
A Heuristic for Dijkstra’s Algorithm with Many Targets

and its Use in Weighted Matching Algorithms∗

Kurt Mehlhorn† Guido Schäfer‡

May 16, 2001

Abstract

We consider the single-source many-targets shortest-path (SSMTSP) prob-
lem in directed graphs with non-negative edge weights. A source node s and a
target set T is specified and the goal is to compute a shortest path from s to a
node in T . Our interest in the shortest path problem with many targets stems
from its use in weighted bipartite matching algorithms. A weighted bipartite
matching in a graph with n nodes on each side reduces to n SSMTSP problems,
where the number of targets varies between n and 1.

The SSMTSP problem can be solved by Dijkstra’s algorithm. We describe
a heuristic that leads to a significant improvement in running time for the
weighted matching problem; in our experiments a speed-up by up to a factor of
10 was achieved. We also present a partial analysis that gives some theoretical
support for our experimental findings.

1 Introduction and Statement of Results

A matching in a graph is a subset of the edges no two of which share an endpoint.
The weighted bipartite matching problem asks for the computation of a maximum
weight matching in an edge-weighted bipartite graph G = (A ∪̇ B,E,w) where the
cost function w : E 7→ IR assigns a real weight to every edge. The weight of a
matching M is simply the sum of the weights of the edges in the matching, i.e.,
w(M) =

∑
e∈M w(e). One may either ask for a perfect matching of maximal weight

(the weighted perfect matching problem or the assignment problem) or simply for a
matching of maximal weight. Both versions of the problem can be solved by solving
n, n = max(|A|, |B|), single-source many-targets shortest-path (SSMTSP) problems
in a derived graph, see Section 4. We describe and analyse a heuristic improvement
for the SSMTSP problem which leads to a significant speed-up in LEDA’s weighted
bipartite matching implementation, see Table 3.

In the SSMTSP problem we are given a directed graph G = (V,E) whose edges
carry a non-negative cost. We are also given a source node s. Every node in V is
∗Partially supported by the IST Programme of the EU under contract number IST-1999-14186

(ALCOM-FT).
†Max-Planck-Institut für Informatik, Saarbrücken, Germany, www.mpi-sb.mpg.de/~mehlhorn.
‡Graduiertenkolleg (Graduate Studies Program) “Quality Guarantees for Computer Systems”,

Dept. of Computer Science, University of the Saarland, Germany, funded by the Deutsche
Forschungsgemeinschaft (DFG), www.mpi-sb.mpg.de/~schaefer.

1

designated as either free or non-free. We are interested in finding the shortest path
from s to a free node.

The SSMTSP problem is easily solved by Dijkstra’s algorithm. Dijkstra’s algo-
rithm (see Section 2) maintains a tentative distance for each node and a partition
of the nodes into settled and unsettled. At the beginning all nodes are unsettled.
The algorithm operates in phases. In each phase, the unsettled node with smallest
tentative distance is declared settled and its outgoing edges are relaxed in order to
improve tentative distances of other unsettled nodes. The unsettled nodes are kept
in a priority queue. The algorithm can be stopped once the first free node becomes
settled. We describe a heuristic improvement. The improvement maintains an upper
bound for the tentative distance of free nodes and performs only queue operations
with values smaller than the bound. All other queue operations are suppressed. The
heuristic significantly reduces the number of queue operations and the running time
of the bipartite matching algorithm, see Tables 2 and 3.

This paper is structured as follows. In Section 2 we discuss Dijkstra’s algorithm
for many targets and describe our heuristic. In Section 3 we give an analysis of the
heuristic for random graphs and report about experiments on random graphs. In
Section 4 we discuss the application to weighted bipartite matching algorithms and
present our experimental findings for the matching problem.

The heuristic was first used by the second author in his jump-start routine for
the general weighted matching algorithm [Sch00, MS00]. When applied to bipartite
graphs, the jump-start routine computes a maximum weight matching. When we
compared the running time of the jump-start routine with LEDA’s bipartite match-
ing code [MN99, Section 7.8], we found that the jump-start routine is consistently
faster. We traced the superiority to the heuristic described in this paper.

2 Dijkstra’s Algorithm with Many Targets

It is useful to introduce some more notation. For a node v ∈ V , let d(v) be the
shortest path distance from s to v, and let d0 = min {d(v) ; v is free}. If there is
no free node reachable from s, d0 = +∞. Our goal is to compute (1) a node v0

with d(v0) = d0 (or an indication that there is no such node), (2) the subset V ′ of
nodes with d(v) < d0, more precisely, v ∈ V ′ if d(v) < d0 and d(v) ≥ d0 if v 6∈ V ′,
and (3) the value d(v) for every node v ∈ {v0} ∪ V ′, i.e., a partial function d̃ with
d̃(v) = d(v) for any v ∈ {v0}∪V ′. (Observe that nodes v with d(v) = d0 may or may
not be in V ′.) We refer to the problem just described as the single-source many-
targets shortest-path (SSMTSP) problem. It is easily solved by Dijkstra’s algorithm
as shown in Figure 1.

We maintain a priority queue PQ for the nodes ofG. The queue is empty initially.
For each node we compute a pair (dist ,pred); dist [v] is the tentative shortest path
distance to v and pred [v] is the edge into v defining dist [v]. For v 6= s, we have
pred [v] = nil iff dist [v] is undefined. We initialize all pred -values to nil , set dist [s]
to zero and put the pair (s, 0) into the priority queue. In the main loop, we delete a
node u with minimum dist-value from the priority queue. If u is free, we are done:
v0 = u and V ′ is the set of nodes removed in preceding iterations. Otherwise, we
relax all edges out of u. Consider an edge e = (u, v) and let c = dist [u] + cost [e].
If e is the first edge into v that is relaxed (this is the case iff pred [v] = nil and

2

node pq<int> PQ(G);
node v; edge e;

dist[s] = 0;
PQ.insert(s,0);

forall nodes(v,G) pred[v] = nil;

while (!PQ.empty())
{ node u = PQ.del min();

if (is free[u]) break;

forall adj edges(e,u)
{ v = G.target(e);
int c = dist[u] + cost[e];

if (pred[v] == nil && v != s) PQ.insert(v,c);
else if (c < dist[v]) PQ.decrease p(v,c);

else continue;

dist[v] = c; pred[v] = e;
}}

Figure 1. Dijkstra’s algorithm adapted for many targets. When the first free node is
removed from the queue, the algorithm is stopped: v0 is the node removed last and V ′

consists of all non-free nodes removed from the queue.

v 6= s), we insert (v, c) into PQ . Otherwise, we check whether c is smaller than the
current tentative distance of v. If so, we decrease the priority of v in PQ . If a queue
operation is performed, we also update dist [v] and pred [v].

Let T be the set of nodes removed from the queue. We relax the edges out of
|T | − 1 nodes. Except for the initialization of the pred -values, the running time of
the algorithm is

O(1 +
∑

u∈T\{v0}
(1 + outdeg(u)) +Q) ,

whereQ is the total cost of the queue operations performed. We perform |T | removals
from the queue, |I | insertions, where I is the set of nodes reached by the shortest
path computation, and some number of decrease priority operations.

The cost for initializing the pred -values is O(n). If more than one shortest path
computation is performed (which is the case for the application to weighted bipartite
matchings), we can avoid the O(n) cost by keeping track which pred -values were
changed in the preceding shortest path computation and by initializing only these
values.

We next describe a heuristic improvement of the scheme above. Let
upper bound be the smallest dist-value of a free node encountered by the algo-
rithm; upper bound = +∞ initially. We claim that queue operations PQ.op(v, c)
with c ≥ upper bound may be skipped without affecting correctness. This is clear,
since the algorithm stops when the first free node is removed from the queue and
since the dist-value of this node is certainly at least as small as upper bound . Thus
all dist-values less than d(v0) will be computed correctly. The modified algorithm
may output a different node v0 and a different set V ′. However, if all distances are
pairwise distinct the same node v0 and the same set V ′ as in the basic algorithm are
computed. The pruning heuristic can conceivably save on queue operations, since
fewer insertions and decrease priority operations may be performed.

3

node pq<int> PQ(G);
node v; edge e;

dist[s] = 0;
PQ.insert(s,0);

forall nodes(v,G) pred[v] = nil;

int upper bound; bool upper bound is defined = false;

while (!PQ.empty())
{ node u = PQ.del min();

if (is free[u]) break;

forall adj edges(e,u)
{ v = G.target(e);
int c = dist[u] + cost[e];

if (upper bound is defined && c >= upper bound) continue;
if (free[v]) { upper bound = c; upper bound is defined = true; }

if (pred[v] == nil && v != s) PQ.insert(v,c);
else if (c < dist[v]) PQ.decrease p(v,c);

else continue;

dist[v] = c; pred[v] = e;
}}

Figure 2. Dijkstra’s algorithm for many targets with a pruning heuristic. An upper bound
for d(v0) is maintained and queue operations PQ.op(v, c) with c ≥ upper bound are not
performed.

Figure 2 shows the algorithm with the heuristic added. In the program, we use a
boolean flag upper bound is defined to indicate whether upper bound has value +∞.

3 Analysis

We perform a partial analysis of the basic and the modified version of Dijkstra’s
algorithm for many targets. We use n for the number of nodes, m for the expected
number of edges and f for the expected number of free nodes. We assume that
our graphs are random graphs in the B(n, p) model with p = m/n2, i.e., each
of the n2 possible edges is picked independently and uniformly at random with
probability p. We use c to denote pn = m/n. We also assume that a node is free
with probability q = f/n and that edge costs are random reals between 0 and 1. We
could alternatively use the model in which all graphs with m edges are equally likely
and in which the free nodes form a random subset of f nodes. The results would be
similar. We are mainly interested in the case, where p = c/n for a small constant c,
say 2 ≤ c ≤ 10, and q a constant, i.e., the expected number of free nodes is a fixed
fraction of the nodes.

Deletions from the Queue: We first analyze the number of nodes removed from
the queue. If our graph were infinite and all nodes were reachable from s, the
expected number would be 1/q, namely the expected number of trials until the first
head occurs in a sequence of coin tosses with success probability q. However, our
graph is finite (not really a serious difference if n is large) and only a subset of the
nodes is reachable from s. Observe, that the probability that s has no outgoing edge

4

is (1 − p)n ≈ e−c. This probability is non-negligible. We proceed in two steps. We
first analyze the number of nodes removed from the queue given the number R of
nodes reachable from s and in a second step review results about the number R of
reachable nodes.

Lemma 1 Let R be the number of nodes reachable from s in G and let T be the
number of iterations, i.e., in iteration T the first free node is removed from the queue.
If there is no free node reachable from s, T = R. Then,

Pr (T = t |R = r) =

{
(1− q)t−1q if 1 ≤ t < r ,

(1− q)t−1 if t = r .

Moreover, for the expected number of iterations we have:

E [T |R = r] =
1
q
− (1− q)r

q
.

Proof: Since each node is free with probability q = f/n and since the property
of being free is independent from the order in which nodes are removed from the
queue, we have Pr (T = t |R = r) = (1− q)t−1q and Pr (T ≥ t |R = r) = (1− q)t−1,
for 1 ≤ t < r. If t = r, Pr (T = r |R = r) = (1− q)r−1 = Pr (T ≥ r |R = r).

The expected number of iterations is

E [T |R = r] =
∑
t≥1

Pr (T ≥ t |R = r) =
∑

1≤t<r
(1− q)t−1 + (1− q)r−1

=
1− (1− q)r

1− (1− q)
=

1
q
− (1− q)r

q
.

�

The preceding Lemma gives us information about the number of deletions from
the queue. The expected number of edges relaxed is cE [(T − 1) |R = r] since T − 1
non-free nodes are removed from the queue and since the expected out-degree of
every node is c = m/n. We conclude that the number of edges relaxed is about
((1/q)− 1)(m/n).

Now, how many nodes are reachable from s? This quantity is analyzed in [ASE92,
pages 149–155]. Let α > 0 be such that α = 1− exp(−cα), and let R be the number
of nodes reachable from s. Then R is bounded by a constant with probability about
1 − α and is approximately αn with probability about α. More precisely, for every
ε > 0 and δ > 0, there is a t0 such that for all sufficiently large n, we have

1− α− 2ε ≤ Pr (R ≤ t0) ≤ 1− α+ ε

and

α− 2ε ≤ Pr ((1− δ)αn < R < (1 + δ)αn) ≤ α+ 3ε .

Table 1 indicates that small values of ε and δ work even for moderate n. For
c = 2, we have α ≈ 0.79681. We generated 10000 graphs with n = 1000 nodes
and 2000 edges and determined the number of nodes reachable from a given source

5

c 2 5 8 8
α 0.7968 0.993 0.9997 0.9997

MS 15 2 1 1
ML 714 981 996 1995
R 796.5 993 999.7 1999.3
F 7958 9931 9997 9995

Table 1. For all experiments (except the one in the last column) we used random graphs
with n = 1000 nodes and m = cn edges. For the last column we chose n = 2000 in order
to illustrate that the dependency on n is weak. Nodes were free with probability q. The
following quantities are shown; for each value of q and c we performed 104 trials.
α: the solution of the equation α = 1− exp(−cα).
MS : the maximal number of nodes reachable from s when few nodes are reachable.
ML: the minimal number of nodes reachable from s when many nodes are reachable.
R: the average number of nodes reachable from s when many nodes are reachable.
F : the number of times many nodes are reachable from s.

node s. This number was either smaller than 15 or larger than 714. The latter case
occurred in 7958 ≈ α·10000 trials. Moreover, the average number of nodes reachable
from s in the latter case was 796.5 ≈ α · 1000 = αn.

For the sequel we concentrate on the case that (1 − δ)αn nodes are reachable
from s. In this situation, the probability that all reachable nodes are removed from
the queue is about

(1− q)αn = exp(αn ln(1− q)) ≈ exp(−αnq) = exp(−αf) .

This is less than 1/n2, if c ≥ 2 and f ≥ 4 lnn,1 an assumption which we are going
to make. We use the phrase “R and f are large” to refer to this assumption.

Insertions into the Queue: We next analyze the number of insertions into the
queue, first for the standard scheme.

Lemma 2 Let IS be the number of insertions into the queue in the standard scheme.
Then E [IS |T = t] = n− (n− 1)(1− p)t−1 and

E [IS |R and f are large] =
c(1− q)

q + (1− q)c/n
− (1− q)c/n
q + (1− q)c/n

+ 1 + o(1) .

Proof: In the standard scheme every node that is reached by the search is inserted
into the queue. If we remove a total of t elements from the queue, the edges out of
t − 1 elements are scanned. A node v, v 6= s, is not reached if none of these t − 1
nodes has an edge into v. The probability for this to happen is (1− p)t−1 and hence
the expected number E [IS |T = t] of nodes reached is n − (n − 1)(1 − p)t−1. This
is also the number of insertions into the queue under the standard scheme.

1For c ≥ 2, we have α > 1/2 and thus exp(−αf) < exp(− 1
2
f). Choosing f ≥ 4 lnn, we obtain:

exp(−αf) < 1/n2.

6

If R and f are large, we have

E [IS |R and f are large]

=
R∑
t=1

E [IS |T = t and R and f are large] Pr (T = t |R and f are large)

=
∑
t≥1

(
n− (n− 1)(1− p)t−1

)
(1− q)t−1q +

(
n− (n− 1)(1− p)R−1

)
(1− q)R−1

−
∑
t≥R

(
n− (n− 1)(1− p)t−1

)
(1− q)t−1q

=
∑
t≥1

(
n− (n− 1)(1− p)t−1

)
(1− q)t−1q + o(1)

= n− q(n− 1)
∑
t≥0

(1− q)t(1− p)t + o(1)

= n− q(n− 1)
1

1− (1− p)(1− q)
+ o(1)

= n− 1− (n− 1)
q

p+ q − pq
+ 1 + o(1)

= (n− 1)
p− pq

p+ q − pq
+ 1 + o(1)

=
c(1− q)

q + (1− q)c/n
− (1− q)c/n
q + (1− q)c/n

+ 1 + o(1)

≈ c

q
− c+ 1 + o(1) .

�

The final approximation is valid if c/n � q. The approximation makes sense
intuitively. We relax the edges out of 1/q − 1 nodes and hence relax about c times
as many edges. There is hardly any sharing of targets between these edges, if n is
large. We conclude that the number of insertions into the queue is c

q − c+ 1.
Observe that the standard scheme makes about c/q insertions into but only 1/q

removals from the queue. This is where the refined scheme saves. Let INRS be
the number of nodes which are inserted into the queue but never removed in the
standard scheme. Then, by the above,

E [INRS |R and f are large] ≈ c

q
− c+ 1− 1

q
≈ c− 1

q
.

The standard scheme also performs some decrease p operations on the nodes
inserted but never removed. This number is small since the average number of
incoming edges scanned per node is small.

We turn to the refined scheme. We have three kinds of savings.

• Nodes that are removed from the queue may incur fewer queue operations
because they are inserted later or because some distance decreases do not

7

lead to a queue operation. This saving is small since the number of distance
decreases is small (recall that only few incoming edges per node are scanned)

• Nodes that are never removed from the queue in the standard scheme are not
inserted in the refined scheme. This saving is significant and we will estimate
it below.

• Nodes that are never removed from the queue in the standard scheme are
inserted in the refined scheme but fewer decreases of their distance labels lead
to a queue operation. This saving is small for the same reason as in the first
item.

We concentrate on the set of nodes that are inserted into but never removed from
the queue in the standard scheme. How many of these INRS insertions are also
performed in the refined scheme? We use INRR to denote their number. We compute
the expectation of INRR conditioned on the event El, l ∈ N, that in the standard
scheme there are exactly l nodes which are inserted into the queue but not removed.

Let e1 = (u1, v1), . . . , el = (ul, vl) be the edges whose relaxations lead to the
insertions of nodes that are not removed, labeled in the order of their relaxations.
Then, d(ui) ≤ d(ui+1), 1 ≤ i ≤ l − 1, since nodes are removed from the queue in
non-decreasing order of their distance values.

Node vi is inserted with value d(ui) + w(ei); d(ui) + w(ei) is a random number
in the interval [d(t), d(ui) + 1], where t is the target node closest to s, since the fact
that vi is never removed from the queue implies d(ui) + w(ei) ≥ d(t) but reveals
nothing else about the value of d(ui) + w(ei).

In the refined scheme ei leads to an insertion only if d(ui) +w(ei) is smaller than
d(uj) + w(ej) for every free vj with j < i. The probability for this event is at most
1/(k + 1), where k is the number of free vj preceding vi. The probability would
be exactly 1/(k + 1) if the values d(uh) + w(eh), 1 ≤ h ≤ i, were all contained in
the same interval. Since the upper bound of the interval containing d(uh) + w(eh)
increases with h, the probability is at most 1/(k + 1).

Thus (the expectation is conditioned on the event El)

E [INRR |El] ≤
∑

1≤i≤l

∑
0≤k<i

(
i− 1
k

)
qk(1− q)i−1−k 1

k + 1

=
∑

1≤i≤l

1
iq

∑
0≤k<i

(
i

k + 1

)
qk+1(1− q)i−(k+1)

=
∑

1≤i≤l

1
iq

∑
1≤k≤i

(
i

k

)
qk(1− q)i−k

=
∑

1≤i≤l

1
iq

(
1− (1− q)i

)
,

where the first equality follows from
(i−1
k

)
1

k+1 = 1
i

(i
k+1

)
. The final formula can also

be interpreted intuitively. There are about iq free nodes preceding vi and hence vi
is inserted with probability about 1/(iq).

In order to estimate the final sum we split the sum at a yet to be determined
index i0. For i < i0, we estimate (1 − (1 − q)i) ≤ iq, and for i ≥ i0, we use

8

(1− (1− q)i) ≤ 1. We obtain

E [INRR |El] ≤ i0 +
1
q

∑
i0≤i≤l

1
i
≈ i0 +

1
q

ln
l

i0
.

For i0 = 1/q (which minimizes the final expression2) we have

E [INRR |El] ≤
1
q
· (1 + ln(lq)) .

Since ln(lq) is a convex function of l (its first derivative is positive and its second
derivative is negative), we obtain an upper bound on the expectation of INRR con-
ditioned on R and f being large, if we replace INRS by its expectation. We obtain

E [INRR |R and f are large] ≤ 1
q
· (1 + ln(qE [INRS |R and f are large]))

≈ 1
q
·
(

1 + ln
(
q
c− 1
q

))
=

1
q
· (1 + ln(c− 1)) .

We can now finally lower bound the number S of queue operations saved. By
the above the saving is at least INRS − INRR. Thus

E [S |R and f are large] ≥ c− 1
q
− 1
q

(1 + ln(c− 1))

≈ c

q

(
1− 2 + ln c

c

)
.

We have a guaranteed saving of 2+ln c
c . Moreover, if 2+ln c

c < 1 we are guaranteed to
save a constant fraction of the queue operations. For example, if c = 8, we will save
at least a fraction of 1 − 2+ln 8

8 ≈ 0.49 of the queue operations. The actual savings
are higher, see Table 2. Also, there are substantial savings, even if the assumption
of R and f being large does not hold (e.g., for c = 2 and q = 0.02).

It is interesting to observe how our randomness assumptions were used in the
argument above. G is a random graph and hence the number of nodes reachable
from s is either bounded or very large. Also, the expected number of nodes reached
after t removals from the queue has a simple formula. The fact that a node is free
with fixed probability gives us the distribution of the number of deletions from the
queue. In order to estimate the savings resulting from the refined scheme we use
that every node has the same chance of being free and that edge weights are random.
For this part of the argument we do not need that our graph is random.

4 Bipartite Matching Problems

As already mentioned in the introduction, the starting point for our investigation
was the observation that the pruning heuristic described in Section 2 significantly

2Take the derivative with respect to i0

9

c 2 2 2 5 5 5 8 8 8 8

q 0.02 0.06 0.18 0.02 0.06 0.18 0.02 0.06 0.18 0.18

D 49.60 16.40 5.51 49.33 16.72 5.50 50.22 16.79 5.61 5.53

D∗ 50.00 16.67 5.56 50.00 16.67 5.56 50.00 16.67 5.56 5.56

IS 90.01 31.40 10.41 195.20 73.71 22.98 281.30 112.90 36.45 36.52

IS∗ 90.16 31.35 10.02 197.60 73.57 23.25 282.30 112.30 36.13 36.77

INRS 40.41 15.00 4.89 145.80 56.99 17.49 231.00 96.07 30.85 30.99

INRS∗ 40.16 14.68 4.46 147.60 56.90 17.69 232.30 95.60 30.57 31.22

INRR 11.00 4.00 1.00 35.00 12.00 4.00 51.00 18.00 5.00 5.00

INRR∗ 39.05 14.56 4.34 104.10 37.13 11.99 126.80 45.78 15.03 15.15

DPs 1.42 0.19 0.02 13.78 1.90 0.19 36.55 5.28 0.56 0.28

DPr 0.71 0.09 0.01 2.63 0.31 0.03 4.60 0.50 0.05 0.03

Qs 140.00 46.98 14.94 257.30 91.33 27.67 367.00 133.90 41.62 41.34

Qr 110.40 36.12 11.52 134.50 45.33 13.97 154.40 50.85 16.00 15.77

S 29.58 10.86 3.42 122.80 46.00 13.69 212.70 83.08 25.62 25.57

S∗ 1.12 0.13 0.12 43.47 19.77 5.70 105.50 49.82 15.54 16.07

P 21.12 23.11 22.87 47.74 50.37 49.50 57.94 62.03 61.55 61.85

Table 2. For all experiments (except the one in the last column) we used random graphs
with n = 1000 nodes and m = cn edges. For the last column we chose n = 2000 in order
to illustrate that the dependency on n is weak. Nodes were free with probability q. The
following quantities are shown; for each value of q and c we performed 104 trials. Trials
where only a small number of nodes were reachable from s were ignored, i.e., about (1−α)n
trials were ignored.
D: the number of deletions from the queue.
D∗ = 1/q: the predicted number of deletions from the queue.
IS : the number of insertions into the queue in the standard scheme.
IS∗ = c(1−q)

q+(1−q)c/n −
(1−q)c/n
q+(1−q)c/n + 1: the predicted number of insertions into the queue.

INRS : the number of nodes inserted but never removed.
INRS∗ = IS∗ −D∗: the predicted number.
INRR: the number of extra nodes inserted by the refined scheme.
INRR∗ = 1

q · (1 + ln(qN∗)): the predicted number.
DPs: the number of decrease priority operations in the standard scheme.
DPr: the number of decrease priority operations in the refined scheme.
Qs: the total number of queue operations in the standard scheme.
Qr: the total number of queue operations in the refined scheme.
S = Qs −Qr: the number of saved queue operations.
S∗: the lower bound on the number of saved queue operations.
P = S/Qs: the percentage of queue operations saved.

improved the running time of LEDA’s bipartite matching algorithm [MN99, Section
7.8].

The input for a weighted bipartite matching algorithm is an edge-weighted bi-
partite graph G = (A ∪̇ B,E,w) where the cost function w : E 7→ IR assigns a
real weight to every edge. One may either ask for a perfect matching of maximal
weight (the weighted perfect matching problem or the assignment problem) or sim-
ply for a matching of maximal weight. Essentially the same algorithms apply to
both problems; we discuss the assignment problem.

A popular algorithm for the assignment problem follows the primal dual
paradigm [AMO93, Section 12.4], [MN99, Section 7.8], [Gal86]. The algorithm con-
structs a perfect matching and a dual solution simultaneously. A dual solution is

10

simply a function π : V 7→ IR that assigns a real potential to every node. We use V
to denote A ∪ B. The algorithm maintains a matching M and a potential function
π with the property that

(a) w(e) ≤ π(a) + π(b) for every edge e = (a, b),

(b) w(e) = π(a) + π(b) for every edge e = (a, b) ∈M and

(c) π(b) = 0 for every free3 node b ∈ B.

Initially, M = ∅, π(a) = maxe∈E w(e) for every a ∈ A and π(b) = 0 for every b ∈ B.
The algorithm stops when M is a perfect matching4 or when it discovers that there
is no perfect matching. The algorithm works in phases. In each phase the size of the
matching is increased by one (or it is determined that there is no perfect matching).

A phase consists of the search for an augmenting path of minimum reduced cost.
An augmenting path is a path starting at a free node in A, ending at a free node
in B and using alternately edges not in M and in M . The reduced cost of an edge
e = (a, b) is defined as w(e) = π(a) + π(b) − w(e); observe that edges in M have
reduced cost zero and that all edges have non-negative reduced cost. The reduced
cost of a path is simply the sum of the reduced costs of the edges contained in it.
There is no need to search for augmenting paths from all free nodes in A; it suffices
to search for augmenting paths from a single arbitrarily chosen free node a0 ∈ A.

If no augmenting path starting in a0 exists, there is no perfect matching in G
and the algorithm stops. Otherwise, for every v ∈ V , let d(v) be the minimal
reduced cost of an alternating path from a0 to v. Let b0 ∈ B be a free node in B
which minimizes d(b) among all free nodes b in B. We update the potential function
according to the rules (we use π′ to denote the new potential function):

(d) π′(a) = π(a)−max(d(b0)− d(a), 0) for all a ∈ A,

(e) π′(b) = π(b) + max(d(b0)− d(b), 0) for all b ∈ B.

It is easy to see that this change maintains (a), (b), and (c) and that all edges on
the least cost alternating path p from a0 to b0 become tight5. We complete the
phase by switching the edges on p: matching edges on p become non-matching and
non-matching edges become matching edges. This increases the size of the matching
by one.6

A phase is tantamount to a SSMTSP problem: a0 is the source and the free
nodes are the targets. We want to determine a target (= free node) b0 with minimal
distance from a0 and the distance values of all nodes v with d(v) < d(b0). For nodes

3A node is free if no edge in M is incident to it.
4It is easy to see that M has maximal weight among all perfect matchings. Observe that if M ′ is

any perfect matching and π is any potential function such that (a) holds then w(M ′) ≤
∑
v∈V π(v).

If (b) also holds, we have a pair (M ′, π) with equality and hence the matching has maximal weight
(and the node potential has minimal weight among all potentials satisfying (a)).

5An edge is called tight if its reduced cost is zero.
6The correctness of the algorithm can be seen as follows. The algorithm maintains properties

(a), (b), and (c) and hence the current matching M is optimal in the following sense. Let Am be
the nodes in A that are matched. Then M is a maximal weight matching among the matchings
that match the nodes in Am and leave the nodes in A \ Am unmatched. Indeed if M ′ is any such
matching then w(M ′) ≤

∑
a∈Am π(a) +

∑
b∈B π(b) = w(M), where the inequality follows from (a)

and (c) and the equality follows from (b) and (c).

11

C n m LEDA− MS− LEDA+ MS+ LEDA∗ MS∗

U 10000 40000 24.31 8.98 24.84 9.10 26.28 9.38
U 10000 60000 33.25 6.63 34.36 6.69 36.33 6.58
U 10000 80000 35.81 4.90 36.59 4.54 38.10 4.53

U 20000 80000 83.19 30.17 88.12 30.58 91.00 31.73
U 20000 120000 114.65 21.45 119.10 21.70 124.96 22.63
U 20000 160000 131.01 14.29 134.42 14.03 140.73 14.86

U 40000 160000 287.28 107.38 304.81 108.43 317.21 108.70
U 40000 240000 420.63 78.71 445.44 78.52 461.37 78.21
U 40000 320000 458.53 46.28 481.13 45.34 502.95 46.19

R 10000 40000 1.53 1.09 1.38 0.88 1.03 0.69
R 10000 60000 5.11 2.66 4.63 2.36 3.73 1.94
R 10000 80000 15.60 6.91 14.89 6.75 13.43 6.12

R 20000 80000 3.35 2.29 2.65 1.84 2.02 1.46
R 20000 120000 11.06 5.76 10.16 5.16 8.22 4.26
R 20000 160000 36.60 15.30 36.50 14.76 33.36 13.47

R 40000 160000 7.33 4.99 5.79 4.01 4.41 3.20
R 40000 240000 24.51 12.65 22.58 11.36 18.38 9.49
R 40000 320000 86.86 35.62 83.29 33.70 75.85 30.65

L 10000 40000 10.19 7.30 10.26 7.33 9.43 7.01
L 10000 60000 15.25 9.27 14.32 8.94 14.04 8.63
L 10000 80000 17.33 10.30 17.21 10.06 16.14 9.70

L 20000 80000 27.09 19.86 28.19 20.22 27.07 19.35
L 20000 120000 46.65 28.43 45.98 28.22 42.26 26.77
L 20000 160000 57.13 31.74 56.03 31.89 53.14 29.78

L 40000 160000 89.37 60.92 85.00 59.24 83.48 60.50
L 40000 240000 151.47 87.55 150.83 87.04 148.62 88.47
L 40000 320000 174.69 97.19 175.29 96.40 171.17 95.57

Table 3. Effect of the pruning heuristic for the maximum-weight bipartite matching algo-
rithm. LEDA stands for LEDA’s bipartite matching algorithm (up to version LEDA-4.2)
as described in [MN99, Section 7.8] and MS stands for a modified implementation using the
pruning heuristic. We created random graphs with n vertices on each side of the bipartition
and m edges inbetween. U, R and L denote that random weights were chosen out of the
range [1], [1, . . . , 1000] and [1000, . . . , 1005], respectively. −, + and ∗ indicates whether no,
a greedy or a refined heuristic for constructing an initial matching was used. The running
time is stated in CPU-seconds and is an average of 5 trials.

v with d(v) ≥ d(b0), there is no need to know the exact distance. It suffices to know
that the distance is at least d(b0).

Table 3 shows the effect of the pruning heuristic for the bipartite matching al-
gorithm. LEDA stands for LEDA’s bipartite matching algorithm (up to version
LEDA-4.2) as described in [MN99, Section 7.8] and MS stands for a modified imple-
mentation with the pruning heuristic. We timed our algorithms in combination with
three heuristics for finding an initial matching: starting with an empty matching,
using a greedy matching or using a refined greedy heuristic (see [MN99, Section 7.8]
for details). The heuristics used to construct an initial matching have little influence
on the running time. The improved code will be part of LEDA Version 4.3.

References

[AMO93] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Prentice Hall, 1993.

12

[ASE92] N. Alon, J.H. Spencer, and P. Erdös. The Probabilistic Method. John Wiley &
Sons, 1992.

[Gal86] Z. Galil. Efficient algorithms for finding maximum matching in graphs. ACM
Computing Surveys, 18(1):23–37, 1986.

[MN99] K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geometric
Computing. Cambridge University Press, 1999. 1018 pages.

[MS00] K. Mehlhorn and G. Schäfer. Implementation of O(nmlogn) weighted match-
ings in general graphs: The power of data structures. In Workshop on Algo-
rithm Engineering (WAE), Lecture Notes in Computer Science, to appear, 2000.
http://www.mpi-sb.mpg.de/˜mehlhorn/ftp/WAE00.ps.gz

[Sch00] G. Schäfer. Weighted matchings in general graphs. Master’s thesis, Fachbereich
Informatik, Universität des Saarlandes, Saarbrücken, Germany, 2000.

13

http://www.mpi-sb.mpg.de/~mehlhorn/ftp/WAE00.ps.gz

	Introduction and Statement of Results
	Dijkstra's Algorithm with Many Targets
	Analysis
	Bipartite Matching Problems

