k. The method divides the pat tern into smaller

194

parts whose approximate occurrences with small edit distance limit are searched
separately. The results are then combined and used to restrict the area of the
text that needs to be scanned. The matching of the parts can be done with the
method of Baeza-Yates and Gonnet; Myers uses a slightly different method.

1.3 Suffix Tree a n d Suffix A r r a y

The suffix tree discovered by Weiner [19] is a compact version of the suffix trie.
It is formed by catenating each unary node (a node with exactly one child) with
its child. An example is shown in Fig. 2(a). The strings in the catenations are
substrings of the text and can thus be represented by two pointers into the text.
The suffix tree has one leaf for each suffix and the number of other nodes is less
than the number of leafs, because all the other nodes have at least two children.
Thus the size of the suffix tree is linear in the length of the text.

b)

[7 1 2 1 4 1 3 1 6 1 1 1 5 [

a a a b c c c

$ b c a a a c

a c c $ b a

C a c a $

c $ a c

a $ c
$ a

$

Fig. 2. a) Suffix tree and b) suffix array for string c a b a c c a $.

If the alphabet size I~1 is considered constant, the suffix tree can be con-
structed in time O(n) [19, 14, 17] and string matching takes time O(m). The
dependency on I~1 may be linear, logarithmic or constant depending on the im-
plementation of branching. The most compact alternative uses linked lists and
has linear dependency on IEI. In regular expression matching and approximate
string matching the linked list implementation is as good as or better than other
implementations.

In its basic form, the suffix array is just a lexicographically ordered array of
the suffixes of the text. The suffixes are represented by their starting positions
as illustraded in Fig. 2(b). The suffix array was discovered by Manber and Myers
[13], and independently by Gonnet, Baeza-Yates and Snider [8].

String matching in suffix arrays can be done in O(mlogn) time by a binary
search. Manber and Myers [13] improved the string matching time to O(m+log n)
by providing additional information about the lengths of the longest common

195

prefixes (LCPs) between the suffixes. The LCPs are provided for each parent-
child pair in an implicit tree structure called the interval tree. The interval tree
is defined by the binary search order. The root of the interval tree is the middle
suffix of the array, i.e. the first suffix processed in the binary search. The left
child of the root is the middle suffix of the first half of the array and the right
child is the middle suffix of the second half of the array. The next level of nodes
is formed by the middle suffixes of the quarters of the array, and so on.

The above described LCP information is essential for efficient regular expres-
sion matching and approximate string matching in suffix arrays. The suffix array
is still slower than the suffix tree in these tasks, in the worst case by a factor
O(log n). In practice the difference is smaller, though.

The advantage of the suffix array over the suffix tree is its smaller size. Even
with the LCP information the suffix array can be implemented using only 6 bytes
per text symbol including the text itself.

The suffix array can be constructed in linear time by constructing first the
suffix tree and then listing the suffixes in lexieographic order from the tree. Man-
bet and Myers [13] have also described a construction algorithm that works by
sorting the suffixes. It takes O(n log n) time in the worst case and O(n log log n)
time on average for random texts with even and independent distribution of
characters. The advantage of this construction over the construction via the
suffix tree is its smaller space requirement, 10 bytes per text symbol.

2 S u f f i x C a c t u s

The new data structure, suffix cactus, can, like the suffix tree, be viewed as a
compact suffix trie. The suffix tree was formed by catenating the unary nodes
with their children. To get a suffix cactus, every internal node is eatenated with
one of its children. The catenations are called the branches of suffix cactus.

De f in i t i on 1. Let v be a node of suffix trie STr(T) of text T such that either
v is the root or v is not the first child of its parent w. Then suffix cactus SC(T)
of T has a branch s that contains exactly the nodes on the path from v to the
first leaf u under v.

Clearly, each node of STr(T) is contained by exactly one branch of SC(T).
The branch containing the root of STr(T) is called the root branch. The node
v is called the root of branch s, u is called the leaf of s, and the parent w is
called the parent node of s. The branching depth of s, denoted by DEPTH(s), is
the depth of the parent node w. The branching depth of the root branch is 0.

Branch s contains the string formed by catenating the characters in the nodes
contained by s. Branch s represents the same string as the leaf u. The leafs of
STr(T) represent the suffixes of T and there is thus a one-to-one correspondence
between the suffixes of T and the branches of SC(T). The starting point of the
suffix represented by branch s will be denoted by SUFFIX(s). The string contained
by s is n o w TSUFFIX(s)+DEPTH(S).

196

The term 'first ' in Definition 1 implies the existence of an ordering among
the children of a node. Any ordering can be used, which allows many al ternative
forms for the cactus. Two variations for string cabacca$ are shown in Fig. 3.
The left-hand side variation uses alphabetical ordering and is the one used by
the implementat ion described in this paper.

W
c : N -

C

b
a

c

c

a

$

Fig. 3. Two variations of suffix cactus for the string cabacca$. Turn the figure
upside down to see an explanation for the name 'cactus ' .

The most obvious way to define the tree s tructure of a suffix cactus is the
following.

D e f i n i t i o n o f p a r e n t (a l t e r n a t i v e 1). Let s be a branch of SC(T) and let v
be its root. The parent (branch) of s is the branch containing the parent node
o f V.

However, for the implementation that is described in the next section, the fol-
lowing is a more natural definition.

D e f i n i t i o n o f p a r e n t (a l t e r n a t i v e 2). Let s be a branch of SC(T) and let
v be its root. The parent (branch) of s is the branch containing the preceding
sibling of v. The preceding sibling is defined by the same ordering as the one
used in Definition 1.

With both of the alternative definitions all branches, except the root branch,
have a parent.

As an example, let us consider the third branch from left in the cactus on
the left in Fig. 3. By the first definition its parent is the first branch, but by the
second definition the parent is the second branch.

3 A n I m p l e m e n t a t i o n

The name 'cactus ' comes from the way the branches start in the middle of other
branches. Whichever of the alternative definitions of the tree structure is used,
this kind of branching needs to be implemented differently from the tradit ional
tree branching. The implementat ion affects the exact space requirement of the

197

suffix cac tus and the t ime complex i ty of the different m a t c h i n g prob lems . In this
p a p e r we descr ibe in de ta i l an i m p l e m e n t a t i o n t h a t is space efficient a n d has , in
all of the above descr ibed m a t c h i n g p rob lems , the same t ime complex i ty as the

l inked l ist i m p l e m e n t a t i o n of the suffix tree.
Th is i m p l e m e n t a t i o n is based on a l p h a b e t i c a l o rder ing of the chi ldren of a

node and the second a l t e rna t i ve def ini t ion of the pa ren t branch. The chi ldren
of each b ranch are in a l inked list f rom the highest b r anch ing one to the lowest
b r anch ing one. A key p r o p e r t y of the second a l t e rna t ive defini t ion is t ha t a
b ranch can have at mos t one child at each b ranch ing dep th . Therefore , fol lowing
a child list to find a specific child takes no more t ime t han following the s t r ing
con ta ined by the b ranch to the po in t of b ranch ing of t h a t child. The child list
s t r u c t u r e can be formal ized by the ope ra t i ons FIRSTCHILD and NEXTSIBLING in
the obvious way. The i r i m p l e m e n t a t i o n is desc r ibed a l i t t le la ter .

T h e SUFFIX and DEPTH values are kep t in two tables . T h e tab les a re in the
l ex icographic o rder of the suffixes. The SUFFIX t ab le is, in fact , the bas ic suffix
ar ray . To s impl i fy no ta t ion , we use the r ank of a b ranch in the above o rde r as
the name of the branch. T h a t is, the suffix TsuFv~x(,) r epresen ted by b ranch s is
the s th suffix of T in the lex icographic order . Branch 1 is the root branch.

T h e fol lowing th ree l emmas show how the b ranch ing s t ruc tu r e of the suffix
cac tus of t ex t T can be der ived s t r a igh t from the tex t .

L e m m a 2. The branching depth DEPTH(S) of a branch s > 1 is LcP(TsuFvlX(s_I) ,

Tsuvv,x(~)).

Proof. Let v be the root , u the leaf, and w the pa ren t node of b ranch s. Let
v I be the a l p h a b e t i c a l l y p reced ing s ibl ing of v and let u ~ be t he leaf of b ranch
s - 1. Then v' must be an ances to r of u ~. The pa ths from root to u and u ~ go to-

ge the r unt i l node w where they get s epa ra t ed . Thus LCP(Tsuvvtx(s_l) , TsvFHx(s)) =
DEPTH(w) -= DEPTH(s). []

L e m m a 3. The parent branch of branch r > 1 is the latest branch s < r such

that DEPTH(s) < DEPTH(r).

Proof. Let v be the root and w the pa ren t node of r . Let v ' be the a l p h a b e t i c a l l y
p reced ing s ibl ing of v. If s is the pa ren t of r , then s conta ins v' . T h e pa ren t node
of s is w or an ances to r of w. There fore the d e p t h of s is a t most DEPTH(w) =
DEPTH(r). Suffix T,~uvHx(s) precedes Ts~r'Hx(r) l ex icographica l ly and thus s < r .
I t r ema ins to show tha t s is the l a t es t b ranch sa t i s fy ing these condi t ions .

Let t be a b ranch such t ha t s < t < r . Let u 't be the leaf of t. Node v ~ mus t
be an ances to r of u" . Because v ~ is con ta ined by s, the roo t of t mus t be be low v'
on the p a t h f rom v' to u" . Thus it holds DEPTH(t) > DEPTH(v') > DEPTH(w) =
DEPTH(r). []

L e m m a 4. A branch s has child branches only i f branch s + 1 is a child of s.

Let s be such a branch and let r l , r ~ , . . . , rk be the children of s f rom the highest

branching to the lowest branching. Then s + 1 = rk < "" < rl .

198

Proof. By L e m m a 3 r is a child of s if and only if

I. s<r ,
2. DEPTH(s) < DEPTH(r) and
3. there is no branch t > s such tha t the first two conditions would hold if s

was replaced with t.

For r = s + 1 the first and last condit ion always hold. Therefore, if s + 1 is not a
child of s, then DEPTH(s) > DEPTH(s -4- 1). In such a case, if any node r satisfies
the first two conditions, then t = s + 1 violates the third condition. Thus s can
have no children, if s + 1 is not a child of s.

The second claim of the l emma is clearly t rue if k = 1. Otherwise, let ri and
r~+l, 1 < i < k, be two of the children of s. Then it holds tha t DEPTH(r{) <
DEPTH(ri+I). If now r~ < r~+l, then t = r~ would violate the third chi ldhood
condition of r~+l. Therefore we must have ri+l < ri . []

The last l emma enables us to describe the implementa t ion of the branch-
ing operat ions FIRSTCHILD and NEXTSIBLING. The implementa t ion consists of a
single table called SIBLING. Using the nota t ions of L e m m a 4 this table can be
defined by

f r l , if i = k
SIBLING(r{)

(r i+l , if i < k

or al ternat ively by

SIBLING(s) = { FIRSTCHILD(s -- 1), if s -- 1 has children
NEXTSIBLING(s), if s has a next sibling

In other words, the children of each branch form a cyclical list. In addi t ion we
define SIBLING(I) = 1. The FIRSTCHILD and NEXTSIBLING can now be defined
as follows.

f SIBLING(s + I), if SIBLING(S A- 1) _> s + 1 FIRSTCHILD(s)
(none, if SIBLING(s -~- i) < s n u I

f SIBLING(s), if SIBLING(s) < S
NEXTSIBLING(S)

" (none, if SIBLING(s) > S

Fig. 4 shows an example of this implementat ion.

s }1234567
SUFFIX(s) 7243615
DEPTH(s) 0 1 1 0 0 2 1
SIBLING(s) 1 4 3 2 5 7 6

Fig. 4. The implementation of the left-hand side suffix cactus in Fig. 3.

199

s + l

F i g . 5. The state of a suffix cactus before the processing of branch s + 1. The
active branches are grayed.

4 C o n s t r u c t i o n

In this section we will describe two construct ion algori thms for the above imple-
menta t ion of the suffix cactus. The a lgor i thms work in two phases, the second
of which is common to both. The first phases of the a lgori thms construct the
SUFFIX and DEPTH tables. One a lgor i thm uses the suffix tree to do this and
the o ther uses the suffix array. The common second phase then constructs the
SIBLING table from the DEPTH table. We star t by describing the second phase.

At the s tar t of the second phase the DEPTH table tells the branching depths
of each branch. By L e m m a 3 the parent branch of branch r is the latest branch
s preceding r such tha t DEPTH(s) ~_ DEPTH(r). Therefore the DEPTH table fully
defines the branching s t ruc ture of the cactus and the SIBLING table can be cal-
culated from it.

The SIBLING table is cons t ruc ted in one first branch to last branch pass. Let us
look at the s i tuat ion when a branch s has just been processed and the processing
of branch s + l is about to s tar t (Fig. 5). Let Sl, s 2 , . . . , sk be the pa th from branch
1 (the root) to branch s with sl = 1 and sk = s. The branches on the pa th are
called the active branches. The first (highest branching) children of each active
branch may still be among the unprocessed branches. The first children of the
other processed branches and the next siblings of all processed branches have, on
the o ther hand, all been processed. Therefore, we can assume tha t the SIBLING
table is finished up to the en t ry s, excluding the entries so + 1, 81 n L 1 , . . . , Sk-1 n c 1.

The parent of branch s + 1 must be one of the active branches. To be able
to find the parent quickly, the active branches are on a list f rom the last to the
first. The parent of s + 1 is the first branch si on the list such tha t DEPTH(si)
DEPTH(8 -[- 1). The list is implemented using the so far unfinished StaLING table
entries, i.e. SIBLING(si + 1) = si-1 for i = 1 , . . . , k - 1.

Let us now see what happens when branch s + 1 is processed. If the parent
of s + 1 is s, we make s + 1 active by adding it to the beginning of the list of
active branches and we are done. Assume then tha t active branch si, i < k, is
the parent of s + 1. Now we do the following.

200

1. Find s~ by following the list of active branches.
2. Remove the branches s i + l , . . . , sk, tha t are passed dur ing the search, from the

list of active branches and finalize their first children by set t ing SIBLING(sj -[-
1) : s j + l f o r j : i + l , . . . , k - - 1 .

3. Make S{+l the next sibling of s + 1 by set t ing SIBLING(s -{- 1) -= Si+l.
4. Add ~ + 1 to the beginning of the list of active branches.

When all branches have been processed, we travel the list of act ive branches once
more to set the first children of the remaining active branches. The a lgor i thm is
presented in detail in Fig. 6.

SIBLING(l) = 1

�9 S k - 1 = 0

for s - - - - l t o n - - 1 do
if D E P T H (s) ___< D E P T H (s n t- 1) t h e n

SlBLING(s + 1) = sk-1
8k--1 = 8

else
S~+l = S

8/ = Sk--I
w h i l e D E P T H (s /) > D E P T H (s -I- 1) do

r = SIBLING(sl -b 1)
SIBLING(Sl ~- 1) = Si+l

8i+1 = 8/

3i = 7 "

end
SIBLING(s Jr- l) ~--- S i + l

8 k - 1 ~ 8i

end
end
3iq-1 ~ n

8i "~" 8k--1

while si :> 0 do
r = SIBLING(Sl -~- 1)

S I B L I N G (s i -~ 1) : 8{+1

8iq-1 ~- Si

end

% Is s parent of s + 1?

% Travel the list of active branches
% until the parent of s + 1 is found.

~0 Remove passed branches from the list
% and finalize their first children.

% Finalize the first children
% of the last active branches.

Fig. 6. The construction of SIBLING table from the DEPTH table. The variables sk-1,
s/ and si+~ are so named to help the compaxison between the algorithm and the
description in the text.

Excluding the w h i l e loops, the algori thm clearly works in linear time. Each

201

round of the while loops walks one step in the list of active branches and removes
one branch from the list. Once removed, a branch cannot return to the list. Thus,
at most one round of the whi le loops is executed for each branch. This gives us
the following theorem.

T h e o r e m 5. The SIBLING table can be constructed from the DEPTH table in lin-
ear time and constant additional space.

The remaining problem with the construction of the suffix cactus is to get
the SUFFIX and DEPTH tables somehow. One way is to use the suffix tree. A lexi-
cographically ordered depth-first traversal of the tree can be used to recover the
necessary information from the tree in linear time. As mentioned in Section 1.3,
the suffix tree itself can be build in linear time, so the whole construction works
in linear time. The construction takes at least as much space as the suffix tree
construction and may take a little more depending on the details of implemen-
tation.

The SUFFIX and DEPTH tablds can also be constructed from the suffix array
with LCP information. The basic suffix array forms the SUFFIX table as such. As
mentioned in Lemma 2, the values in DEPTH table are LCPs of lexicographically
adjacent suffixes. These values can be recovered from the LCP information of the
suffix array by a traversal of the interval tree in linear time. If the suffix array
is build using the O(n log n) sorting method, it dominates the time complexity
of the whole cactus construction. The advantage of this construction is that all
stages work in the space of the final suffix cactus.

5 Exper imenta t ion

To see how the suffix cactus behaves in practice, we implemented the described
variation of the suffix cactus together with the linked list version of the suffix
tree and the version of the suffix array with LCP information. The tests were run
on a 90 MHz Pentium PC with 16 Mbytes of memory running Linux operating
system.

We implemented the standard suffix tree construction [14, 17], the suffix array
construction by sorting [13], and both of the suffix cactus construction algorithms
described in the previous section. Table 1 gives the execution times and the space
requirements of these construction algorithms. The space requirements include
the text.

The space requirement of a finished structure is 6 bytes per text symbol for
the suffix array and 10 bytes per text symbol for the suffix cactus, regardless of
the construction method. In principle, the space requirement of a finished suffix
tree could be reduced a little from the construction time space requirement by
releasing the suffix links. In our implementation this is not done because of the
complications in memory management caused by not knowing the number of
nodes in the suffix tree in advance.

In the implementations most numbers and pointers take 4 bytes. The excep-
tions are the LCPs of tile suffix array and the DEPTHs of the suffix cactus, both of

202

Table 1. S

text

type 17~II
english

english 74

english 77

random 77

DNA 4

random 4

random 16

random 64

n

3000

30000

300000

300000

300000

300000

F300000

300000

9ace requirements and execution times of the construction.

tree
113.48

14.77

15.17

9.72

17.70

17.43

11.80

10.95

space (bytes/n)
cactus cactus

via via
array tree array

10 14.48 10

10 14.77 10

10 16.17 10

10 10.72 10

10 18.70 10

10 18.43 10

10 12.80 10

10 11.95 10

tree

0.08

0.67

6.60

21.2

5.62

5.66

8.10

19.4

time (s)
cactus

via
array tree

0.21 O.O9

2.85 0.84

36.4 8.63

27.O 22.7

41.4 7.78

33.8 7.84

31.2 9.91

26.8 21.0

cactus
via

array

0.23

2.99

37.7

28.4

42.6

35.1

32.5

28.1

Tab le 2. String matching and regular expression matching times. The string matching
times are total times of matching 10000 patterns.

text

type [~w[

english 71

english 74

english 77

random 77

DNA 4

random 4

random 4

random 16

random 64

n

3000

30000

300000

300000
1300000

1300000

300000

300000

300000

string matching

matches time (s) cactus
rn /pattern tree I array

8 3.87 0.82 0.38 0.79
I

8] 1.67 0.97 0.46 1.13

8 4.86 1.63 0.67 1.86

8 1.00 1.35 0.62 2.19

8 8.17 0.96 0.71 0.61

81 5.58 0.79 0.69 0.58]

121 1.02 0.57 0.64 0.58

4 1.02 0.66 0.63 0.90
1.02 1.26 0.62 1.94

regular expression matching

time (ms)

matches

1

2

33

0

19206

18708

4670

4

tree axray cactus

1.13 2.50 1.43

5.20 9.53 5.86

19.5 33.1 20.8

9.61 19.2 12.0

201 123 91.9

195 119 88.8

740 800 730

13.6 24.2 16.3

which take only one byte. The rare case tha t a longest common prefix between
two suffixes is more than 255 is recognized and handled separately when neces-
sary. This might affect the pa t te rn match ing time, bu t only when the length of
the pa t te rn exceeds 255.

To test match ing performance we implemented s tr ing match ing and regular
expression match ing algori thms for all three da t a s t ructures . The results of our
tests are given in Table 2. The execution times include going th rough the set of
matches.

The string match ing tests used 10000 pa t te rns selected randomly f rom the
text. The regular expression aS*cS*c , where S = {a, b , . . . , z} \{d , t} , was used
in the regular expression tests. All the test texts contain letters a, c, and at least
one of d and t . The matching times do not include the conversion of the regular
expression into an au tomaton .

203

6 Concluding Remarks

We have desc r ibed one va r i a t ion of the suffix cac tus in this paper . T h e r e a re
o the r in te res t ing var ia t ions , n o t a b l y one which implement s the b ranch ing us ing
hash ing and ano the r t h a t uses a k ind of b i n a r y t ree s t ruc tu re . The ma in ad-
van tage of these var ia t ions would be b e t t e r pe r fo rmance in s t r ing m a t c h i n g for
large a lphabe t s . Due to the n a t u r e of the suffix cac tus these o the r va r i a t ions
need i m p l e m e n t a t i o n s tuc tu re s and cons t ruc t ion a lgor i thms t h a t a re t o t a l l y dif-
ferent f rom the ones descr ibed in this paper . T h e r e r emains work to be done in
deve lop ing these versions.

Acknowledgements

I would like to t h a n k Esko Ukkonen who sugges ted the name ' cac tus ' .

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Com-
puter Algorithms, chapter 9, pages 318-361. Addison-Wesley, 1974.

2. A. Andersson and S. Nilsson. Improved behaviour of tries by adaptive branching.
Inf. Process. Lett., 46(6):295 300, July 1993.

3. A. Andersson and S. Nilsson. Efficient implementation of suffix trees. Software--
Practice and Experience, 25(2):129-141, Feb. 1995.

4. A. Apostolico. The myriad virtues of subword trees. In A. Apostolieo and Z. Galil,
editors, Combinatorial Algorithms on Words, pages 85-95. Springer-Verlag, 1985.

5. R. A. Baeza-Yates and G. H. Gonnet. Efficient text searching of regular expres-
sions. In Proc. 16th International Colloquium on Automata, Languages and Pro-
gramming (ICALP), pages 46 62, 1989.

6. R. A. Baeza-Yates and G. H. Gonnet. All-against-all sequence matching. Techni-
cal report, Department of Computer Science, University of Chile, 1990.

7. Z. Galil and K. Park. An improved algorithm for approximate string matching.
SIAM J. Comput., 19(6):989-999, Dec. 1990.

8. G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. Lexicographical indices for text:
Inverted files vs. PAT trees. Technical Report OED-91-01, Centre for the New
OED, University of Waterloo, 1991.

9. R. W. Irving. Suffix binary search trees. Technical report TR-1995-7, Computing
Science Department, University of Glasgow, Apr. 1995.

10. P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in
static texts. In Proc. 16th International Symposium on Mathematical Foundations
of Computer Science (MFCS), pages 240-248, Sept. 1991.

11. D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Program-
ruing, chapter 6.3, pages 481-505. Addison-Wesley, 1973.

12. D. E. Knuth, J. H. Morris, and V. R. Prat t . Fast pat tern matching in strings.
SIAM Y. Comput., 6(2):323-350, June 1977.

204

13. U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935-948, Oct. 1993.

14. E. M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262-272, Apr. 1976.

15. E. W. Myers. A sublinear algorithm for approximate keyword searching. Algorith-
mica, 12(4/5):345-374, Oct./Nov. 1994.

16. Nucleic Acids Research, 20(Sequences Supplement):2009-2210, May 1992.
17. E. Ukkonen. Constructing suffix trees on-line in linear time. In J. van Leeuwen,

editor, Algorithms, Software, Architecture. Information Processing 9~, volume 1,
pages 484-492, 1992. Full version is to appear in Algorithmica.

18. E. Ukkonen and D. Wood. Approximate string matching with suffix automata.
Algorithmica, 10(5):353-364, Nov. 1993.

19. P. Weiner. Linear pattern matching algorithms. In Proc. IEEE 1,~th Annual Sym-
posium on Switching and Automata Theory, pages 1-11, 1973.

