Maintaining Shortest Paths in Digraphs with
Arbitrary Arc Weights: An Experimental Study*

Camil Demetrescu, Daniele Frigioni, Alberto Marchetti-Spaccamela, and
Umberto Nanni

Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”,
via Salaria 113, [-00198 Roma, Italy.
{demetres, frigioni, alberto, nanni}@dis.uniromal.it

Abstract. We present the first experimental study of the fully dynamic
single-source shortest paths problem in digraphs with arbitrary (negative
and non-negative) arc weights. We implemented and tested several vari-
ants of the theoretically fastest fully dynamic algorithms proposed in the
literature, plus a new algorithm devised to be as simple as possible while
matching the best worst-case bounds for the problem. According to ex-
periments performed on randomly generated test sets, all the considered
dynamic algorithms are faster by several orders of magnitude than re-
computing from scratch with the best static algorithm. The experiments
also reveal that, although the simple dynamic algorithm we suggest is
usually the fastest in practice, other dynamic algorithms proposed in the
literature yield better results for specific kinds of test sets.

1 Introduction

The problem of finding efficient dynamic solutions for shortest paths has at-
tracted a lot of interest in the last years, motivated by theoretical as well as
practical applications. The problem is the following: we are given a graph G
and we want to answer queries on the shortest paths of (G, while the graph is
changing due to insertions, deletions and weight updates of arcs. The goal is to
update the information on the shortest paths more efficiently than recomputing
everything from scratch after each update. If all the arc operations above are
allowed, then we refer to the fully dynamic problem;if only insertions and weight
decreases (deletions and weight increases) of arcs are supported, then we refer
to the partially dynamic incremental (decremental) problem. The stated prob-
lem 1s interesting on its own and finds many important applications, including
network optimization, document formatting, routing in communication systems,
robotics. For a comprehensive review of the application settings for the static
and dynamic shortest paths problem, we refer to [1] and [15], respectively.
Several theoretical results have been provided in the literature for the dy-
namic maintenance of shortest paths in graphs with positive arc weights (see,

* Partially supported by the IST Programme of the EU under contract n. IST-1999-
14186 (ALCOM-FT).

e.g.,[7,9,15,16]). We are aware of few efficient fully dynamic solutions for updat-
ing shortest paths in general digraphs with arbitrary (positive and non-positive)
arc weights [10,16].

Recently, an equally important research effort has been done in the field of
algorithm engineering, aiming at bridging the gap between theoretical results
on algorithms and their implementation and practical evaluation. Many papers
have been proposed in this field concerning the practical performances of static
algorithms for shortest paths (see e.g. [4,5,13]), but very little is known for the
experimental evaluation of dynamic shortest paths algorithms: [8] considers the
fully dynamic single source shortest paths problem in digraphs with positive real
arc weights. We are not aware of any experimental study in the case of arbitrary
arc weights. On the other hand, several papers report on experimental works
concerning different dynamic graph problems (see e.g., [2,3,11]).

In this paper we make a step toward this direction and we present the first
experimental study of the fully dynamic single-source shortest paths problem
in digraphs with arbitrary (negative and non-negative) arc weights. We imple-
mented and experimented several algorithms for updating shortest paths in di-
graphs with arbitrary arc weights that undergo sequences of weight-increase
and weight-decrease operations. Our main goal was that of identifying with ex-
perimental evidence the more convenient algorithm to use in practice in a fully
dynamic setting. The starting points of our experimental study were the classical
Bellman-Ford-Moore’s algorithm (e.g., see [1]) and the fully dynamic algorithms
proposed by Ramalingam and Reps in [15,16] and by Frigioni et al. in [10].

The solution in [15, 16] requires that all the cycles in the digraph before and
after any input update have positive length. It Tuns in O(]|6|| + |§]log |d]) per
update, where || is the number of nodes affected by the input change &, and
[10]] is the number of affected nodes plus the number of arcs having at least one
affected endpoint. This gives O(m + nlogn) time in the worst case.

The algorithm in [10] has a worst case complexity per update that de-
pends on the output complexity of the update operation and on a structural
parameter of the graph called k-ownership. Weight-decrease operations require
O(min{m, kn,} logn) worst case time, while weight-increase operations require
O(min{mlogn, k(ns+ny) logn+n}) worst case time. Here n, is the number of
affected nodes, and ny 1s the number of nodes considered by the algorithm and
maintaining both the distance and the parent in the shortest paths tree.

The common idea behind these algorithms is to use a technique of Edmonds
and Karp [6], which allows it to transform the weight of each arc in a digraph
into a non-negative real without changing the shortest paths, and to apply an
adaptation of Dijkstra’s algorithm to the modified graph. Differently from the
case where all arc weights are non-negative (for which no efficient dynamic worst-
case solution is known), with this technique it is possible to reduce from O(mn)
to O(m + nlogn) the worst-case time of updating a shortest paths tree after a
change of the weight of an arc in a graph with n nodes and m arcs.

As a first contribution of the paper, we confirm this claim from an exper-
imental point of view. In particular, we observed that on randomly generated
test sets, dynamic algorithms based on the technique of Edmonds and Karp

are experimentally faster by several orders of magnitude than recomputing from
scratch using the best static algorithm.

The paper also suggests a simple dynamic algorithm that hinges upon the
technique of Edmonds and Karp without using complex data structures. The
algorithm was devised to be as simple as possible while matching the O(m +
nlogn) bound of the best previous dynamic algorithms for the problem.

We implemented and experimentally evaluated all the aforementioned al-
gorithms with the goal of improving their performance in practice. Experi-
ments performed on randomly generated test sets showed that, though our
simple dynamic algorithm is usually the fastest in practice, both the algo-
rithms of Ramalingam and Reps and a simplified version of the algorithm of
Frigioni et al. yield better results for specific kinds of test sets, e.g., where
the range of values of arc weights is small. Our implementations were writ-
ten in C++ with the support of LEDA [14]. The experimental platform includ-
ing codes, test sets generators and results can be accessed over the Internet at
the URL: ftp://www.dis.uniromal.it/pub/demetres/experim/dsplib-1.1/
and was designed to make experiments easily repeatable.

2 Algorithms Under Evaluation

Let G = (N, A, w) be a weighted directed graph with n = |N| nodes and m = | A]
arcs, where w is function that associates to each (z,y € A a real weight wy 4,
and let s € N be a fixed source node. If G does not contain negative cycles,
then, for each z € N, we denote as d(x) the minimum distance of z from s, and
as T'(s) a shortest paths tree of GG rooted at s. For each # € N, T'(x) denotes
the subtree of T'(s) rooted at #, p(x) denotes the parent of # in T'(s), and IN(x)
and oUT(z) denote the arcs of A incoming and outgoing #, respectively. The well
known optimality condition of the distances of the nodes of a digraph G = (N, A)
states that, for each (z,¢) € A, d(¢) < d(2)+w, 4 (see, e.g., [1]). The new shortest
paths tree in the graph G’, obtained from G after an arc update, is denoted as
T’(s), while d'(z) and p'(x) denote the distance and the parent of x after the
update, respectively.

We assume that the digraph G before an arc update does not contain negative
cycles, and consider digraphs that undergo sequences of decrease and increase
operations on the weights of arcs (insert and delete operations, respectively, can
be handled analogously). We say that a node is affected by an input update if it
changes the distance from the source due to that update.

Every time a dynamic change occurs in the digraph, we have two possibilities
to update the shortest paths: either we recompute everything from scratch by
using the best static algorithm, or we apply dynamic algorithms. In the following
we analyze in detail these possibilities.

2.1 Static Algorithms

The best static algorithm for solving the shortest paths problem in the case of
general arc weights is the classical Bellman-Ford-Moore’s algorithm [1,14] (in
short, BFM). Many different versions of BFM have been provided in the literature

(see [1] for a wide variety). The worst case complexity of all these variants is
O(mn). In [5] the authors show that the practical performances of BFM can be
improved by using simple heuristics. In particular, they show that the heuristic
improvement of BFM given in [13] is the fastest in practice. However, from a
theoretical point of view, nothing better than the O(mn) worst case bound is
known. In our experiments, we considered the LEDA implementation of BFM.

2.2 Fully Dynamic Algorithms

We implemented the following fully dynamic algorithms: 1) the algorithmin [10],
referred as FMN; 2) the algorithm in [16], referred as RR; 3) a simple variant of
FMN, denoted as DFMN; 4) a new simple algorithm we suggest, denoted as DF.
The common idea behind all these algorithms is to use a technique of Ed-
monds and Karp [6], which allows it to transform the weight of each arc in a
digraph into a non-negative real without changing the shortest paths. This is
done as follows: after an input update, for each (z,v) € A, replace w, , with the
reduced weight v, , = d(z) + w, , — d(v), and apply an adaptation of Dijkstra’s
algorithm to the modified graph. The computed distances represent changes to
the distances since the update. The actual distances of nodes after the update
can be easily recovered from the reduced weights. This allows it to reduce from
O(mn) to O(m + nlogn) the worst-case time of updating a shortest paths tree
after a change of the weight of an arc in a digraph with n nodes and m arcs.
In what follows we give the main idea of the implemented algorithms to
handle decrease and increase operations. For more details we refer to [10, 15, 16].

Weight decrease operations. Concerning the case of a decrease operation on arc
(z,y), all the implemented algorithms basically update the shortest paths infor-
mation by a Dijkstra’s computation performed starting from node y, according
to the technique of Edmonds and Karp. In Dijkstra’s computation, when a node
z is permanently labeled, all arcs (z, h) are traversed and the priority of h in the
priority queue is possibly updated.

The only exception concerns FMN, where the following technique is exploited
to bound the number of traversed arcs. For each node z, the sets IN(z) and
OUT(z) are partitioned into two subsets as follows. For each # € N, IN-oWN(z)
denotes the subset of IN(#) containing the arcs owned by #, and TN-OWN(z) =
IN(2) — IN-OWN(x) denotes the set of arcs in IN(#) not owned by z. Analogously,
OUT-OWN(z) and OUT-OWN(x) represent the arcs in oUT(z) owned and not
owned by z, respectively. Digraph G admits a k-ownership if, for all nodes z, both
IN-OWN(2) and OUT-OWN(z) contain at most k arcs (see [9] for more details).
Finally, the arcs in IN-OWN(z) (OUT-OWN(z)) are stored in a min-based (max-
based) priority queue where the priority of arc (y,#) ((#,y)) is the quantity
d(y) + wy e (d(y) — wey). When the new distance of a node z is computed the
above partition allows it to traverse only the arcs (z, h) in oUT-OWN(z) and those
in OUT-OWN(z), such that h is affected as well. This is possible by exploiting the
priority of the arcs in OUT-OWN(z).

Weight increase operations. In the case of an ncrease of the weight of on arc
(z,y) of a positive quantity ¢, the implemented algorithms work in two phases.

First they find the affected nodes and then compute the new distances for the
affected nodes. The second phase is essentially the same for all the algorithms,
and consists of a Dijkstra’s computation on the subgraph of G induced by the
affected nodes, according to the technique of Edmonds and Karp. The main
differences concern the first phase. As we will see, the only exception concerns
DF, which avoids computing the first phase.

- FMN. The first phase of FMN is performed by collecting the nodes in a set M,
extracting them one by one, and searching an alternative shortest path from s.
To this aim, for each affected node z considered, only the arcs (h, z) in IN-OWN(z)
and those in IN-OWN(z), such that h is affected as well, are traversed. This is
possible by exploiting the priority of the arcs in INNOWN(z). This phase is quite
complicated since 1t also handles zero cycles in an output bounded fashion.

- DFMN. The main difference of DFMN with respect to FMN is the elimination of
the partition of arcs in owned and not-owned, that increases the number of arcs
traversed (wrt FMN), but allows us to obtain a simpler and faster code.

- RR. Concerning RR, observe that it maintains a subset SP of the arcs of
G, containing the arcs of GG that belong to at least one shortest path from s
to the other nodes of G. The digraph with node set N and arc set SP is a
dag denoted as SP((). As a consequence, RR works only if all the cycles in
the digraph, before and after any input update, have positive length. In fact,
if zero cycles are allowed, then all of these cycles that are reachable from the
source will belong to SP(G), which will no longer be a dag. The first phase of RR
finds the affected nodes as follows. It maintains a work set containing nodes that
have been identified as affected, but have not yet been processed. Initially, y is
inserted in that set only if there are no further arcs in SP(G) entering y after
the operation. Nodes in the work set are processed one by one, and when node u
is processed, all arcs (u,v) leaving u are deleted from SP(G), and v is inserted
in the work set. All nodes that are identified as affected during this phase are
inserted in the work set.

- DF. Now we briefly describe the main features of DF, in the case of an increase
operation. DF maintains a shortest paths tree of the digraph G, and is able to
detect the introduction of a negative cycle in the subgraph of G reachable from
the source, as a consequence of an insert or a decrease operation. Zero cycles
do not create any problem to the algorithm. Differently from RR and FMN, the
algorithm has not been devised to be efficient in output bounded sense, but to be
fast in practice, and costs O(m+nlogn) in the worst case. The algorithm consists
of two phases called Initializing and Updating. The Initializing phase
marks the nodes in T'(y) and, for each marked node v, finds the best unmarked
neighbor p in IN(v). This is done to find a path (not necessarily a shortest path)
from s to v in G’ whose length is used to compute the initial priority of v in the
priority queue H of the Updating phase. If p # nil and d(p) + wp o — d(v) < €
then this priority is computed as d(p) + wp » — d(v), otherwise it is initialized to
¢, which 1s the variation of y’s distance. In both cases the initial priority of the
node is an upper bound on the actual variation. The Updating phase properly
updates the information on the shortest paths from s to the marked nodes by
performing a computation analogous to Dijkstra’s algorithm.

In general, FUN and RR perform the Dijkstra’s computation on a set of nodes
which is a subset of the nodes considered by the Updating phase of DF. The
Initializing phase of DF simply performs a visit of the subgraph of G induced
by the arcs in IN(z), for each node z in T'(y), in order to find a temporary parent
of z in the current shortest paths tree. This shows that DF is not output bounded.

3 Experimental Setup

In this section we describe our experimental framework, presenting the problem
instances generators, the performance indicators we consider, and some relevant
implementation details. All codes being compared have been implemented by
the authors as C++ classes using advanced data types of LEDA [14] (version
3.6.1). Our experiments were performed on a SUN Workstation Sparc Ultra 10
with a single 300 MHz processor and 128 MB of main memory running UNIX
Solaris 5.7. All C++ programs were compiled by the GNU g++ compiler version
1.1.2 with optimization level O4. Each experiment consisted of maintaining both
the distance of nodes from the source and the shortest paths tree in a random
directed graph by means of algorithms BFM, FMN, DFMN, RR and DF upon a random
mixed sequence of increase and decrease operations. In the special case of BFH,
after each update the output structures were rebuilt from scratch.

3.1 Graph and Sequence Generators

We used four random generators for synthesizing the graphs and the sequences
of updates:

— gen_graph(n,m,s,min,max): builds a random directed graph with n nodes,
m arcs and integer arc weights w s.t. min < w <max, forming no negative
or zero length cycle and with all nodes reachable from the source node s.
Reachability from the source is obtained by first generating a connecting
path through the nodes as suggested in [5]; remaining arcs are then added by
uniformly and independently selecting pairs of nodes in the graph. To avoid
introducing negative and zero length cycles we use the potential method
described in [12].

— gen_graph z(n,m,s,min,max): similar to gen_graph, but all cycles in the
generated graphs have exactly length zero.

— gen_seq(G,q,min,max): issues a mixed sequence of q increase and decrease
operations on arcs chosen at random in the graph G without introducing
negative and zero length cycles. Weights of arcs are updated so that they
always fit in the range [min,max]. Negative and zero length cycles are avoided
by using the same potentials used in the generation of weights of arcs of G.
Optionally, the following additional constraints are supported:

o Modifying Sequence: each increase or decrease operation is chosen among
the operations that actually modify some shortest path from the source.

o Alternated Sequence: the sequence has the form increase-decrease-increase-
decrease. . ., where each pair of consecutive increase-decrease updates is
performed on the same arc.

— gen_seq z(G,q,min,max): similar to gen_seq, but the update operations in
the generated sequences force cycles in the graph G to have length zero.

All our generators are based on the LEDA pseudo-random source of numbers.
We initialized the random source with a different odd seed for each graph and
sequence we generated.

3.2 Performance Indicators

We considered several performance indicators for evaluating and comparing the
different codes. In particular, for each experiment and for each code we measured:
(a) the average running time per update operation during the whole sequence of
updates; (b) the average number of nodes processed in the distance-update phase
of algorithms. Again, this is per update operation during the whole sequence of
updates.

Indicator (b) is very important in an output-bounded sense as it measures the
actual portion of the shortest paths tree for which the dynamic algorithms per-
form high-cost operations such as extractions of minima from a priority queue.
It is interesting to observe that, if an increase operation is performed on an arc
(z,y), the value of the indicator (b) measured for both RR and DFMN reports the
number of affected nodes that change their distance from the source after the
update, while the value of (b) measured for DF reports the number of nodes in
the shortest paths tree rooted at y before the update.

Other measured indicators were: (¢) the maximum running time per update
operation; (d) the average number of scanned arcs per update operation during
the whole sequence of updates; (e) the total time required for initializing the
data structures.

The running times were measured by the UNIX system call getrusage() and
are reported in milliseconds. Indicators (b) and (d) were measured by annotating
the codes with probes. The values of all the indicators are obtained by averaging
over 15 trials. Each trial consists of a graph and a sequence randomly generated
through gen_graph or gen_graph_z and gen_seq or gen_seq._z, respectively, and
is obtained by initializing the pseudo-random generator with a different seed.

3.3 Implementation Details

We put effort to implementing algorithms DFMN, RR and DF in such a way that
their running times can be compared as fairly as possible. In particular, we
avoided creating “out of the paper” implementations of algorithms DFMN and
RR. For example, in RR we do not explicitly maintain the shortest paths dag
SP so as to avoid additional maintenance overhead that may penalize RR when
compared with the other algorithms. Instead, we tried to keep in mind the high-
level algorithmic ideas while devising fast codes.

For these reasons, we used just one code for performing decrease and we fo-
cused on hacking and tweaking codes for increase. We believe that the effect of
using LEDA data structures does not affect the relative performance of different
algorithms. More details about our codes can directly be found in our experi-
mental package distributed over the Internet. In the remainder of this paper, we
refer to ALL-DECR as the decrease code and to DFMN, RR and DF as the increase
codes.

©

—o—DFMN =300, M=0.5n?=45000 8261

—O—RR
—A—DF
--3---ALL-DECR

@

~

=

o

IS
IS
8
2

w
Y
2
4

N

1491 1574

Average Running Time per Operation (msec)

-
b
8
14

-

2
X

o

N
©
~
o
>
-
©
©

10 11
Arc Weight Interval [-2,2]

o

—o— DFMN/RR n=300, m=0.5n°=45000 516
c
% 5 —A—DF R 505
-4 --%---ALL-DECR =489
o)
54
o
14}
8
z3
g 209
82
% 179
@
ol
S
< 09

o
~
@
=
@
»
~
©
©

10 1
Arc Weight Interval [-2,2]

Fig. 1. Experiments performed with n = 300 and m = 0.5n% = 45000 for arc weight
intervals increasing from [—8,8] to [—1024, 1024].

4 Experimental Results

The goal of this section is to identify with experimental evidence the more conve-
nient algorithm to use in practice in a fully dynamic environment. We performed
several experiments on random graphs and random update sequences for differ-
ent parameters defining the test sets aiming at comparing and separating the
performances of the different algorithms.

Preliminary tests proved that, due to its complex data structures, FMN is not
practical neither for decrease nor for increase operations, and so we focused on
studying the performances of its simplified version DFMN.

Our first experiment showed that the time required by an ncrease may sig-
nificantly depend upon the width of the interval of the arc weights in the graph:

— Increasing arc weight interval: we ran our DFMN, RR and DF codes on mixed
sequences of 2000 modifying update operations performed on graphs with
300 nodes and m = 0.5n? = 45000 arcs and with arc weights in the range
[—2% 2%] for values of k increasing from 3 to 10. The results of this test
for wncrease operations are shown in Figure 1. It is interesting to note that
the smaller is the width of the arc weight interval, the larger is the gap
between the number of affected nodes considered by RR during any increase
operation on an arc (z,y), and the number of nodes in T'(y) scanned by DF.
In particular, RR is faster than DF for weight intervals up to [—32,32], while

1000

—0—BFM 686.14
—o—DFMN
—O—RR
—A—DF

--%---ALL-DECR

=
Q
S

[

m=0.5n*, Arc Weightsin [-10,10]

Average Running Time per Operation (msec)
S

o
s

0 100 200 300 400 500 600
Number of Nodes
1000

—Oo—BMM 625325

2 —0—DFMN
=t —0—RR
S 100 —&—DF
g --%---ALL-DECR
S
o) 11384 13744,
by 10 17.984
g 10.784
= 7.383
s e T30
€ 1478 Tot e TR 2787
g 1 1137 SR VL 1653
o 0.807 <0988
o X7
g 0435
< m=0.5n?, Edge Weights in [-1000,1000]

0.1

0 100 200 300 400 500 600

Number of Nodes

Fig. 2. Experiments performed with 100 < n < 500 and m = 0.5n? for arc weights in
the range [—10, 10] and [—1000, 1000].

DF improves upon RR for larger intervals. This experimental result agrees
with the fact that RR is theoretically efficient in output bounded sense, but
spends more time than DF for identifying affected nodes. The capacity of
identifying affected nodes even in presence of zero cycles penalizes DFMN that
is always slower than RR and DF on these problem instances with no zero
cycles.

In our second suite of experiments, we ran BFM, DFMN, RR and DF codes on ran-
dom sequences of 2000 modifying updates performed both on dense and sparse
graphs with no negative and zero cycles and for two different ranges of the arcs
weights. In particular, we performed two suites of tests:

— Increasing number of nodes: we measured the running times on dense graphs
with 100 < n < 500 and m = 0.5n% for arc weights in [—10,10] and
[-1000,1000]. We repeated the experiment on larger sparse graphs with
1000 < n < 3000 and m = 30n for the same arc weights intervals and we
found that the performance indicators follow the same trend of those of dense
graphs that are shown in Figure 2. This experiment agrees with the first one
and confirms that, on graphs with arc density 50%, DF beats RR for large
weight intervals and RR beats DF for small weight intervals. Notice that the
dynamic codes we considered are better by several orders of magnitude than
recomputing from scratch through the LEDA BFHM code.

—0—DFMN
—O0—RR
—&—DF
--¥---ALL-DECR

Average Running Time per Operation (msec)

398
300 Nodes, Edge Weightsin [-10,10] 3437

2.698

1
0645
0.517 A
0479 . 0513
0 0262 028
0 1 3 4 5 6 7 8
Number of Edges x 10000
14
13706
—o—DFMN 300 Nodes, Edge Weightsin [-1000,1000]
12— —o—RRr

10.606

Average Running Time per Operation (msec)

Number of Edges

Average Processed Nodes per Operation

300 Nodes, Edge Weightsin [-10,10]

—0—DFMNRR
—A—DF
--x---ALL-DECR

Number of Edges x 10000

300 Nodes, Edge Weights in [-1000,1000]

c
S
s
5 5
8 497 P
- - N_— S L
§ s “X 439
431 - 427

‘% .
g [——DFMINRR |
235 —A—DF
E --X---ALL-DECR|
z - ALL-DECR]

3

0 1 3 4 5 6 7 8

Fig. 3. Experiments performed with n = 300, 0.05n? < m < 0.9n? for arc weights in

Number of Edges

the range [—10, 10] and [—1000, 1000].

— Increasing number of arcs: we retained both the running times and the num-
ber of nodes processed in the distance-update phase of algorithms on dense
graphs with n = 300 and 0.05n% < m < 0.9n? for arc weights in [—10, 10]
and [—1000, 1000]. We repeated the experiment on larger sparse graphs with
n = 2000 and 10n < m < 50n for the same arc weights intervals and again
we found similar results. Performance indicators for this experiment on dense
graphs are shown in Figure 3 and agree with the ones measured in the first
test for what concerns the arc weight interval width. However, it is interest-
ing to note that even for small weight ranges, if the arc density is less than
10%, the running time of DF slips beneath that of RR.

As from the previous tests our DFMN code 1s always slower than RR and DF,
our third experiment aims at investigating if families of problem instances exist
for which DFMN is a good choice for a practical dynamic algorithm. As it is able
to identify affected nodes even in presence of zero cycles, we were not surprised
to see that DFMN beats in practice DF in a dynamic setting where graphs have
many zero cycles. We remark that RR 1s not applicable in this context.

— Increasing number of arcs and zero cycles: we ran DFMN and DF codes on ran-
dom graphs with 2000 nodes, 10n < m < 50n, weights in [—10, 10], all zero
cycles, and subject to 2000 random alternated and modifying updates per
sequence. We used generators gen_graph_z and gen_seq_z to build the input
samples. Figure 4 shows the measured running times of increase operations
for this experiment.

Average Running Time per Operation (msec)

n=2000, Arc Weightsin [-10,10]

1 2 3 4 5 6 7 8 9 10 11
Number of Edges x 10000

Fig.4. Experiments performed with n = 2000, 10n < m < 50n for arc weights in
[—10,10]. All cycles have zero length during updates.

Performance indicators (c), (d) and (e) provided no interesting additional
hint on the behavior of the algorithms and therefore we omit them from our
discussion: the interested reader can find in the experimental package the detailed
results tables of our tests.

5

Future Work

The continuation of the present work is along two directions: (1) Performing
experiments on graphs from real life; (2) Reimplementing the algorithms in the
C language, without the support of LEDA | with the goal of testing algorithms
on larger data sets.

References

10.

11.

12.

13.

14.

15.

16.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms
and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

D. Alberts, G. Cattaneo, and G. F. Italiano. An empirical study of dynamic graph
algorithms. ACM Journal on Experimental Algorithmics, 2: Article 5, 1997.

G. Amato, G. Cattaneo, and G. F. Italiano. Experimental analysis of dynamic
minimum spanning tree algorithms. In ACM-SIAM Symp. on Discrete Algorithms,
pp. 1-10, 1997.

B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms. In
FEuropean Symp. on Algorithms. Lect. Notes in Comp. Sc. 1136, pp. 349-363, 1996.
B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest paths algorithms: The-
ory and experimental evaluation. Mathematical Programming, 73:129-174, 1996.

. J. Edmonds, R. M. Karp. Theoretical improvements in algorithmic efficiency for

network flow problems. Journal of the ACM, 19:248-264, 1972.

P. G. Franciosa, D. Frigioni, and R. Giaccio. Semi-dynamic shortest paths and
breadth-first search on digraphs. In Symp. on Theoretical Aspects of Computer
Science. Lect. Notes in Comp. Sc. 1200, pp. 33-46, 1997.

. D. Frigioni, M. loffreda, U. Nanni, G. Pasqualone. Experimental Analysis of Dy-

namic Algorithms for the Single Source Shortest Path Problem. ACM Journal on
Eazperimental Algorithmics, 3:Article 5 (1998).

D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic algorithms
for maintaining shortest paths trees. Journal of Algorithms, 34(2):351-381, 2000.
D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic shortest paths
and negative cycles detection on digraphs with arbitrary arc weights. In EFuropean
Symp. on Algorithms. Lect. Notes in Comp. Sc. 1461, pp. 320-331, 1998.

D. Frigioni, T. Miller, U. Nanni, G. Pasqualone, G. Shaefer, C. Zaroliagis. An
experimental study of dynamic algorithms for directed graphs. In European Symp.
on Algorithms. Lect. Notes in Comp. Sc. 1461, pp. 368-380, 1998.

A. V. Goldberg. Selecting problems for algorithm evaluation. In Workshop on
Algorithm Engineering. Lect. Notes in Comp. Sc. 1668, pp. 1-11, 1999.

A. V. Goldberg, and T. Radzik. A heuristic improvement of the Bellman-Ford
algorithm. Applied Math. Letters, 6:3-6, 1993.

K. Mehlhorn and S. Naher. LEDA, a platform for combinatorial and geometric
computing. Communications of the ACM, 38:96-102, 1995.

G. Ramalingam. Bounded incremental computation. Lect. Notes in Comp. Sc.
1089, 1996.

G. Ramalingam and T. Reps. On the computational complexity of dynamic graph
problems. Theoretical Computer Science, 158:233-277, 1996.

