
Maintaining Shortest Paths in Digraphs withArbitrary Arc Weights: An Experimental Study?Camil Demetrescu, Daniele Frigioni, Alberto Marchetti-Spaccamela, andUmberto NanniDipartimento di Informatica e Sistemistica, Universit�a di Roma \La Sapienza",via Salaria 113, I-00198 Roma, Italy.fdemetres, frigioni, alberto, nannig@dis.uniroma1.itAbstract. We present the �rst experimental study of the fully dynamicsingle-source shortest paths problem in digraphs with arbitrary (negativeand non-negative) arc weights. We implemented and tested several vari-ants of the theoretically fastest fully dynamic algorithms proposed in theliterature, plus a new algorithm devised to be as simple as possible whilematching the best worst-case bounds for the problem. According to ex-periments performed on randomly generated test sets, all the considereddynamic algorithms are faster by several orders of magnitude than re-computing from scratch with the best static algorithm. The experimentsalso reveal that, although the simple dynamic algorithm we suggest isusually the fastest in practice, other dynamic algorithms proposed in theliterature yield better results for speci�c kinds of test sets.1 IntroductionThe problem of �nding e�cient dynamic solutions for shortest paths has at-tracted a lot of interest in the last years, motivated by theoretical as well aspractical applications. The problem is the following: we are given a graph Gand we want to answer queries on the shortest paths of G, while the graph ischanging due to insertions, deletions and weight updates of arcs. The goal is toupdate the information on the shortest paths more e�ciently than recomputingeverything from scratch after each update. If all the arc operations above areallowed, then we refer to the fully dynamic problem; if only insertions and weightdecreases (deletions and weight increases) of arcs are supported, then we referto the partially dynamic incremental (decremental) problem. The stated prob-lem is interesting on its own and �nds many important applications, includingnetwork optimization, document formatting, routing in communication systems,robotics. For a comprehensive review of the application settings for the staticand dynamic shortest paths problem, we refer to [1] and [15], respectively.Several theoretical results have been provided in the literature for the dy-namic maintenance of shortest paths in graphs with positive arc weights (see,? Partially supported by the IST Programme of the EU under contract n. IST-1999-14186 (ALCOM-FT).



e.g., [7, 9, 15, 16]). We are aware of few e�cient fully dynamic solutions for updat-ing shortest paths in general digraphs with arbitrary (positive and non-positive)arc weights [10,16].Recently, an equally important research e�ort has been done in the �eld ofalgorithm engineering, aiming at bridging the gap between theoretical resultson algorithms and their implementation and practical evaluation. Many papershave been proposed in this �eld concerning the practical performances of staticalgorithms for shortest paths (see e.g. [4, 5, 13]), but very little is known for theexperimental evaluation of dynamic shortest paths algorithms: [8] considers thefully dynamic single source shortest paths problem in digraphs with positive realarc weights. We are not aware of any experimental study in the case of arbitraryarc weights. On the other hand, several papers report on experimental worksconcerning di�erent dynamic graph problems (see e.g., [2, 3, 11]).In this paper we make a step toward this direction and we present the �rstexperimental study of the fully dynamic single-source shortest paths problemin digraphs with arbitrary (negative and non-negative) arc weights. We imple-mented and experimented several algorithms for updating shortest paths in di-graphs with arbitrary arc weights that undergo sequences of weight-increaseand weight-decrease operations. Our main goal was that of identifying with ex-perimental evidence the more convenient algorithm to use in practice in a fullydynamic setting. The starting points of our experimental study were the classicalBellman-Ford-Moore's algorithm (e.g., see [1]) and the fully dynamic algorithmsproposed by Ramalingam and Reps in [15, 16] and by Frigioni et al. in [10].The solution in [15,16] requires that all the cycles in the digraph before andafter any input update have positive length. It runs in O(jj�jj+ j�j log j�j) perupdate, where j�j is the number of nodes a�ected by the input change �, andjj�jj is the number of a�ected nodes plus the number of arcs having at least onea�ected endpoint. This gives O(m+ n logn) time in the worst case.The algorithm in [10] has a worst case complexity per update that de-pends on the output complexity of the update operation and on a structuralparameter of the graph called k-ownership. Weight-decrease operations requireO(minfm; knag logn) worst case time, while weight-increase operations requireO(minfm logn; k(na+nb) logn+ng) worst case time. Here na is the number ofa�ected nodes, and nb is the number of nodes considered by the algorithm andmaintaining both the distance and the parent in the shortest paths tree.The common idea behind these algorithms is to use a technique of Edmondsand Karp [6], which allows it to transform the weight of each arc in a digraphinto a non-negative real without changing the shortest paths, and to apply anadaptation of Dijkstra's algorithm to the modi�ed graph. Di�erently from thecase where all arc weights are non-negative (for which no e�cient dynamic worst-case solution is known), with this technique it is possible to reduce from O(mn)to O(m + n logn) the worst-case time of updating a shortest paths tree after achange of the weight of an arc in a graph with n nodes and m arcs.As a �rst contribution of the paper, we con�rm this claim from an exper-imental point of view. In particular, we observed that on randomly generatedtest sets, dynamic algorithms based on the technique of Edmonds and Karp



are experimentally faster by several orders of magnitude than recomputing fromscratch using the best static algorithm.The paper also suggests a simple dynamic algorithm that hinges upon thetechnique of Edmonds and Karp without using complex data structures. Thealgorithm was devised to be as simple as possible while matching the O(m +n logn) bound of the best previous dynamic algorithms for the problem.We implemented and experimentally evaluated all the aforementioned al-gorithms with the goal of improving their performance in practice. Experi-ments performed on randomly generated test sets showed that, though oursimple dynamic algorithm is usually the fastest in practice, both the algo-rithms of Ramalingam and Reps and a simpli�ed version of the algorithm ofFrigioni et al. yield better results for speci�c kinds of test sets, e.g., wherethe range of values of arc weights is small. Our implementations were writ-ten in C++ with the support of LEDA [14]. The experimental platform includ-ing codes, test sets generators and results can be accessed over the Internet atthe URL: ftp://www.dis.uniroma1.it/pub/demetres/experim/dsplib-1.1/and was designed to make experiments easily repeatable.2 Algorithms Under EvaluationLet G = (N;A;w) be a weighted directed graph with n = jN j nodes andm = jAjarcs, where w is function that associates to each (x; y 2 A a real weight wx;y,and let s 2 N be a �xed source node. If G does not contain negative cycles,then, for each x 2 N , we denote as d(x) the minimum distance of x from s, andas T (s) a shortest paths tree of G rooted at s. For each x 2 N , T (x) denotesthe subtree of T (s) rooted at x, p(x) denotes the parent of x in T (s), and in(x)and out(x) denote the arcs of A incoming and outgoing x, respectively. The wellknown optimality condition of the distances of the nodes of a digraph G = (N;A)states that, for each (z; q) 2 A, d(q) � d(z)+wz;q (see, e.g., [1]). The new shortestpaths tree in the graph G0, obtained from G after an arc update, is denoted asT 0(s), while d0(x) and p0(x) denote the distance and the parent of x after theupdate, respectively.We assume that the digraph G before an arc update does not contain negativecycles, and consider digraphs that undergo sequences of decrease and increaseoperations on the weights of arcs (insert and delete operations, respectively, canbe handled analogously). We say that a node is a�ected by an input update if itchanges the distance from the source due to that update.Every time a dynamic change occurs in the digraph, we have two possibilitiesto update the shortest paths: either we recompute everything from scratch byusing the best static algorithm, or we apply dynamic algorithms. In the followingwe analyze in detail these possibilities.2.1 Static AlgorithmsThe best static algorithm for solving the shortest paths problem in the case ofgeneral arc weights is the classical Bellman-Ford-Moore's algorithm [1,14] (inshort, BFM). Many di�erent versions of BFM have been provided in the literature



(see [1] for a wide variety). The worst case complexity of all these variants isO(mn). In [5] the authors show that the practical performances of BFM can beimproved by using simple heuristics. In particular, they show that the heuristicimprovement of BFM given in [13] is the fastest in practice. However, from atheoretical point of view, nothing better than the O(mn) worst case bound isknown. In our experiments, we considered the LEDA implementation of BFM.2.2 Fully Dynamic AlgorithmsWe implemented the following fully dynamic algorithms: 1) the algorithm in [10],referred as FMN; 2) the algorithm in [16], referred as RR; 3) a simple variant ofFMN, denoted as DFMN; 4) a new simple algorithm we suggest, denoted as DF.The common idea behind all these algorithms is to use a technique of Ed-monds and Karp [6], which allows it to transform the weight of each arc in adigraph into a non-negative real without changing the shortest paths. This isdone as follows: after an input update, for each (z; v) 2 A, replace wz;v with thereduced weight rz;v = d(z) + wz;v � d(v), and apply an adaptation of Dijkstra'salgorithm to the modi�ed graph. The computed distances represent changes tothe distances since the update. The actual distances of nodes after the updatecan be easily recovered from the reduced weights. This allows it to reduce fromO(mn) to O(m + n logn) the worst-case time of updating a shortest paths treeafter a change of the weight of an arc in a digraph with n nodes and m arcs.In what follows we give the main idea of the implemented algorithms tohandle decrease and increase operations. For more details we refer to [10, 15, 16].Weight decrease operations. Concerning the case of a decrease operation on arc(x; y), all the implemented algorithms basically update the shortest paths infor-mation by a Dijkstra's computation performed starting from node y, accordingto the technique of Edmonds and Karp. In Dijkstra's computation, when a nodez is permanently labeled, all arcs (z; h) are traversed and the priority of h in thepriority queue is possibly updated.The only exception concerns FMN, where the following technique is exploitedto bound the number of traversed arcs. For each node z, the sets in(z) andout(z) are partitioned into two subsets as follows. For each x 2 N , in-own(x)denotes the subset of in(x) containing the arcs owned by x, and in-own(x) =in(x)� in-own(x) denotes the set of arcs in in(x) not owned by x. Analogously,out-own(x) and out-own(x) represent the arcs in out(x) owned and notowned by x, respectively. DigraphG admits a k-ownership if, for all nodes x, bothin-own(x) and out-own(x) contain at most k arcs (see [9] for more details).Finally, the arcs in in-own(x) (out-own(x)) are stored in a min-based (max-based) priority queue where the priority of arc (y; x) ((x; y)) is the quantityd(y) + wy;x (d(y) � wx;y). When the new distance of a node z is computed theabove partition allows it to traverse only the arcs (z; h) in out-own(z) and thosein out-own(z), such that h is a�ected as well. This is possible by exploiting thepriority of the arcs in out-own(z).Weight increase operations. In the case of an increase of the weight of on arc(x; y) of a positive quantity �, the implemented algorithms work in two phases.



First they �nd the a�ected nodes and then compute the new distances for thea�ected nodes. The second phase is essentially the same for all the algorithms,and consists of a Dijkstra's computation on the subgraph of G induced by thea�ected nodes, according to the technique of Edmonds and Karp. The maindi�erences concern the �rst phase. As we will see, the only exception concernsDF, which avoids computing the �rst phase.- FMN. The �rst phase of FMN is performed by collecting the nodes in a set M ,extracting them one by one, and searching an alternative shortest path from s.To this aim, for each a�ected node z considered, only the arcs (h; z) in in-own(z)and those in in-own(z), such that h is a�ected as well, are traversed. This ispossible by exploiting the priority of the arcs in in-own(z). This phase is quitecomplicated since it also handles zero cycles in an output bounded fashion.- DFMN. The main di�erence of DFMN with respect to FMN is the elimination ofthe partition of arcs in owned and not-owned, that increases the number of arcstraversed (wrt FMN), but allows us to obtain a simpler and faster code.- RR. Concerning RR, observe that it maintains a subset SP of the arcs ofG, containing the arcs of G that belong to at least one shortest path from sto the other nodes of G. The digraph with node set N and arc set SP is adag denoted as SP (G). As a consequence, RR works only if all the cycles inthe digraph, before and after any input update, have positive length. In fact,if zero cycles are allowed, then all of these cycles that are reachable from thesource will belong to SP (G), which will no longer be a dag. The �rst phase of RR�nds the a�ected nodes as follows. It maintains a work set containing nodes thathave been identi�ed as a�ected, but have not yet been processed. Initially, y isinserted in that set only if there are no further arcs in SP (G) entering y afterthe operation. Nodes in the work set are processed one by one, and when node uis processed, all arcs (u; v) leaving u are deleted from SP (G), and v is insertedin the work set. All nodes that are identi�ed as a�ected during this phase areinserted in the work set.- DF. Now we briey describe the main features of DF, in the case of an increaseoperation. DF maintains a shortest paths tree of the digraph G, and is able todetect the introduction of a negative cycle in the subgraph of G reachable fromthe source, as a consequence of an insert or a decrease operation. Zero cyclesdo not create any problem to the algorithm. Di�erently from RR and FMN, thealgorithm has not been devised to be e�cient in output bounded sense, but to befast in practice, and costs O(m+n logn) in the worst case. The algorithm consistsof two phases called Initializing and Updating. The Initializing phasemarks the nodes in T (y) and, for each marked node v, �nds the best unmarkedneighbor p in in(v). This is done to �nd a path (not necessarily a shortest path)from s to v in G0 whose length is used to compute the initial priority of v in thepriority queue H of the Updating phase. If p 6= nil and d(p) + wp;v � d(v) < �then this priority is computed as d(p)+wp;v � d(v), otherwise it is initialized to�, which is the variation of y's distance. In both cases the initial priority of thenode is an upper bound on the actual variation. The Updating phase properlyupdates the information on the shortest paths from s to the marked nodes byperforming a computation analogous to Dijkstra's algorithm.



In general, FMN and RR perform the Dijkstra's computation on a set of nodeswhich is a subset of the nodes considered by the Updating phase of DF. TheInitializing phase of DF simply performs a visit of the subgraph of G inducedby the arcs in in(z), for each node z in T (y), in order to �nd a temporary parentof z in the current shortest paths tree. This shows that DF is not output bounded.3 Experimental SetupIn this section we describe our experimental framework, presenting the probleminstances generators, the performance indicators we consider, and some relevantimplementation details. All codes being compared have been implemented bythe authors as C++ classes using advanced data types of LEDA [14] (version3.6.1). Our experiments were performed on a SUN Workstation Sparc Ultra 10with a single 300 MHz processor and 128 MB of main memory running UNIXSolaris 5:7. All C++ programs were compiled by the GNU g++ compiler version1:1:2 with optimization level O4. Each experiment consisted of maintaining boththe distance of nodes from the source and the shortest paths tree in a randomdirected graph by means of algorithms BFM, FMN, DFMN, RR and DF upon a randommixed sequence of increase and decrease operations. In the special case of BFM,after each update the output structures were rebuilt from scratch.3.1 Graph and Sequence GeneratorsWe used four random generators for synthesizing the graphs and the sequencesof updates:{ gen graph(n,m,s,min,max): builds a random directed graph with n nodes,m arcs and integer arc weights w s.t. min� w � max, forming no negativeor zero length cycle and with all nodes reachable from the source node s.Reachability from the source is obtained by �rst generating a connectingpath through the nodes as suggested in [5]; remaining arcs are then added byuniformly and independently selecting pairs of nodes in the graph. To avoidintroducing negative and zero length cycles we use the potential methoddescribed in [12].{ gen graph z(n,m,s,min,max): similar to gen graph, but all cycles in thegenerated graphs have exactly length zero.{ gen seq(G,q,min,max): issues a mixed sequence of q increase and decreaseoperations on arcs chosen at random in the graph G without introducingnegative and zero length cycles. Weights of arcs are updated so that theyalways �t in the range [min,max]. Negative and zero length cycles are avoidedby using the same potentials used in the generation of weights of arcs of G.Optionally, the following additional constraints are supported:� Modifying Sequence: each increase or decrease operation is chosen amongthe operations that actually modify some shortest path from the source.� Alternated Sequence: the sequence has the form increase-decrease-increase-decrease: : :, where each pair of consecutive increase-decrease updates isperformed on the same arc.{ gen seq z(G,q,min,max): similar to gen seq, but the update operations inthe generated sequences force cycles in the graph G to have length zero.



All our generators are based on the LEDA pseudo-random source of numbers.We initialized the random source with a di�erent odd seed for each graph andsequence we generated.3.2 Performance IndicatorsWe considered several performance indicators for evaluating and comparing thedi�erent codes. In particular, for each experiment and for each code we measured:(a) the average running time per update operation during the whole sequence ofupdates; (b) the average number of nodes processed in the distance-update phaseof algorithms. Again, this is per update operation during the whole sequence ofupdates.Indicator (b) is very important in an output-bounded sense as it measures theactual portion of the shortest paths tree for which the dynamic algorithms per-form high-cost operations such as extractions of minima from a priority queue.It is interesting to observe that, if an increase operation is performed on an arc(x; y), the value of the indicator (b) measured for both RR and DFMN reports thenumber of a�ected nodes that change their distance from the source after theupdate, while the value of (b) measured for DF reports the number of nodes inthe shortest paths tree rooted at y before the update.Other measured indicators were: (c) the maximum running time per updateoperation; (d) the average number of scanned arcs per update operation duringthe whole sequence of updates; (e) the total time required for initializing thedata structures.The running times were measured by the UNIX system call getrusage() andare reported in milliseconds. Indicators (b) and (d) were measured by annotatingthe codes with probes. The values of all the indicators are obtained by averagingover 15 trials. Each trial consists of a graph and a sequence randomly generatedthrough gen graph or gen graph z and gen seq or gen seq z, respectively, andis obtained by initializing the pseudo-random generator with a di�erent seed.3.3 Implementation DetailsWe put e�ort to implementing algorithms DFMN, RR and DF in such a way thattheir running times can be compared as fairly as possible. In particular, weavoided creating \out of the paper" implementations of algorithms DFMN andRR. For example, in RR we do not explicitly maintain the shortest paths dagSP so as to avoid additional maintenance overhead that may penalize RR whencompared with the other algorithms. Instead, we tried to keep in mind the high-level algorithmic ideas while devising fast codes.For these reasons, we used just one code for performing decrease and we fo-cused on hacking and tweaking codes for increase. We believe that the e�ect ofusing LEDA data structures does not a�ect the relative performance of di�erentalgorithms. More details about our codes can directly be found in our experi-mental package distributed over the Internet. In the remainder of this paper, werefer to ALL-DECR as the decrease code and to DFMN, RR and DF as the increasecodes.



2.63
3.034

3.864

4.484

5.481

6.549
6.941

8.261

2.318

4.037

5.068
5.547

6.647

2.816

3.328

3.813 3.882

4.501

0.757 0.729 0.907 1.052
1.265

1.491 1.574
1.873

1.5881.387

3.008

1.9691.944

2.484

0

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8 9 10 11

Arc Weight Interval [-2k,2k]

A
ve

ra
ge

 R
un

ni
ng

 T
im

e 
pe

r 
O

pe
ra

ti
on

 (
m

se
c) DFMN

RR

DF

ALL-DECR

n=300, m=0.5n 2=45000

0.78 0.9

1.46

2.03

2.84

3.65

4.02

4.89

2.09 2.14

2.84

3.21

3.78

4.35 4.45

5.16

1.79 1.77

2.35

2.75

3.32

3.98
4.2

5.05

0

1

2

3

4

5

6

2 3 4 5 6 7 8 9 10 11

Arc Weight Interval [-2k,2k]

A
ve

ra
ge

 P
ro

ce
ss

ed
 N

od
es

 p
er

 O
pe

ra
ti

on

DFMN/RR

DF

ALL-DECR

n=300, m=0.5n 2=45000

Fig. 1. Experiments performed with n = 300 and m = 0:5n2 = 45000 for arc weightintervals increasing from [�8;8] to [�1024; 1024].4 Experimental ResultsThe goal of this section is to identify with experimental evidence the more conve-nient algorithm to use in practice in a fully dynamic environment. We performedseveral experiments on random graphs and random update sequences for di�er-ent parameters de�ning the test sets aiming at comparing and separating theperformances of the di�erent algorithms.Preliminary tests proved that, due to its complex data structures, FMN is notpractical neither for decrease nor for increase operations, and so we focused onstudying the performances of its simpli�ed version DFMN.Our �rst experiment showed that the time required by an increase may sig-ni�cantly depend upon the width of the interval of the arc weights in the graph:{ Increasing arc weight interval: we ran our DFMN, RR and DF codes on mixedsequences of 2000 modifying update operations performed on graphs with300 nodes and m = 0:5n2 = 45000 arcs and with arc weights in the range[�2k; 2k] for values of k increasing from 3 to 10. The results of this testfor increase operations are shown in Figure 1. It is interesting to note thatthe smaller is the width of the arc weight interval, the larger is the gapbetween the number of a�ected nodes considered by RR during any increaseoperation on an arc (x; y), and the number of nodes in T (y) scanned by DF.In particular, RR is faster than DF for weight intervals up to [�32; 32], while



7.38

65.88

259.98

0.267

0.451

26.71

686.14

4.1513.582
2.667

1.661

0.849 1.803
1.941

1.353
0.927

0.541

3.0352.591
1.889

1.114

0.552
0.97

1.09

0.683

0.1

1

10

100

1000

0 100 200 300 400 500 600

Number of Nodes

A
ve

ra
ge

 R
un

ni
ng

 T
im

e 
pe

r 
O

pe
ra

ti
on

 (
m

se
c)

BFM

DFMN

RR

DF

ALL-DECR

m=0.5n 2, Arc Weights in [-10,10]

17.984

625.325

4.147

7.354
11.384

1.653
2.312 2.787

353.704

175.012

67.831

13.744

1.478

10.784
8.918

5.79

1.137

3.34

7.3836.108

0.807

2.191

3.966

0.988
0.435

0.1

1

10

100

1000

0 100 200 300 400 500 600

Number of Nodes

A
ve

ra
ge

 R
un

ni
ng

 T
im

e 
pe

r 
O

pe
ra

ti
on

 (
m

se
c) BFM

DFMN
RR
DF
ALL-DECR

m=0.5n 2, Edge Weights in [-1000,1000]Fig. 2. Experiments performed with 100 � n � 500 and m = 0:5n2 for arc weights inthe range [�10; 10] and [�1000; 1000].DF improves upon RR for larger intervals. This experimental result agreeswith the fact that RR is theoretically e�cient in output bounded sense, butspends more time than DF for identifying a�ected nodes. The capacity ofidentifying a�ected nodes even in presence of zero cycles penalizes DFMN thatis always slower than RR and DF on these problem instances with no zerocycles.In our second suite of experiments, we ran BFM, DFMN, RR and DF codes on ran-dom sequences of 2000 modifying updates performed both on dense and sparsegraphs with no negative and zero cycles and for two di�erent ranges of the arcsweights. In particular, we performed two suites of tests:{ Increasing number of nodes: we measured the running times on dense graphswith 100 � n � 500 and m = 0:5n2 for arc weights in [�10; 10] and[�1000; 1000]. We repeated the experiment on larger sparse graphs with1000 � n � 3000 and m = 30n for the same arc weights intervals and wefound that the performance indicators follow the same trend of those of densegraphs that are shown in Figure 2. This experiment agrees with the �rst oneand con�rms that, on graphs with arc density 50%, DF beats RR for largeweight intervals and RR beats DF for small weight intervals. Notice that thedynamic codes we considered are better by several orders of magnitude thanrecomputing from scratch through the LEDA BFM code.



1.898

2.698

3.437

1.057

1.377

1.682 1.6551.342

1.899

2.435

2.963

0.262

0.513
0.684

0.891
0.976

0.821

3.98

0.645

0.517
0.595

0.479

0.572

0.28
0

1

2

3

4

0 1 2 3 4 5 6 7 8 9

Number of Edges x 10000

A
ve

ra
ge

 R
un

ni
ng

 T
im

e 
pe

r 
O

pe
ra

tio
n 

(m
se

c) DFMN

RR

DF

ALL-DECR

300 Nodes, Edge Weights in [-10,10]

1.051
1.653

2.284

13.706

10.606

7.265

4.528

1.453
0.824

3.74

5.887

10.686

8.357

0.758
1.279

2.462

3.954

5.679

7.309

0.58
0.887

2.801

0.4560.360

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9

Number of Edges

A
ve

ra
ge

 R
un

ni
ng

 T
im

e 
pe

r 
O

pe
ra

ti
on

 (
m

se
c) DFMN

RR

DF

ALL-DECR

300 Nodes, Edge Weights in [-1000,1000]

1.82

0.98
0.78

0.65
0.43

4.06

2.51

2.07
1.93 1.86

2.51

1.97

1.64 1.62
1.41

2.82

3.113.44

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9

Number of Edges x 10000

A
ve

ra
ge

 P
ro

ce
ss

ed
 N

od
es

 p
er

 O
pe

ra
tio

n

DFMN/RR

DF

ALL-DECR

300 Nodes, Edge Weights in [-10,10]

4.65

4.31 4.35
4.27

4.81

4.55

4.69 4.73

4.68

4.39

4.97

5.17

5.24

5

4.55

4.52

4.93

5.32

3

3.5

4

4.5

5

5.5

0 1 2 3 4 5 6 7 8 9

Number of Edges

A
ve

ra
ge

 P
ro

ce
ss

ed
 N

od
es

 p
er

 O
pe

ra
ti

on

DFMN/RR

DF

ALL-DECR

300 Nodes, Edge Weights in [-1000,1000]

Fig. 3. Experiments performed with n = 300, 0:05n2 � m � 0:9n2 for arc weights inthe range [�10; 10] and [�1000; 1000].



{ Increasing number of arcs: we retained both the running times and the num-ber of nodes processed in the distance-update phase of algorithms on densegraphs with n = 300 and 0:05n2 � m � 0:9n2 for arc weights in [�10; 10]and [�1000; 1000].We repeated the experiment on larger sparse graphs withn = 2000 and 10n � m � 50n for the same arc weights intervals and againwe found similar results. Performance indicators for this experiment on densegraphs are shown in Figure 3 and agree with the ones measured in the �rsttest for what concerns the arc weight interval width. However, it is interest-ing to note that even for small weight ranges, if the arc density is less than10%, the running time of DF slips beneath that of RR.As from the previous tests our DFMN code is always slower than RR and DF,our third experiment aims at investigating if families of problem instances existfor which DFMN is a good choice for a practical dynamic algorithm. As it is ableto identify a�ected nodes even in presence of zero cycles, we were not surprisedto see that DFMN beats in practice DF in a dynamic setting where graphs havemany zero cycles. We remark that RR is not applicable in this context.{ Increasing number of arcs and zero cycles: we ran DFMN and DF codes on ran-dom graphs with 2000 nodes, 10n � m � 50n, weights in [�10; 10], all zerocycles, and subject to 2000 random alternated and modifying updates persequence. We used generators gen graph z and gen seq z to build the inputsamples. Figure 4 shows the measured running times of increase operationsfor this experiment.
0.472

0.568

0.689

0.853

0.937

0.829

1.081
1.133

0.7

0.574

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11

Number of Edges x 10000

A
ve

ra
ge

 R
un

ni
ng

 T
im

e 
pe

r 
O

pe
ra

ti
on

 (
m

se
c)

DFMN

DF

n=2000, Arc Weights in [-10,10]Fig. 4. Experiments performed with n = 2000, 10n � m � 50n for arc weights in[�10; 10]. All cycles have zero length during updates.Performance indicators (c), (d) and (e) provided no interesting additionalhint on the behavior of the algorithms and therefore we omit them from ourdiscussion: the interested reader can �nd in the experimental package the detailedresults tables of our tests.



5 Future WorkThe continuation of the present work is along two directions: (1) Performingexperiments on graphs from real life; (2) Reimplementing the algorithms in theC language, without the support of LEDA, with the goal of testing algorithmson larger data sets.References1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithmsand Applications. Prentice Hall, Englewood Cli�s, NJ, 1993.2. D. Alberts, G. Cattaneo, and G. F. Italiano. An empirical study of dynamic graphalgorithms. ACM Journal on Experimental Algorithmics, 2:Article 5, 1997.3. G. Amato, G. Cattaneo, and G. F. Italiano. Experimental analysis of dynamicminimum spanning tree algorithms. In ACM-SIAM Symp. on Discrete Algorithms,pp. 1{10, 1997.4. B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms. InEuropean Symp. on Algorithms. Lect. Notes in Comp. Sc. 1136, pp. 349{363, 1996.5. B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest paths algorithms: The-ory and experimental evaluation. Mathematical Programming, 73:129{174, 1996.6. J. Edmonds, R. M. Karp. Theoretical improvements in algorithmic e�ciency fornetwork ow problems. Journal of the ACM, 19:248{264, 1972.7. P. G. Franciosa, D. Frigioni, and R. Giaccio. Semi-dynamic shortest paths andbreadth-�rst search on digraphs. In Symp. on Theoretical Aspects of ComputerScience. Lect. Notes in Comp. Sc. 1200, pp. 33{46, 1997.8. D. Frigioni, M. Io�reda, U. Nanni, G. Pasqualone. Experimental Analysis of Dy-namic Algorithms for the Single Source Shortest Path Problem. ACM Journal onExperimental Algorithmics, 3:Article 5 (1998).9. D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic algorithmsfor maintaining shortest paths trees. Journal of Algorithms, 34(2):351{381, 2000.10. D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic shortest pathsand negative cycles detection on digraphs with arbitrary arc weights. In EuropeanSymp. on Algorithms. Lect. Notes in Comp. Sc. 1461, pp. 320{331, 1998.11. D. Frigioni, T. Miller, U. Nanni, G. Pasqualone, G. Shaefer, C. Zaroliagis. Anexperimental study of dynamic algorithms for directed graphs. In European Symp.on Algorithms. Lect. Notes in Comp. Sc. 1461, pp. 368{380, 1998.12. A. V. Goldberg. Selecting problems for algorithm evaluation. In Workshop onAlgorithm Engineering. Lect. Notes in Comp. Sc. 1668, pp. 1{11, 1999.13. A. V. Goldberg, and T. Radzik. A heuristic improvement of the Bellman-Fordalgorithm. Applied Math. Letters, 6:3{6, 1993.14. K. Mehlhorn and S. Naher. leda, a platform for combinatorial and geometriccomputing. Communications of the ACM, 38:96{102, 1995.15. G. Ramalingam. Bounded incremental computation. Lect. Notes in Comp. Sc.1089, 1996.16. G. Ramalingam and T. Reps. On the computational complexity of dynamic graphproblems. Theoretical Computer Science, 158:233{277, 1996.


