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ABSTRACT

Decomposing a network flow into weighted paths is a problem with numerous applications,
ranging from networking, transportation planning, to bioinformatics. In some applications we
look for a decomposition that is optimal with respect to some property, such as the number of
paths used, robustness to edge deletion, or length of the longest path. However, in many
bioinformatic applications, we seek a specific decomposition where the paths correspond to
some underlying data that generated the flow. In these cases, no optimization criteria guarantee
the identification of the correct decomposition. Therefore, we propose to instead report the safe
paths, which are subpaths of at least one path in every flow decomposition. In this work, we give
the first local characterization of safe paths for flow decompositions in directed acyclic graphs,
leading to a practical algorithm for finding the complete set of safe paths. In addition, we
evaluate our algorithm on RNA transcript data sets against a trivial safe algorithm (extended
unitigs), the recently proposed safe paths for path covers (TCBB 2021) and the popular heuristic
greedy-width. On the one hand, we found that besides maintaining perfect precision, our safe
and complete algorithm reports a significantly higher coverage (� 50% more) compared with
the other safe algorithms. On the other hand, the greedy-width algorithm although reporting a
better coverage, it also reports a significantly lower precision on complex graphs (for genes
expressing a large number of transcripts). Overall, our safe and complete algorithm outper-
forms (by � 20%) greedy-width on a unified metric (F-score) considering both coverage and
precision when the evaluated data set has a significant number of complex graphs. Moreover, it
also has a superior time (4 - 5 · ) and space performance (1:2 - 2:2 · ), resulting in a better and
more practical approach for bioinformatic applications of flow decomposition.
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1. INTRODUCTION

Network flows are a central topic in computer science, enabling us to define problems with

countless practical applications. Assuming that the flow network has a unique source s and a unique

sink t, every flow can be decomposed into a collection of weighted s–t paths and cycles (Ford and Fulkerson,

2010); for directed acyclic graphs (DAGs), such a decomposition contains only paths. One application of

such a view of a flow is to indicate how to optimally route information or goods from s to t. For example, flow

decomposition is a key step in network routing problems (Cohen et al, 2014; Hartman et al, 2012; Hong et al,

2013; Mumey et al, 2015) and transportation problems (Ohst, 2015; Olsen et al, 2022).

Finding the decomposition with the minimum number of paths and possibly cycles (or minimum flow

decomposition) is NP-hard, even if the flow network is a DAG (Vatinlen et al, 2008). On the theoretical

side, this hardness result led to research on approximation algorithms (Baier et al, 2005; Baier et al, 2002;

Hartman et al, 2012; Mumey et al, 2015; Suppakitpaisarn, 2016; Pieńkosz and Kołtyś, 2015) and FPT

algorithms (Kloster et al, 2018). On the practical side, many approaches usually use a standard greedy-

width heuristic (Vatinlen et al, 2008), of repeatedly removing an s–t path carrying the most amount of flow.

Another pseudopolynomial-time heuristic called Catfish was recently proposed by Shao and Kingsford

(2017b), which tries to iteratively simplify the graph so that smaller decompositions can be found.

Many applications study flow networks built by superimposing a set of weighted paths, and seek the

decomposition corresponding to that underlying set of paths and weights. This is the decomposition sought

by the more recent and prominent application of reconstructing biological sequences [RNA transcripts

(Bernard et al, 2013; Gatter and Stadler, 2019; Pertea et al, 2015; Tomescu et al, 2015; Tomescu et al,

2013; Williams et al, 2019) or viral quasispecies genomes (Baaijens et al, 2020; Baaijens et al, 2019)].

Each flow path represents a reconstructed sequence, and so, a different set of flow paths encode a different

set of biological sequences, which may differ from the real ones.

If there are multiple flow decomposition solutions, then the reconstructed sequences may not match the

original ones, and thus be incorrect. Williams et al (2021) analyzed an error-free transcript data set to find

that 20% of the human genes admit multiple minimum flow decomposition solutions.

1.1. Overcoming multiple solutions

A first heuristic used to overcome the issue of multiple solutions (flow decompositions) was to seek one

of minimum cardinality through different heuristics (Kloster et al, 2018; Pertea et al, 2015; Shao and

Kingsford, 2017b; Tomescu et al, 2013) (since the problem is NP-hard). This approach was also used by

transcript assemblers modeling the problem as a minimum path cover (Liu and Dickerson, 2017; Trapnell

et al, 2010), which can be solved in polynomial time [see Cáceres et al (2021) for a comprehensive survey

on the problem]. However, even when the solution is restricted to minimum cardinality, multiple solu-

tions still arise (Caceres et al, 2021; Williams et al, 2021). Therefore, practical methods usually incor-

porate different variations of the minimum-cardinality criterion (Baaijens et al, 2020; Baaijens et al, 2019;

Bernard et al, 2013).

Motivated by the RNA assembly application, Ma et al (2020a) were the first to address the issue of

multiple solutions to the flow decomposition problem under a probabilistic framework. Later, they (Zheng

et al, 2022) solved a problem (AND-Quant), which, in particular, leads to a quadratic-time algorithm for the

following problem: given a flow in a DAG, and edges e1‚ e2‚ . . . ‚ ek, decide if in every flow decomposition

there is always a decomposed flow path passing through all of e1‚ e2‚ . . . ‚ ek. Thus, by taking the edges

e1‚ e2‚ . . . ‚ ek to be the edges of a path P, the AND-Quant problem can decide if a path P (i.e., a given

biological sequence) appears in all flow decompositions, which indicates that P is likely part of some

original RNA transcript.

We build upon the AND-Quant problem, by addressing the flow decomposition problem under the safety

framework (Tomescu and Medvedev, 2017), first introduced for genome assembly. For a problem ad-

mitting multiple solutions, a partial solution is said to be safe if it appears in all solutions to the problem.

In the case of the flow decomposition problem, a path P is safe if for every flow decomposition into paths

P, it holds that P is a subpath of some path in P. Furthermore, a path P is called w-safe if in every flow

decomposition, P is a subpath of some weighted path(s) in P whose total weight is at least w. Safe paths

for all flow decompositions are likely correct for many practical variations of the flow decomposition

problem.
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Safety has precursors in combinatorial optimization, under the name of persistency. For example, per-

sistent edges present in all maximum bipartite matchings were studied by Costa (1994). Persistency has

also been studied for the maximum flow problem, by finding that persistent edges always having a nonzero

flow value in any maximum flow solution (Cechlárová and Lacko, 2001; Lacko, 1998), which is easily

verified if the maximum flow decreases after removing the corresponding edge.

In bioinformatics, safety has been previously studied for the genome assembly problem, which at its core

solves the problem of computing arc-covering walks on the assembly graph. Again since the problem

admits multiple solutions where only one is correct, practical genome assemblers output only those so-

lutions likely to be correct. The prominent approach dating back to 1995 (Kececioglu and Myers, 1995) is

to compute trivially correct unitigs (having internal nodes with unit indegree and unit outdegree), which can

be computed in linear time. Later, unitigs were generalized to be extended by adding their unique incoming

and outgoing paths ( Jackson, 2009; Kingsford et al, 2010; Medvedev et al, 2007; Pevzner et al, 2001).

These extended unitigs, although safe, are not guaranteed to report everything that can be correctly assembled,

presenting an important open question (Boisvert et al, 2010; Bresler et al, 2013; Guénoche, 1992; Lam et al, 2014;

Nagarajan and Pop, 2009; Shomorony et al, 2016) about the assembly limit (if any). This question was finally

resolved by Tomescu and Medvedev (2017) [later optimized in Cairo et al (2021) and Cairo et al (2019)] for a

specific genome assembly formulation (single circular walk) by introducing safe and complete algorithms, which

report everything that can be theoretically reported as safe. Safe and complete algorithms were also studied by

Acosta et al (2018) under a different genome assembly formulation of multiple circular walks.

Recently, Caceres et al (2021) studied safe and complete algorithms for path covers in an application on

RNA assembly. They optimized an avoid-and-test approach for computing all maximal safe paths for

constrained path covers, which were able to cover 70% of transcripts with a precision of more than 99% on

splice graphs built from transcript annotation.

1.2. Flow decomposition in RNA assembly

The prominent application of flow decomposition in bioinformatics is the RNA transcript assembly,

which is described as follows. In complex organisms, a gene may produce multiple RNA molecules (RNA

transcripts, i.e., strings over an alphabet of four characters), each having a different abundance. Current

high-throughput sequencing techniques (Wang et al, 2009) allow to partially read the RNA transcripts (and

find their abundances) from a sample. This technology produces short overlapping substrings of the RNA

transcripts. The main approach for recovering the RNA transcripts from such data is to build an edge-

weighted DAG from these fragments, then to transform the weights into flow values by various optimi-

zation criteria, and finally to decompose the resulting flow into an ‘‘optimal’’ set of weighted paths (i.e., the

RNA transcripts and their abundances in the sample) (Mäkinen et al, 2015).

A common approach used in practice is the popular greedy-width heuristic (Pertea et al, 2015; Tomescu

et al, 2013). Greedy-width is also used in the related problem of viral quasispecies assembly (Baaijens et al,

2019; Fritz et al, 2021). Furthermore, some tools attempt to incorporate additional information into the flow

decomposition process, such as by using longer reads or super reads (Gatter and Stadler, 2019; Pertea et al,

2015; Shao and Kingsford, 2017a; Williams et al, 2021). Despite the large number of tools and methods

that have been developed for RNA transcript assembly, there is no method that consistently reports the

correct set of transcripts (Pertea et al, 2015; Yu et al, 2020). All these, plus the promising results of safe and

complete algorithms for constrained path covers (Caceres et al, 2021), suggest that addressing the problem

under the safety framework may be a promising approach. However, while a safe and complete solution

clearly gives the maximally reportable correct solution, it is significant to evaluate whether such a solution

covers a large part of the true transcript, to be useful in practice. A possible application of such partial and

reliable solutions is to consider them as constrains [see e.g., Williams et al (2021)] of real RNA transcript

assemblers, to guide the assembly process of such heuristics. Another possible application could be to

evaluate the accuracy of assemblers: does the output of the assembler include the safe and complete solution?

1.3. Our results

Our contributions can be succinctly described as follows.

1. A simple local characterization resulting in an optimal verification algorithm: We give a char-

acterization for a safe path P using its local property called excess flow.
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Theorem 1. For w>0, a path P is w-safe iff its excess flow fP � w.

The previous work (Zheng et al, 2022) on AND-Quant describes a global characterization using the

maximum flow of the entire graph transformed according to P, requiring O(mn) time. Instead, the excess

flow is a local property of P computable in time linear on its length. This also directly gives a simple and

optimal verification algorithm.

Theorem 2. Given a flow graph (DAG) having n vertices and m edges, it can be preprocessed in O(m)

time to verify the safety of any path P in O(jPj) = O(n) time.

2. Simple enumeration algorithm: The previous characterization also results in a simple algorithm for

reporting all maximal safe paths by using an arbitrary flow decomposition of the graph.

Theorem 3. Given the paths P in a flow decomposition, all its maximal safe paths can be reported in

O(jjPjj) time.

This approach starts with a candidate solution and uses the characterization on its subpaths in an efficient

manner [a similar approach was previously used by Costa (1994); Acosta et al (2018); Caceres et al

(2021)]. In particular, since O(mn)-sized flow decomposition can be computed in O(mn) time (Ahuja et al,

1993), we obtain the following corollary.

Corollary 1. Given a flow graph (DAG) with n vertices and m edges, all its maximal safe paths can be

reported in time O(mn).

The solution of the algorithm is reported using a compact representation (referred as Pc), whose size can

be O(mn) in the worst case, but merely O(m + n) in the best case.

3. Empirically improved approach for RNA assembly: Using simulated RNA splice graphs, we found

that safe and complete paths for flow decompositions provide precise RNA assemblies while covering most

of the RNA transcripts. Safe and complete paths are �50% better in coverage over previous notions of safe

paths, while maintaining the perfect precision ensured by safety. Furthermore, for the combined metric for

coverage and precision (F-score), the safe and complete paths outperform the popularly used greedy-width

heuristic significantly (�20%) and the previous safety algorithms appreciably (�13%). Finally, although

our approach takes 1:2 - 2:5 · time than the trivial safe algorithms requiring equivalent memory, the

greedy-width approach requires roughly 4 - 5 · time and 1:2 - 2:2 · memory, while the safe paths for path

covers are outperformed by one order of magnitude.

Hence, the significance of our approach in quality parameters increases with the increase in complex

graph instances in the data set, while the performance parameters are significantly better than greedy-width,

without significantly losing performance over the previous safe algorithms.

2. PRELIMINARIES AND NOTATIONS

We consider a DAG G = (V‚ E) with n vertices and m edges, where each edge e has a positive flow f (e)

passing through it (also called its weight). Without loss of generality, we assume the graph is connected,

and hence m � n. We assume that G contains a unique source with no incoming edges, denoted as s, and a

unique sink with no outgoing edges, denoted as t. As such, fin(s) = fout(t) = 0. Every other vertex v satisfies

the conservation of flow fin(v) = fout(v), making the graph a flow graph. For a path P in the graph, jPj denotes

the number of its edges. For a set of paths P = fP1‚ . . . ‚ Pkg, we denote its total size (number of edges) by

jPj = jP1j + . . . + jPkj.
For any flow graph (DAG), a flow decomposition of it, it is a set of weighted paths P such that the flow on

each edge of the flow graph equals the sum of the weights of the paths containing the edge. It is well known

(Ahuja et al, 1993) that a flow decomposition P of at most m paths can be computed in time O(jjPjj) = O(mn).

A simple algorithm takes at each step the smallest flow edge and extends it to s and t. A path P is called w-safe

if, in every possible flow decomposition, P is a subpath of some paths in Pf whose total weight is at least w. If

P is w-safe with w>0, we call P a safe flow path, or simply a safe path. Intuitively, for any edge e with nonzero

flow, we consider where did the flow on e come from?
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We would like to report all the maximal paths ending with e along which some w>0 weight always

‘‘flows’’ to e (see Fig. 1). A safe path is left maximal (or right maximal) if extending it to the left (or right)

with any edge makes it unsafe (i.e., not safe). A safe path is maximal if it is both left and right maximal.

A set of safe paths is called complete if it consists of all the maximal safe paths.

Previous notions of safety used in other problems naturally extend to flow decomposition as follows.

Paths having internal nodes with unit indegree and unit outdegree are called unitigs (Kececioglu and Myers,

1995). Unitigs are trivially safe because every source-to-sink path passing through an edge of a unitig also

passes through the entire unitig. Furthermore, a unitig can naturally be extended to include its unique

incoming path (having nodes with unit indegree), and its unique outgoing path (having nodes with unit

outdegree). This extension of a unitig is called the extended unitig ( Jackson, 2009; Kingsford et al, 2010;

Medvedev et al, 2007; Pevzner et al, 2001), which is also safe using the same argument.

For some graphs the above notions already define the safety of flow decomposition completely. Recently,

Millani et al (2020) defined a class of DAGs called funnels, where every source-to-sink path is uniquely

identifiable by at least one edge, which is not used by any other source-to-sink path. Hence, considering

such an edge as a trivial unitig (having a single edge), its extended unitig is exactly the corresponding

source-to-sink path, making it safe. Thus, in a funnel, all source-to-sink paths are naturally safe and hence

trivially complete. Moreover, it implies that a funnel has a unique flow decomposition, making the problem

trivial for funnel instances.

Theorem 4. For a DAG G, G is a funnel iff the set of extended unitigs of G is safe and complete.

Proof. The forward direction of the equivalence was already discussed. For the reverse direction suppose

by contradiction that G is not a funnel. Consider a minimal butterfly subgraph of G. As such, the body of

this butterfly is a unitig in G. Since the first vertex of this unitig has an indegree greater than 1, and the last

vertex of the unitig has an outdegree greater than 1, it is also an extended unitig. However, this path is not

left or right maximal. Therefore, the set of maximal safe paths is not complete, a contradiction. ,

Finally, since flow decompositions are always constrained path covers, safe and complete paths for

constrained path covers (Caceres et al, 2021) are potentially not complete for flow decompositions. The

main hypothesis of our work is that the maximal safe paths for flow decompositions are significantly longer

than the previous notions of safety for RNA transcript assembly.

3. CHARACTERIZATION AND PROPERTIES OF SAFE AND COMPLETE PATHS

The safety of a path can be characterized by its excess flow (see Fig. 2), defined as follows.

Definition 1 (Excess flow). The excess flow fP of a path P = u1‚ u2‚ . . . ‚ uk is

FIG. 1. The prefix of the path (blue) up to e contributes at least 2 U of flow to e, as the rest may enter the path by the

edges (red) with flow 4 and 2. Similarly, the suffix of the path (blue) from e maintains at least 1 U of flow from e, as the

rest may exit the path from the edges (red) with flow 5 and 2. Both these safe paths are maximal as they cannot be

extended left or right.

FIG. 2. The excess flow of a path (left) is the incoming flow (blue) that necessarily passes through the whole path

despite the flow (red) leaving the path at its internal vertices. It can be analogously described (right) as the outgoing

flow (blue) that necessarily came through the whole path despite the flow (red) entering the path at its internal vertices.
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fP = f (u1‚ u2) -
X

ui2fu2‚ ...‚ uk - 1g
v 6¼ui + 1

f (ui‚ v) = f (uk - 1‚ uk) -
X

ui2fu2‚ ...‚ uk - 1g
v 6¼ui - 1

f (v‚ ui)

where the former and later equations are called diverging and converging formulations, respectively.

Remark 1. Alternatively, the converging and diverging formulations can be described as

fP =
Xk - 1

i = 1

f (ui‚ ui + 1) -
Xk - 1

i = 2

fout(ui) =
Xk - 1

i = 1

f (ui‚ ui + 1) -
Xk - 1

i = 2

fin(ui):

The converging and diverging formulations are equivalent by the conservation of flow on internal

vertices. The idea behind the notion of an excess flow fP is that even in the worst case, the maximum

leakage (see Fig. 2), that is, the flow leaving (or entering) P at the internal nodes, is the sum of the flow on

the outgoing (or incoming) edges of the internal nodes of P, that are not in P. However, if the value of

incoming flow (or outgoing flow) is higher than this maximum leakage, then this excess value fP neces-

sarily passes through the entire P. The following results give the simple characterization and an additional

property of safe paths.

Theorem 1. For w > 0, a path P is w-safe iff its excess flow fP ‡ w.

Proof. The excess flow fP of a path P trivially makes it w � fP-safe by definition. If fP<w, we can prove

that P is not w-safe by modifying any flow decomposition having w flow on P to leave only fP flow (or 0, if

fP<0) on P as follows. In Figure 2 (diverging), consider a flow path P0 entering P through edge e1 [except

first edge (blue)] and leaving P at an edge e2(red) except the last edge of P. Since fP<w, it is not possible

that every path leaving P using a red edge starts at the first blue edge (by definition of fP), hence P0 always

exists. We modify P0 by using flow on P to form two paths, which enter from e1 and leave at the last edge,

and which enter from the first edge and leave at e2.

We can repeat such modifications until flow on P is fP (or 0, if fP<0) due to the conservation of flow. In

addition, for a path to be safe, it must hold that w>0. ,

Lemma 1. For any path in a flow graph (DAG), adding an edge (u‚ v) to its start or its end reduces its

excess flow by fin(v) - f (u‚ v), or fout(u) - f (u‚ v), respectively.

Proof. Using the converging formulation in Remark 1, adding an edge at the start of a path modifies its

excess flow by f (u‚ v) - fin(v). Similarly, using the diverging formulation in Remark 1, adding an edge at the

end of a path modifies its excess flow by f (u‚ v) - fout(u). ,

4. SIMPLE VERIFICATION AND ENUMERATION ALGORITHMS

4.1. Verification algorithm

The characterization (Theorem 1) can be directly adapted to verify the safety of a path optimally. We

preprocess the graph to compute the incoming flow fin(u) and outgoing flow fout(u) for each vertex u in total

O(m) time. Using Remark 1 the time taken to verify the safety of any path P is O(jPj) = O(n), resulting in

the following theorem.

Theorem 2. Given a flow graph (DAG) having n vertices and m edges, it can be preprocessed in O(m)

time to verify the safety of any path P in O(jPj) = O(n) time.

4.2. Enumeration of all maximal safe paths

Given a flow decomposition P, we show how to report all the maximal safe paths. To do so, we adapt the

approach of Caceres et al (2021) for the same task on constrained path covers. They run a two-pointer

algorithm on each path P 2 P (in their case P is a constrained path cover) to find maximal safe paths on P.
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The main idea of the algorithm is that it is possible to use two pointers to vertices delimiting a subpath P0

of P, which is tested for safety. Since only maximal safe paths are required, the algorithm extends the right

pointer as much as possible, while still being safe. If no further (right) extension is possible, then it

advances the left pointer (and also the right if they are in the same position), and repeats. Because the left

pointer never surpasses the right pointer, the algorithm takes O(jPj) safety tests for P 2 P, O(jjPjj) in total.

Caceres et al (2021) (Lemma 3) implement a safety test taking O(jPjm) time, obtaining the O(jPjmjjPjj)
time solution. In our case we can use Theorem 2 to test the safety of a path in linear time, automatically

deriving the O(jP0j � jjPjj) = O(njjPjj) time algorithm. Moreover, we note that we can update the excess

flow of a path in constant time when moving one of the pointers during the algorithm (see Lemma 1).

However, reporting a safe path P0 still takes O(jP0j) time. We solve this by instead reporting the two

pointers representing P0.

Theorem 3. Given the paths P in a flow decomposition, all its maximal safe paths can be reported in

O(jjPjj) time.

Concise representation: The solution can be reported using a concise representation (referred as Pc)

having a set of paths as follows. We add to Pc every subpath of each path P 2 P that contains maximal safe

paths, along with the indices of the solution on the path. Thus, for one or more overlapping maximal safe

subpaths from P, we add a single path in Pc, which is the union of all such maximal safe paths, making

the paths added to Pc of minimal length. Finally, we also remove the duplicates and prefixes/suffixes

among the maximal safe subpaths reported from different paths in P using an Aho Corasick trie (Aho and

Corasick, 1975), making the set of paths in Pc minimal. Thus, we define Pc as follows.

Definition 2 (Concise representation Pc). A minimal set of paths having a minimal length such that every

safe path of the flow network is a subpath of some path in the set.

Remark 2. In the worst case, the algorithm is optimal for DAGs having jPcj = jPj = O(mn), but in

general jPcj can be as small as O(m + n) (see the next section). Thus, improving this bound requires us to

not use a flow decomposition (and hence a candidate solution).

4.3. Tightness and worst case for a simple enumeration algorithm

The example shown in Figure 3 demonstrates the worst case and the best case graphs where the simple

enumeration algorithm is optimal, and inefficient, respectively. We have two paths A = fa1‚ . . . ‚ akg and

B = fb1‚ . . . ‚ bkg. The set C = fc1‚ . . . ‚ ckg has edges from ak and the set D = fd1‚ . . . ‚ dkg has edges to b1.

Choosing k = n=4 and any subset of connections between C · D, we get a graph with any n and m. Let there

be flow k on the black edges and unit flow on the red edges.

(1) In the worst case graph (left), the flow on the remaining edges is according to the flow conservation

assuming a1 as the source and bk as the sink. Each edge in C · D necessarily has a separate path in P from

a1 to bk, with k maximal safe paths between fai‚ big for all 1 � i � k because every path between ai to b1

has excess flow i. This ensures that jPcj = jPj = O(mn).

(2) In the best case graph (right), the two edges from ak - 1 to ak and from b1 to b2 carry equal flow, and

the remaining edges have flow according to the conservation of flow. Each edge in C · D has a safe path of

O(1) size from ak to b1. In addition, there are two safe paths each of length O(n) from a1 to ak, and from b1

to bk, corresponding to two parallel edges between (ak - 1‚ ak), and between (b1‚ b2), respectively. However,

we still have jPj = O(mn) but jPcj = O(m + n).

FIG. 3. The worst case (left) and best case (right) graphs for the simple enumeration algorithm. (a) Catfish data set,

(b) Reference-Sim data set.
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5. EXPERIMENTAL EVALUATION

We now evaluate the performance of our safe and complete algorithm on the problem of RNA Assembly.

We consider the flow networks representing splice graphs of simulated RNA-Seq experiments. That is,

starting from a set of RNA transcripts, we simulate their expression levels and superimpose the transcripts

to create a flow graph. Evaluating our approach in such perfect scenario allows us to remove the biases

introduced by real RNA-Seq experiments (Srivastava et al, 2020) and focus the features offered by each

technique instead. We say that the number k of transcripts or ground truth paths* is the complexity of the

graph. Intuitively, the more paths in the ground truth, the harder to decompose the corresponding splice

graph.

We first investigate the practical significance of safety by comparing our solution with the popular flow

decomposition heuristic greedy-width. Greedy-width (Vatinlen et al, 2008) decomposes the flow by se-

quentially selecting the heaviest possible path, resulting in a simple algorithm that is both scalable and

performs well in practice. However, flow decomposition algorithms may not always report the ground truth

paths, but a different (incorrect) solution. Thus, it is important to measure the reported solution using a

precision metric that evaluates the correctness of the solution. We thus investigate how the precision of

greedy-width varies particularly as the value of k increases.

We then investigate the practical significance of completeness as reported by our solution, over the

previously known safe solutions as reported by extended unitigs (recall Section 2) and safe paths for path

covers of Caceres et al (2021) (recall Section 4.2). Note that every safe solution should be 100% precise by

definition.{ Hence, all safe solutions should always outperform greedy-width (or any flow decomposition

algorithm) in terms of precision. However, this perfect precision comes at the cost of a smaller reported

solution. Intuitively, this can be measured using some coverage metrics describing how much of the ground

truth sequence is included in the reported paths. We investigate how the coverage of the different safe

solution varies with respect to greedy-width, particularly as the value of k (complexity of the graph)

increases.

Finally, to understand the overall impact of the different approaches, we combine the coverage and

precision measures by computing their harmonic mean, that is, F-score.{ We thus investigate the variation

in F-score over different values of k (graph complexities). In addition, to understand the practicality of the

algorithms, we also measure their time and space performance.

5.1. Data sets

We consider two RNA transcript data sets, generated based on the approach of Shao and Kingsford

(2017b). They created ‘‘perfect’’ flow graphs where the true set of transcripts and abundances is always a

flow decomposition of the graph (which also means that the graphs satisfy conservation of flow). They start

with a ground truth set of transcripts and abundances and create the input instances by superimposing these

transcripts into a single flow graph with a unique source s pointing to the beginning of each transcript, and a

unique sink t pointed from the end of each transcript.

5.1.1. Funnel instances. As described in Section 2, funnels (Millani et al, 2020) have a unique flow

decomposition, thus making the problem trivial. As such, any flow decomposition algorithm (including

greedy-width) reaches perfect scores in coverage and precision on these instances. Moreover, as shown in

Theorem 4, this is also the case for extended unitigs, and thus for our safe and complete algorithm.

Interestingly, safe paths for constrained path covers (Caceres et al, 2021) are not necessarily complete on

funnels.x This means that for any flow decomposition algorithm (including greedy-width) and most safe

*Trancripts become paths of the corresponding splice graph.
{This is not totally true in the case of safe paths for path covers since their algorithm reduces the solution space to

increase coverage (Caceres et al., 2021; Section 3.1). However, their precision is close to 100% as shown by our
experiments.

{We interpret the coverage as a measure of the sensitivity of the approaches.
xIf the constrained path covers required to cover the edges, then safe paths would be complete, which motivates

further research on that approach.
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algorithms (including extended unitigs and our safe and complete algorithm), the resulting paths always

achieve the perfect value of coverage, precision, and F-score on funnel instances. As a result, funnels dilute

the relative measures of the different algorithms.

Previously, Kloster et al (2018, Lemma 8) described a contraction of graphs that transforms funnels to

trivial instances (k = 1), however, they excluded only single-path instances from their evaluation. We found

(see Fig. 4) that many complex instances (with larger k) are also funnels. Hence, we removed such

instances from our evaluation for a more accurate presentation of our results. Since the previous studies

(Kloster et al, 2018; Shao and Kingsford, 2017b; Williams et al, 2021) have considered the complete data

sets including the trivial instances, we also include the evaluation on the complete data sets for the sake of

completeness.

5.1.2. Catfish data set. We consider the data set first used by Shao and Kingsford (2017b), which

includes 100 simulated human transcriptomes for human, mouse, and zebrafish built using the Flux-

Simulator (Griebel et al, 2012). In addition, it includes 1000 experiments from the Sequence Read Archive,

with simulated abundances for transcripts using salmon (Patro et al, 2017). In both cases, the weighted

transcripts are superimposed to build splice graphs as described above. This data set has also been used in

other flow decomposition benchmarking studies (Kloster et al, 2018; Williams et al, 2021). There are

17,335,407 graphs in total in this data set, of which 8,301,682 are nontrivial (47.89%). The log-scale

distribution of the complete data set (and its funnels) by k is shown in Figure 4a. However, in this data set,

the details about the number of bases on each node (exons or pseudoexons) are omitted, only allowing us to

compute the metrics in terms of nodes.

5.1.3. Reference-Sim data set. We modified the procedure described for building the splice graphs

of the human transcriptome by Caceres et al (2021). For each transcript, we first simulate its expression

level by sampling a value from the lognormal distribution** with mean and variance both equal to - 4, as

done in the default settings of the RNASeqReadSimulator (Li, 2014). Finally, we compute the corre-

sponding flow on the splice graphs by superimposing the different transcripts with their corresponding

abundances. There are 17,941 total graphs in this data set, of which 10,323 are nontrivial (57.54%). The

log-scale distribution of the complete data set (and its funnels) by k is shown in Figure 4b. In this data set,

we also have access to the genomic coordinates (and hence the number of bases) represented by nodes,

allowing us to also compute the metrics in terms of bases.

a b

FIG. 4. Distribution of graphs in the data sets by its complexity k with respect to the trivial instances (funnels). (a)

Catfish dataset and (b) Reference-Sim dataset.

**The final expression level is obtained by multiplying 1000 to the sampled value, and then rounding this number to
its nearest integer. If an expression level is zero, then this transcript is removed from the data set.
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5.2. Evaluation metrics

We compute the metric weighted precision, maximum relative coverage as done by Caceres et al (2021).

In addition, we compute F-score as the harmonic mean of the other two. For the sake of completeness we

explain them next.

5.2.1. Weighted precision. We classify a reported path R as correct if R is a subpath of some ground

truth transcript T of the flow graph. Weighted precision is the total length of correctly reported paths

divided by the total length of reported paths. The commonly used precision metric (Pertea et al, 2015; Shao

and Kingsford, 2017a) for measuring the accuracy of RNA assembly methods considers only as correct

those paths that are (almost) exactly contained in the ground truth decomposition, and precision is com-

puted as the number of correctly reported paths divided by the total reported paths. However, since the safe

algorithms report (possibly) partial transcripts, we use subpaths instead of (almost) exactly the same paths.

To highlight how much is reported correctly instead of how many, we use weighted precision to give a

better score for longer correctly reported paths.

5.2.2. Maximum relative coverage. Given a ground truth transcript T and a reported path R, we

define a segment of R inside T as a maximal subpath of R that is also a subpath of T. We define the

maximum relative coverage of T as the length of the longest segment of a reported path inside T, divided by

the length of T. The corresponding value for the entire graph is the average of the values over all transcripts

of the graph. While it is common in the literature (Pertea et al, 2015; Shao and Kingsford, 2017a) to report

sensitivity (the proportion of ground truth transcripts correctly predicted), we measure sensitivity based on

coverage since the safe algorithms report paths that (possibly) do not cover an entire transcript.

5.2.3. F-score. The standard measure to combine precision and sensitivity is using an F-score, which

is the harmonic mean of the two. In our evaluation, we correspondingly use the weighted precision and the

maximum relative coverage for computing the F-score.

We compute all metrics in terms of nodes and bases for the Reference-Sim data set. For the Catfish data

sets, we only report them in terms of nodes.

5.3. Implementation and environment details

We evaluate the following approaches in our experiments.

5.3.1. SafePC. It computes the safe paths for path covers by using the implementation of Caceres

et al (2021). We use S = fsg, T = ftg, and ‘ = k + 1 as recommended by the authors (Caceres et al, 2021;

Section 3.1).

5.3.2. ExtUnitigs. It computes the extended unitigs, by considering each unitig including single

edges, and extending it toward the left as long as the internal nodes have unit indegree, and toward the right

as long as internal nodes have unit outdegree.

5.3.3. Safe&Comp. It computes the safe and complete paths for flow decomposition using our

enumeration algorithm described in Section 4. However, since the metric evaluation scripts use each safe

path individually (as reported by other algorithms), we output all safe paths separately instead of using Pc.

This increases the size of output and hence the time complexity to O(mn2) from O(mn) as stated in

Theorem 1.

5.3.4. Greedy. It computes the greedy-width heuristic using Catfish (Shao and Kingsford, 2017b)

with the -a greedy parameter.

All algorithms are implemented in C++, whereas the scripts for evaluating metrics are implemented in

Python. SafePC, ExtUnitigs, and Safe&Comp implementations use optimization level 3 of GNU C++
(compiled with - O3 flag), whereas the Greedy uses the optimizations of the Catfish pipeline. SafePC,

ExtUnitigs and Safe&Comp additionally require a postprocessing step for removing duplicates, and prefix/

suffixes, to make the set of safe paths minimal. However, the time and memory requirements are evaluated

considering only the algorithm, and not postprocessing and metric evaluations. All experiments were
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evaluated on a laptop using a single core (i7-8750H CPU 2.2 GHZ) having 16GB memory. The source code

of our project is available on GitHub{{ under GNU General Public License v3.

5.4. Results

We first evaluate the significance of safety among the reported solutions. Figure 5a compares the

weighted precision, distributed over the complexity k (number of transcripts in the ground truth), of all the

algorithms on the Reference-Sim data set. Safe algorithms (except SafePC) report perfect precision as

expected. In the case of SafePC, there is a small loss in precision due to the pruning of solutions performed

by the algorithm. However, the precision of the Greedy algorithm sharply declines with the increase in k,

almost linearly to 30% for k = 35. This may be explained by the sharp increase in the number of possible

paths in complex graphs, hindering the task to any flow decomposition algorithm. Hence, the significance

of safety becomes very prominent as k increases.

Next, we evaluate the significance of completeness of the safe algorithms. Figure 5b compares the

maximum relative coverage, distributed over k, of all the algorithms on the Reference-Sim data set. As

expected, Greedy outperforms all the other, followed by Safe&Comp, ExtUnitigs, and SafePC. The reason

why ExtUnitigs outperforms SafePC is because the latter only requires to cover the nodes of the splice

graph, motivating further research on the same techniques, but for edge path covers. We note that, as k

reaches 20, Safe&Comp, ExtUnitigs, and SafePC sharply fall to 75%, 60%, and *60% respectively, while

Greedy maintains around 95% coverage. Overall, Safe&Comp is almost always �85% - 90% of that of

Greedy, whereas ExtUnitigs and SafePC fall to 60%. Hence, Safe&Comp manages to maintain perfect

precision without losing a lot on coverage, demonstrating its dominance on completeness among the safe

algorithms.

Figure 5c supports the above inference by evaluating the combined metric F-score. Safe&Comp dom-

inates SafePC and ExtUnitigs by definition. Safe&Comp also dominates Greedy for k>10. It is also

important to note that both ExtUnitigs and SafePC eventually dominate Greedy for a slightly larger value of

k>20. This shows the significance of considering safe algorithms for complex graphs.

Besides, we evaluate a summary of the above results averaged over all graphs regardless of k. Table 1

summarizes the evaluation metrics of all the algorithms for simple graphs (k�10) and complex graphs

(k>10), and both. While on simpler graphs Greedy dominates Safe&Comp mildly (�3%), for complex

graphs it is dominated significantly (�20%) by Safe&Comp and appreciably (�8%) by ExtUnitigs.

However, despite the larger ratio of simple graphs, the collective F-score over all graphs is still (�4%)

better for Safe&Comp over Greedy.

Finally, we evaluate the practicality of the algorithms by comparing their running time and peak

memory. In Tables 2 and 3, we see that ExtUnitigs are the fastest, whereas Safe&Comp takes roughly

1:2 - 3 · time than ExtUnitigs, and Greedy requires roughly 4 - 5 · time than Safe&Comp. In the case of

FIG. 5. Evaluation metrics on graphs distributed by k for the Reference-Sim data set. (a) Weighted precision, (b)

maximum coverage, and (c) F-score.

{{https://github.com/algbio/flow-decomposition-safety

1280 KHAN ET AL.

https://github.com/algbio/flow-decomposition-safety


SafePC, its more complex verification algorithm worsens its running time by roughly one order of mag-

nitude compared with the other safe approaches. The peak memory of the ExtUnitigs and Safe&Comp is

very close (within 5%–25%), whereas Greedy and SafePC require roughly 1:3 - 3:6 · and 1:3 - 6:3 more

memory than Safe&Comp, respectively. Overall, in terms of time/space performance, Safe&Comp shows a

significant improvement over Greedy, without losing a lot over the trivial algorithm.

5.4.1. Experimental results on the Catfish Data set. Since the Catfish data set does not have the

genomic coordinates of nodes (exons or pseudoexons), the evaluation is based only on nodes.

Remark 3. The results on the Catfish data set (Fig. 6) do not match the inferences from Section 5.4

exactly. The primary differences and expected reasons for this are as follows:

Table 1. Summary of Evaluation Metrics for the Reference-Sim Data Set

Graphs Algorithm

Maximum

coverage

Weighted

precision F-score

k � 2 (100%) SafePC 0.66 1.00 0.79

ExtUnitigs 0.69 1.00 0.81

Safe&Comp 0.82 1.00 0.90

Greedy 0.98 0.81 0.86

2 � k � 10 (68%) SafePC 0.70 1.00 0.82

ExtUnitigs 0.73 1.00 0.84

Safe&Comp 0.84 1.00 0.91

Greedy 0.99 0.91 0.94

k > 10 (32%) SafePC 0.58 1.00 0.73

ExtUnitigs 0.61 1.00 0.75

Safe&Comp 0.76 1.00 0.86

Greedy 0.95 0.60 0.69

Table 2. Time and Memory Requirements of the Different Algorithms for the Evaluated Data Sets

Algorithm

Reference-Sim Catfish

Human 25.6 MB Zebrafish 122 MB Mouse 137 MB

Time

(seconds)

Memory

(MB)

Time

(seconds)

Memory

(MB)

Time

(seconds)

Memory

(MB)

SafePC 10.64 3.74 144.75 10.93 146.46 10.10

ExtUnitigs 0.21 2.95 11.02 3.07 9.79 3.07

Safe&Comp 0.65 3.01 14.83 2.96 14.24 3.16

Greedy 2.78 3.85 74.00 7.84 75.87 5.64

Table 3. Time and Memory Requirements of the Different

Algorithms for the Evaluated Data Sets (Continuation)

Algorithm

Catfish

Human 157 MB Human (salmon) 2.5 GB

Time

(seconds)

Memory

(MB)

Time

(seconds)

Memory

(MB)

SafePC 154.02 10.31 2413.97 21.16

ExtUnitigs 11.93 3.13 169.13 3.05

Safe&Comp 14.75 3.06 233.25 3.34

Greedy 69.74 5.93 1114.12 11.95
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1. Base versus node computations for metrics: When considering the genomic content that is predicted

(i.e., bases), Safe&Comp outperforms Greedy with respect to F-score over all graphs, as seen in

Table 1. Because the Catfish data set has no base information, we can only report node information,

but it is possible that the same patterns we observe in Reference-Sim with bases would hold for

Catfish in terms of bases as well.

2. Ratio of simpler graphs: Catfish data sets are more skewed toward simpler graphs than the

Reference-Sim data set. Table 1 shows that Reference-Sim has 32% of graphs with k>10, while

Table 4 shows that the Catfish data set has only 2%. Since Greedy outperforms Safe&Comp on simpler

graphs, it is better for the overall Catfish data sets having more simpler graphs.

5.4.2. Experimental results including funnel instances.

Remark 4. The results when considering the complete data sets (including funnels) are diluted when

compared with inferences from Section 5.4. In this case, we expect that the differences between the

algorithms become less sharp, because all algorithms solve trivial (funnel) instances perfectly, which

artificially increases the precision and coverage scores. This is confirmed by comparing Tables 1–5.

Without funnel instances, we observe that the overall F-scores range between 0.66 and 0.9; whereas the

range is from 0.82 to 0.95 when including them. A similar effect occurs for Catfish data in Tables 4 and 6.

This is also visible from coverage and F-score metrics in Figures 7 and 8, which start from 100% even for

safe paths, which is not the case in the corresponding figures without funnels.

Table 4. Summary of Evaluation Metrics for the Catfish Data Set

Without Funnels, Computed Relative to Nodes

Graphs Algorithm

Maximum

coverage

Weighted

precision F-score

k � 2 (100%) SafePC 0.56 1.00 0.71

ExtUnitigs 0.59 1.00 0.73

Safe&Comp 0.71 1.00 0.82

Greedy 0.89 0.92 0.89

2 � k � 10 (98%) SafePC 0.57 1.00 0.71

ExtUnitigs 0.59 1.00 0.74

Safe&Comp 0.71 1.00 0.83

Greedy 0.89 0.93 0.90

k > 10 (2%) SafePC 0.39 1.00 0.56

ExtUnitigs 0.42 1.00 0.59

Safe&Comp 0.58 1.00 0.74

Greedy 0.82 0.49 0.56

FIG. 6. Evaluation metrics on graphs distributed by k for the Catfish data set. (a) Weighted precision, (b) maximum

coverage, and (c) F-score.
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Table 6. Summary of Evaluation Metrics for the Complete

(Including Funnels) Catfish Data Set, Computed Relative to Nodes

Graphs Algorithm

Maximum

coverage

Weighted

precision F-score

k � 1 (100%) SafePC 0.71 1.00 0.82

ExtUnitigs 0.73 1.00 0.83

Safe&Comp 0.78 1.00 0.87

Greedy 0.87 0.96 0.91

1 � k � 10 (99%) SafePC 0.72 1.00 0.82

ExtUnitigs 0.73 1.00 0.83

Safe&Comp 0.79 1.00 0.88

Greedy 0.87 0.97 0.91

k > 10 (1%) SafePC 0.39 1.00 0.56

ExtUnitigs 0.42 1.00 0.59

Safe&Comp 0.58 1.00 0.74

Greedy 0.82 0.48 0.56

FIG. 7. Evaluation metrics on graphs distributed by k for the complete (including funnels) Reference-Sim data set.

(a) Weighted precision, (b) maximum coverage, and (c) F-score.

Table 5. Summary of Evaluation Metrics for the Complete

(Including Funnels) Reference-Sim Data Set

Graphs Algorithm

Maximum

coverage

Weighted

precision F-score

k � 1 (100%) SafePC 0.83 1.00 0.89

ExtUnitigs 0.84 1.00 0.90

Safe&Comp 0.91 1.00 0.95

Greedy 0.99 0.91 0.93

1 � k � 10 (85%) SafePC 0.87 1.00 0.92

ExtUnitigs 0.88 1.00 0.93

Safe&Comp 0.93 1.00 0.96

Greedy 1.00 0.96 0.97

k > 10 (15%) SafePC 0.58 1.00 0.73

ExtUnitigs 0.61 1.00 0.75

Safe&Comp 0.76 1.00 0.86

Greedy 0.95 0.61 0.70
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6. CONCLUSION

We study the flow decomposition problem in DAGs under the Safe and Complete paradigm, which

has applications in various domains, including the more prominent multiassembly of biological se-

quences. Previous work characterized such paths (and their generalizations) using a global criterion.

Instead, we present a simpler characterization based on a more efficiently computable local criterion,

which is directly adapted into an optimal verification algorithm, and a simple enumeration algorithm.

Intuitively, it is a weighted adaptation of extended unitigs, which is a prominent approach for computing

safe paths.

Through our experiments, we show that the safe and complete paths found by our algorithm outper-

form the popularly used greedy-width heuristic for RNA assembly instances with relatively complex

graph instances, both on quality (F-score) and performance (running time and memory) parameters. On

simple graphs, Greedy outperforms Safe&Comp, and Safe&Comp outperforms ExtUnitigs mildly

(�4 - 5%). However, on complex graphs, Safe&Comp outperforms Greedy significantly (�20%) and

ExtUnitigs appreciably (�13%). While the Reference-Sim data set shows the overall dominance of

Safe&Comp since complex graphs are appreciable (32%), Greedy dominates Safe&Comp in the Catfish

data set since complex graphs are negligible (�2%). Another significant reason for the dominance of

Greedy over Safe&Comp on Catfish data sets is the absence of base information on nodes (see Section

5.4.1).

Hence, the importance of Safe&Comp algorithms increases with the increase in complex graph instances

in the data set, and prominently when we consider information about the genetic information represented by

each node. In terms of performance, Safe&Comp takes roughly 1:2 - 3 · time than ExtUnitigs, both

requiring equivalent memory. However, Greedy requires roughly 4 - 5 · time and 1:3 - 3:6 · memory than

Safe&Comp. Overall, Safe&Comp performs significantly better than Greedy, without losing a lot over the

trivial algorithms.

Despite the optimality of our characterization of safe and complete paths, the enumeration algorithm is

not time optimal. In addition, the concise representation of the safe paths Pc may not be optimal for some

graphs as described in Section 4.3. Hence, for data sets with more complex graphs, there is a scope for

improving the current enumeration algorithm and the concise representation in the future. Another inter-

esting direction for an extension of this problem having practical significance is finding safe paths for those

flow decompositions whose paths have a certain minimum weight threshold.
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