
Soft Sequence Heaps

Gerth Stølting Brodal*

Abstract

Chazelle [8] introduced the soft heap as a building block
for efficient minimum spanning tree algorithms, and
recently Kaplan et al. [12] showed how soft heaps can
be applied to achieve simpler algorithms for various
selection problems. A soft heap trades-off accuracy
for efficiency, by allowing εN of the items in a heap
to be corrupted after a total of N insertions, where a
corrupted item is an item with artificially increased key
and 0 < ε ≤ 1

2 is a fixed error parameter. Chazelle’s soft
heaps are based on binomial trees and support insertions
in amortized O(lg 1

ε) time and extract-min operations in
amortized O(1) time.

In this paper we explore the design space of soft
heaps. The main contribution of this paper is an
alternative soft heap implementation based on merging
sorted sequences, with time bounds matching those of
Chazelle’s soft heaps. We also discuss a variation of
the soft heap by Kaplan et al. [13], where we avoid
performing insertions lazily. It is based on ternary
trees instead of binary trees and matches the time
bounds of Kaplan et al., i.e. amortized O(1) insertions
and amortized O(lg 1

ε) extract-min. Both our data
structures only introduce corruptions after extract-min
operations which return the set of items corrupted by
the operation.

1 Introduction

Chazelle in 1998 [6] introduced the soft heap as a heap
data structure surpassing the comparison lower bounds
of heaps by allowing the controlled corruptions of keys,
i.e. artificially increasing the values of the keys of a frac-
tion of the inserted items. The power of soft heaps was
demonstrated by Chazelle in [7], who showed how soft
heaps could be the key ingredient to compute a mini-
mum spanning tree in time O(m · α(m,n)), where α is
the inverse of Ackermann’s function, and n and m are
the number of vertices and edges in the graph, respec-
tively. Pettie and Ramachandran [15, 16] subsequently
achieved an optimal comparison based minimum span-
ning tree algorithm, also using soft heaps, with running

*Department of Computer Science, Aarhus University, Den-
mark, gerth@cs.au.dk. Supported by Independent Research
Fund Denmark, grant 9131-00113B.

time matching the (still unknown) decision-tree com-
plexity of the problem. 20 years later the soft heap pa-
per by Chazelle [6] was awarded the ESA Test-of-Time
Award 2018 for its significance on the development of
algorithms for the fundamental minimum spanning tree
problem.

Even though soft heaps were crucial for advancing
the knowledge on the minimum spanning tree problem,
their applications have remained surprisingly sparse in
the literature otherwise. One could speculate this is
due to their unconventional interface. Kaplan et al. [12]
recently presented new applications of soft heaps, and
in particular strengthened the requirements for the
interface to the soft heap operations, to 1) report
when an item is considered corrupted internal to a soft
heap, 2) to tag returned items if they are corrupted,
and 3) restrict corruptions to only be allowed after
the extraction of the current minimum from a soft
heap. This modified interface allowed in particular a
very simple and elegant solution to the binary heap
selection problem, a significant simplification compared
to the previous significantly more complex solution by
Frederickson [10].

In this paper we explore the design-space of soft
heaps. The goal of this paper is to present an alternative
and simple implementation of soft heaps supporting the
interface of Kaplan et al. [12]. In [12] it was described
how the soft heap in [13] could support this interface
with minor changes. Our solution is based on merging
sorted sequences as opposed to all previous solutions
which are all based on heap ordered trees. Similar to
all previous solutions, our solution also makes essential
use of Chazelle’s car-pooling idea.

1.1 Soft heaps Like a normal priority queue, soft
heaps store a set of (key, value) pairs called items, where
the keys are from an ordered universe. As opposed to
a normal priority, soft heaps are allowed to corrupt the
keys of the items by artificially increasing the keys. A
soft heap trades-off accuracy for efficiency, by allowing
up to εN of the items in a heap to be corrupted after a
total of N insertions, where 0 < ε ≤ 1

2 is a fixed error
parameter. Note that the number of allowed corruptions
in the heap is εN , which can be larger than the current
number of items n in the soft heap. In particular it

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited14

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

is possible that all keys in a soft heap are corrupted
when εN ≥ n.

We call the original key of an item the real key
and the increased key the current key. A corrupted key
can be increased multiple times by the soft heap, but
never lowered from its current key. When performing
a sequence of insertions and extract-min operations
on a soft heap, the soft heap always returns items
correctly with respect to their current keys. The effect
of corruptions on the extracted sequence is that an item
that gets corrupted internally in the soft heap raises a
flag that the extraction of the item may appear later
in the sequence of extractions because of the artificially
high key, i.e. the user might miss out on getting this
item extracted in the correct order. When a corrupted
item eventually is extracted from a soft heap its current
key is an upper bound on its real key, and the extraction
allows space for another item to get corrupted in the soft
heap.

In this paper we adopt the soft heap interface
described Kaplan et al. [12], that explicitly notifies
the user about the corruptions introduced. For an
application of this interface we refer the reader to the
elegant heap selection algorithm in [12, Section 3].

� make-heap() creates an empty soft heap S and
returns a reference to S.

� insert(S, e) inserts item e = (k, v) with real key k
and value v into soft heap S.

� meld(S1,S2) melds the soft heaps S1 and S2, and
returns a reference to the resulting soft heap.

� find-min(S) returns a pair (e, k), where e is an
item with minimum current key k in the soft
heap S.

� extract-min(S) removes an item e from the soft
heap S, where e has minimum current key k before
the operation, and returns the triple (e, k, C),
where C is the list of items in the heap that were
not corrupted before e was removed from S, but
became corrupted as a result of removing e from S.

� delete(S, e) removes item e from the soft heap S.
Returns a list C of the items where the key became
corrupted by removing e. Requires a reference is
given to the location of e in the soft-heap.

Chazelle [6, 8] presented the first implementation of
soft heaps, by adopting the idea of car-pooling to bino-
mial trees, achieving insert in amortized time O(lg 1

ε)
and all other operations in amortized constant time.1

1lgn denotes the binary logarithm of n

Kaplan and Zwick in [14] gave a simplified construc-
tion based on binary trees with matching amortized
performance. Kaplan et al. [13] presented a solution
where all operations are amortized constant time except
for extract-min and delete which take amortized
O(lg 1

ε) time, i.e. postponing the dependence on ε to
deletions. All these solutions, like ours, use car-pooling
to achieve their efficiency. Essentially car-pooling treats
a pool of items as a single item, and assigns all the items
in the pool current key equal to the maximum real key
in the pool. By appropriately maintaining a collection
of pools the bound on the total number of corruptions
can be guaranteed within the stated time bounds.

For other models of computation, Thorup et al. [19]
presented non-comparison based soft heaps for the
RAM model achieving amortized O(lg lg 1

ε) time per

operation, or amortized expected O(
√

lg lg 1
ε) using

randomization. Bhushan and Gopalan [1] considered
soft heaps in external memory, achieving amortized
O(1

B logM/B
1
ε) I/Os per insertion, and other operations

in non-posititive amortized I/Os, where M is the main
memory size and B the disk block size, provided N =
O(BmM/2(B+

√
m)) where m = M/B.

1.2 Applications of soft heaps The groundbreak-
ing applications of soft heaps are in the mentioned min-
imum spanning tree algorithms by Chazelle [7] and Pet-
tie and Ramachandran [16]. Further applications were
given by Chazelle [8] who showed how soft heaps can
lead to alternative solutions for computing exact and
approximate medians in linear time, yielding an alter-
native solution to the classical selection algorithm by
Blum et al. [2], algorithms for finding dynamic per-
centiles, and approximate sorting algorithms with run-
ning time O(n lg 1

ε) generating sequences with at most
εn2 inversions or where each element is assigned a rank
within εn of its true rank.

Kaplan et al. [12] give further applications of soft
heaps. Their main contribution is a very simple algo-
rithm to select the k-th smallest item in a binary heap
in time O(k), significantly simplifying the previous ap-
proach by Frederickson [10] that was achieved over a
sequence of improvements starting with running time
O(k lg k), and then adding ideas to first improve this
to O(k lg lg k), then to O(k3lg

∗ k), O(k2lg
∗ k), and fi-

nally O(k). Kaplan et al. then apply the heap selection
algorithm to develop various new selection algorithms:
an algorithm for selecting the k-th smallest item from
a row-sorted matrix with m rows in time O(m lg k

m),
matching a previous bound by Frederickson and John-
son [11], and a new algorithm with output sensitive run-
ning time of O(m +

∑m
i=1 lg(ki + 1)), where ki is the

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited15

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Table 1: Previous and new results for Soft Heaps
Insert ExtractMin

Chazelle 2000 [8] Binomial trees
Kaplan, Zwick 2009 [14]

O(lg 1
ε) O(1) Binary trees

New (Section 3) Sorted sequences
Kaplan, Tarjan, Zwick 2013 [13] }

O(1) O(lg 1
ε)

Binary trees
New (Section 4) Ternary trees

number of items in the i-th row smaller than the k-
th smallest item, and finally an algorithm to find the
k-th smallest element from X + Y , where X and Y
are two unordered sets of m and n items respectively,
where m ≥ n, with running time O(m lg k

m) match-
ing a previous bound of Frederickson and Johnson [11].
Chakrabarti et al. [5] used soft heaps in an experimental
study on graph conductance search.

1.3 Results The main contribution of this paper is a
new implementation of soft heaps, soft sequence heaps,
designed to satisfy the interface of Kaplan et al. [12].

Theorem 1.1. A soft sequence heap supports insert
in amortized O(lg 1

ε) time and all other soft heap op-
erations in amortized constant time, for a fixed error
parameter 0 < ε < 1. After a total of N insertions
the soft heap contains at most εN items with corrupted
keys.

A (non-soft) sequence heap is a simple priority
queue storing its items in a logarithmic number of sorted
sequences (see Section 2). In the literature several prior-
ity queues exist based on this idea. Examples are exter-
nal memory priority queues [3, 4], cache efficient prior-
ity queues [17], and efficient RAM priority queues [18].
Sanders [17] coined such an approach a sequence heap.
Earlier, Fischer and Paterson [9] developed a priority
queue aimed at sequential storage also consisting of a
sequence of sorted lists. Our contribution is to adapt
the car-pooling idea of Chazelle to sequence heaps.

Table 1 summarizes our contributions and contains
a comparison of the essential properties of our contri-
butions to previous work.

1.4 Structure of paper In Section 2 we recall the
basic idea of (non-soft) sequence heaps. In Section 3
we show how to convert sequence heaps into soft-heaps
using car-pooling. In Section 4 we discuss a variation of
the soft-heap presented by Kaplan et al. [13] and show
that we can satisfy the interface of Kaplan et al. [12]
without buffering insertions.

2 Sequence heaps

A (non-soft) sequence heap stores items in a logarithmic
number of sorted sequences L1, L2, . . . , L`, where each
sequence Li is assigned a non-negative integer rank
rank(Li). The sequences are maintained in a list L
in increasing rank order. insert(e) creates at the
front of L a new rank zero sequence containing e, and
repeatedly merges the first two sequences of L if they
have equal rank r to a new sequence of rank r+ 1 until
all sequences have distinct ranks. extract-min finds
the sequence where the first item has minimum key, and
removes and returns this item. Figure 1 shows the result
of applying insert and extract-min to a sequence
heap.

That insert and extract-min take amortized
O(lgN) time follows from some simple observations: A
sequence of rank r contains 2r items (if also counting
deleted items), i.e. the maximum rank of a sequence
after N insertions is at most blgNc; an inserted item
can at most participate in a number of merges bounded
by the maximum rank; and since insertions ensure that
the sequences have distinct rank the time for extracting
the minimum is also bounded by the maximum rank.

3 Soft sequence heaps

In this section we describe soft sequence heaps derived
by adapting Chazelle’s car-pooling idea to sequence
heaps. Below, we first describe the basic ideas used to
convert sequence heaps into soft-heaps, next we give the
details of the representation and the implementation of
the operations, and finally we analyse our construction.

3.1 Corruption-sets and witness-sets To make
sequence heaps achieve the performance of soft heaps we
essentially adopt two ideas. In the following 0 < ε < 1
and r0 =

⌈
lg 1

ε

⌉
is a rank threshold.

Corruption-sets: With each item e in a sorted
sequence we store a corruption-set C(e) containing
items where the key eventually should be raised to
key(e). Whenever the merging of two sequences of equal
rank r − 1 results in a new sequence of rank r > r0,
where r − r0 is even, we prune every second item from
the sequence (the first and last items in a sequence are

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited16

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

L2

extract-mininsert(4)

0

2

sequence
rank 1

5

3

6
7
9
11
13

3 1

3

6
7
9
11
13

4
5

2

12
3

3

4
5

2

2
3

6
7
9
11
13

L1 L2 L3 L1 L2 L1

Figure 1: A (non-soft) sequence heap. insert(4) first creates a new rank zero sequence (4), that will be merged
with the rank zero sequence (2), creating the rank one sequence (2, 4), that will be merged with the rank one
sequence (3, 5), finally creating the rank two sequence (2, 3, 4, 5). extract-min removes the smallest item, here 1,
from the head of its sequence.

not pruned). For an item e to be pruned and with
successor e′ in the sequence, we remove e from the
sequence and add e to C(e′) together with all items
from C(e). This implements the car-pooling idea of
Chazelle.

Witnesses: The above unfortunately only leaves
o(N) items not pruned from the sequences (see
Lemma 3.3 below). To avoid reporting too many cor-
ruptions we postpone reporting items as corrupted un-
til they can influence the order of the items returned
by extract-min. For this purpose we assign a witness
to each item when it is initially added to a corruption-
set. An item with a witness is not considered corrupted.
When we prune an item e from a sequence its predeces-
sor e′′ in the sequence becomes the witness for e. A
corrupted item e in a soft sequence heap is an item e
in a corrupted set C(e′) without a witness. The current
key of e is then the real key of e′. For an item e′′ we let
the witness-set W (e′′) be all the items e′′ is a witness
for. When we prune e, we add e and all items from C(e)
to the corruption-set C(e′) of its successor e′ and to the
witness-set W (e′′) of its predecessor. To W (e′′) we also
add all items from W (e), i.e. these items get their wit-
ness e replaced by e′′, where key(e′′) ≤ key(e). In gen-
eral, the witness of an item e is an item e′′ still in the
sequence with key(e′′) ≤ key(e). When an item e′′ is
deleted from the soft sequence heap we report all items
in W (e′′) as corrupted.

3.2 The representation details We let e denote an
item in the heap, key(e) the real key of e, and value(e)
the value of e. A soft sequence heap S is represented
by a list L of non-empty sequences L1, L2, . . . , L` of
items. Each sequence Li has a rank, rank(Li), the
sequences appear in strictly increasing rank order, i.e.
rank(Li) < rank(Li+1) for 1 ≤ i < `. The items
in Li are sorted in increasing order by key. With each
item e in Li we store a corruption-set C(e) and witness-
set W (e), possibly empty, of items pruned from the

sorted sequences but still in the heap. Both sets are
represented by cyclic linked lists, with entry points to
the last items in the lists.

Each item e is stored in exactly one Li sequence or
one corruption-set C(e′). If e ∈ C(e′) then key(e) ≤
key(e′), and e is possibly also stored in one witness-
set W (e′′), where key(e′′) ≤ key(e). If e ∈ W (e′′) and
e ∈ C(e′), then e′ and e′′ are in the same Li sequence
and e′′ occurs before e′ in the sequence. The corrupted
items in a sequence are precisely the items contained
in a corruption-set but not in a witness-set, and if a
corrupted item e ∈ C(e′) then the current key of e is
key(e′). A sequence together with its corruption-sets
and witness-sets can be viewed as maintaining a partial
order, where e′′ ≤ e if e ∈ W (e′′), e ≤ e′ if e ∈ C(e′),
and e1 ≤ e2 if e1 is before e2 in the sequence. See
Figure 3 for an example.

To efficiently maintain a reference to the current
minimum item, for each sequence Li, we maintain
a suffix-min reference. The same idea was used by
Chazelle [8] and implicitly by Kaplan et al. [13]. For se-
quence Li, suffix-min(Li) is a reference to sequence Lj ,
where i ≤ j ≤ `, such that the first item in Lj has small-
est key among the items in Li ∪Li+1 ∪ · · · ∪L`. By def-
inition suffix-min(L`) = L` and the first item in the se-
quence suffix-min(L1) has smallest key among all items
in all sequences. The reference suffix-min(Li) can be
updated as follows, assuming suffix-min(Li+1) is known:
If i = ` or key(head(Li)) ≤ key(head(suffix-min(Li+1)))
then suffix-min(Li) = Li, otherwise suffix-min(Li) =
suffix-min(Li+1). Here head(Li) refers to the first item
in the sequence.

3.3 Soft heap operations We now describe how
to implement the operations on a soft sequence heap.
Given an error parameter ε, the rank threshold r0 =⌈
lg 1

ε

⌉
allows us to trade accuracy for improved running

time. Sequences with rank ≤ r0 behave as in a (non-
soft) sequence heap and all corruption-sets and witness-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited17

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

rank

19
6,19

16,21
21

13,15
15
12,10
13,12,10
47

14
18
20
23
24

0
sequence

1

12
14

3
20
24

4

18
19
21
23

7

32

6
6

13
13

16= W (4)

16= C(21)

insert(10)

19
6,19

16,21
21

13,15
15
12,10
13,12,10
4
6,16,4

extract-min

L2 L3 L4

3
7
14
18
20
23
24

4 4
L1 L1L1

15

suffix-min

Figure 2: A soft sequence heap with r0 = 0. To the right of item e, C(e) is shown top-right and W (e) bottom-
right (if non-empty). To perform insert(10), a new sequence (10) of rank zero is first merged with rank zero
sequence (15), and then with rank one sequence (12, 14) to produce rank two sequence (10, 12, 14, 15). The pruning
of this sequence moves 12 to W (10) and C(14). Rank two sequences (10, 14, 15) and (3, 20, 24) are then merged
to yield a rank three sequence (3, 10, 14, 15, 20, 24), that finally is merged with (4, 7, 18, 19, 21, 23), where items
4, 10, 15, 19, 21 are pruned from the resulting rank four sequence. extract-min returns the minimum item 3
in the single sequence (since C(3) = ∅), and reports 6, 16, 4 as corrupted (their current keys are 20, 23, and 7,
respectively).

L1 14 18 20 23 247

4

13
6

1512
10

19 21

16

Figure 3: The partial order represented by the rightmost sequence in Figure 2. The items with corrupted keys
are items 4, 6 and 16.

sets are empty in these sequences.
The helper method prune(L) takes a sorted se-

quence of items L = e1, e2, . . . , em, and prunes e2i
from L, for all 1 ≤ i < m/2, i.e. the first and last
items are not pruned and the pruned sequence has
length

⌈
m+1
2

⌉
. Before pruning an item e2i from L,

the items {e2i} ∪C(e2i) are appended to C(e2i+1), and
{e2i} ∪W (e2i) are appended to W (e2i−1), and C(e2i)
and W (e2i) cease to exist. Since C(e2i) and W (e2i) sets
are cyclic linked lists, this can be done in constant time
for each e2i.

To support delete operations we apply lazy dele-
tions, where an item is only marked as being deleted,
and remains in the soft sequence heap until it becomes
the minimum of the soft sequence heap, where it can be
deleted using extract-min. We maintain the invari-
ant that the current minimum item of the soft sequence
heap is never an item that has been lazily deleted.

Figure 2 illustrates insert and extract-min on a
soft sequence heap.

� make-heap() Creates an empty soft heap S with
L = ∅.

� find-min(S) Let Li = suffix-min(L1), e =

head(Li) and k = key(e). Return (e, k) if C(e) = ∅,
otherwise return (e′, k), where e′ = head(C(e)).

� insert(S, e) First we create a new sequence of rank
zero only containing e. This sequence is added to
the front of L. While the two first sequences of L
have equal rank r, we merge the two sequences into
a sequence of rank r+ 1, that replaces the two first
sequences in L. Whenever creating a sequence L
of rank r > r0 where r − r0 is even, we apply
prune(L). Finally we update suffix-min(L1) for
the new first sequence L1.

� meld(S1,S2) Let L1 and L2 be the two lists of se-
quences respectively, and let r1 and r2 be the max-
imal ranks of a sequence in L1 and L2, respectively.
Merge L1 and L2 by non-decreasing rank until one
of the lists is empty in time O(min(r1, r2)). Let L
be the resulting list. While two sequences in L have
equal rank, merge the two highest ranked sequences
of equal rank r and apply prune if the resulting se-
quence has rank r+ 1 > r0 and (r+ 1)− r0 is even.
Update suffix-min(Li) for the sequences in the new
prefix of L and return a reference to L. (Merging
the two highest ranked sequences of equal rank, en-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited18

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

sures that the sequences remain in increasing rank
order).

� delete(S, e) Let (e′, k′) = find-min(S). If e 6= e′,
mark item e to be lazily deleted and leave it in the
soft heap. Otherwise, call extract-min(S) and
return the items becoming corrupted.

� extract-min(S) Let Li = suffix-min(L1), e =
head(Li), and k = key(e). If C(e) 6= ∅ we remove
the corrupted item e′ = head(C(e)) from C(e)
and return (e′, k, ∅), and are done. Otherwise, we
consider all items in W (e) as corrupted and prepare
to return (e, k, C), where C = W (e). First we
remove all items from C that are lazily deleted.
If Li has become empty, we remove Li from L.
Otherwise, we update suffix-min(Li). Finally, we
update suffix-min(Li−1), . . . , suffix-min(L1). If the
new minimum item to be returned by find-min
is marked as lazily deleted, we repeatedly remove
this, until the new minimum is not lazily deleted
or L is empty, while accumulating all generated
corruptions in C. Eventually, we return (e, k, C).

3.4 Analysis In the following, we assume for simplic-
ity that all items have distinct keys. For each item e in
a corruption-set C(e′) we define an interval I(e), with
key(e) ∈ I(e). If e also has a witness e′′, i.e. e ∈W (e′′),
we let I(e) =]key(e′′), key(e′)]. If e has no witness,
we let I(e) =]−∞, key(e′)]. The interval I(e) captures
the partial order maintained by the data structure for
item e in Li. See Figure 3. Note that the intervals I(e)
are not maintained explicitly by the algorithm; they are
only used in the analysis.

That the algorithm maintains a partial order con-
sistent with the total order follows from how the
corruption- and witness-sets are updated during prune,
and how extract-min and insert proceed. While we
merge sequences Li, we only change the partial order
with respect to the items in Li, and these are merged
according to the total order. When pruning an item e2i
from a sequence, the item e2i keeps e2i−1 and e2i+1

as predecessor and successor in the partial order. All
items in W (e2i) get their predecessor changed from e2i
to e2i−1, but since e2i−1 ≤ e2i, the partial order remains
valid. Similarly all items C(e2i) get their successor in
the partial order changed from e2i to e2i+1, but again
the partial order remains valid since e2i ≤ e2i+1. When
extract-min removes the first item e of an Li, all items
in W (e) loose their lower bound relation to e (and be-
come corrupted), and if extract-min returns an item
e′ ∈ C(e), where e = min(Li), then the item e′ only
had a relationship to e, and the partial order remains
consistent. Note that the above also implies that for

any item e the interval I(e) can only monotonically in-
crease throughout the lifetime of e in the soft sequence
heap. The correctness of the operations, in particular
find-min and extract-min, follows from the fact that
it always returns an item with current key equal to the
minimum key of all non-corrupted items in L1, . . . , L`.

The remaining of this section is devoted to show
that the total number of corruptions in a soft sequence
heap is bounded by εN and that the time bounds are
as stated in Theorem 1.1.

Lemma 3.1. A sequence with rank r contains at most
2r items, and after N insertions all sequences have rank
at most blgNc.

Proof. Since a sequence of rank r is the result of merging
two sequences of rank r − 1, a rank zero sequence
contains one item, and otherwise items are only removed
from a sequence, we by induction have that a sequence of
rank r contains at most 2r items. Furthermore, a rank r
sequence is the result of repeated merging of exactly 2r

sequences of rank zero, i.e. 2r unique insertions, and we
have 2r ≤ N implying r ≤ blgNc.

Let sr denote an upper bound on the length of a
sequence of rank r. By Lemma 3.1 we have sr ≤ 2r.
The following lemma captures the effect of using prune
to prune items.

Lemma 3.2. A sequence of rank r ≤ r0 contains at
most sr = 2r items, and at most sr = (2r0 + 1) ·
2d(r−r0)/2e items for r > r0.

Proof. A sequence of rank zero has size one, and for
ranks 1, . . . , r0 a sequence of rank r is the result of
merging two sequences of rank r−1 without pruning, i.e.
we have sr = 2r for r ≤ r0. For the subsequent ranks,
we alternate between just merging two sequences, and
merging two sequences followed by prune. The first
guarantees sr0+2p+1 = 2 · sr0+2p, whereas the second
guarantees sr0+2p+2 = sr0+2p+1 + 1 for p ≥ 0. It follows
that for p ≥ 1, we have sr0+2p = (· · · (((2r0 · 2 + 1) · 2 +

1) ·2+ · · ·) ·2+1 = 2r0 ·2p +
∑p−1

i=0 2i = (2r0 +1) ·2p−1.
The lemma follows since sr0+2p+1 = sr0+2p+2 − 1, for
p ≥ 0.

The following lemma states that the pruning done
by prune is quite aggressive, only leaving o(N) items
in the sequences. Fortunately, most pruned items will
have witnesses and therefore will not be corrupted.

Lemma 3.3. For a soft sequence heap the total number
of items in L1, . . . , L` is O(

√
N/ε).

Proof. The total number of items in L1, . . . , L` is

bounded by
∑blgNc

r=0 sr ≤
∑r0

r=0 2r +
∑blgNc

r=r0+1(2r0 +

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited19

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

1) · 2d(r−r0)/2e = O(2r0/2 · 2(lgN)/2) = O(
√
N/ε), since

r0 =
⌈
lg 1

ε

⌉
.

Lemma 3.4. Over a sequence of heap operations con-
taining N insertions, the total length of all sequences
created is bounded by O(N lg 1

ε).

Proof. Over time N insertions can at most create
bN/2rc distinct sequences of rank r (an item can only
once be merged into a sequence of each rank). By
Lemma 3.2 and r0 =

⌈
lg 1

ε

⌉
, the total length of all se-

quences ever created by N insertions is bounded by

blgNc∑
r=0

⌊
N

2r

⌋
· sr = O

 r0∑
r=0

N

2r
2r +

blgNc∑
r=r0+1

N

2r
2(r+r0)/2

= O(N · r0) = O

(
N · lg 1

ε

)
.

The following lemma states the amortized running
time of the different heap operations. The bound on the
number of corrupted items follows by Lemma 3.8.

Lemma 3.5. Soft sequence heaps support insert in
amortized O(lg 1

ε) time, and the remaining operations
in amortized constant time.

Proof. Over a sequence of heap operations, involving N
insert operations, a lot of work can only happen once
for each inserted item: each item can at most once be
pruned, i.e. the total time for pruning and merging
corrupted-sets and witness-sets is O(N). Similarly
each item can at most be extracted once from a C(e)
set, deleted once from a sequence by an extract-min
operation, and being reported corrupted at most once.
All this work takes total time O(N). The make-heap
and find-min operations clearly take O(1) worst-case
time, and do not need to be considered in the following.

The two sources of non-constant work are when
creating new sequences by merging sequences and to
update suffix-min(Li) references whenever the minimum
item in a sequence changes. The merging of sequences
happens during insert and meld. By Lemma 3.4
the total length of all sequences created over time is
bounded by O(N lg 1

ε). Since creating a sequence Li

by merging (and possibly followed by prune) takes
time O(|Li|), the total time for merging sequences
is O(N lg 1

ε).
The suffix-min(Li) references need to be updated

during insert, meld and extract-min. During in-
sert only suffix-min(L1) needs to be updated, which
can be done in constant time. If extract-min

removes and returns the first item in a rank r
sequence Li, then the at most r + 1 references
suffix-min(L1), . . . , suffix-min(Li) need to be updated,
in time O(r). There are at most N extract-min from
sequences of rank≤ r0, each with costs of at most O(r0),
i.e. total cost O(N · r0). For each of the bN/2rc se-
quences ever created of rank r > r0, at most sr sequence
items can be removed by extract-min, each with an
update cost of O(r). The total time for these extract-
min becomes

O

 blgNc∑
r=r0+1

⌊
N

2r

⌋
· sr · r

= O

 blgNc∑
r=r0+1

N

2r
· 2(r+r0)/2 · r

 = O(N · r0) .

It follows that all insert and extract-min operations
take total time O(N · r0).

For meld we need to charge the merging of the
L1 and L2 lists, and for updating the suffix-min(Li)
references. For this we use a separate potential ar-
gument. With a soft heap L1, . . . , L` we assign a
potential Φ = rank(L`), i.e. equal to the maximal
rank of a sequence. Since insert only can increase
the maximum rank by one, this only increases the
cost of insertions by an additive term. For meld on
two soft sequence heaps with sequences with maximum
rank r1 and r2, respectively, the resulting heap will
have a sequence with maximal rank/potential at most
max(r1, r2) + 1. I.e. potential min(r1, r2)− 1 is released
by meld. By charging a constant potential to meld, a
total of O(min(r1, r2)) released potential will be avail-
able for performing the merging of L1 and L2 and for
updating the suffix-min(Li) references of old sequences.
Since at most N −1 non-trivial meld operations can be
performed (where both heaps contain at least one item),
the total additional cost for handling meld is O(N).

The total work of the sequence of operations (except
make-heap, find-min, and trivial meld which take
worst-case constant time) is O(N lg 1

ε), which can be
charged O(lg 1

ε) to each insertion, and constant to the
remaining operations.

To bound the number of corruptions, we first bound
the size of corruption-sets and witness-sets. Let cr
and wr be a bound on the number of items in the
corruption-set C(e) and witness-set W (e) for e in a
sequence Li of rank r.

Lemma 3.6. cr = wr = 0 for r ≤ r0, and cr = wr =
2b(r−r0)/2c − 1 for r > r0.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited20

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. Merging Li sequences does not change C(e) and
W (e) sets. Only prune(Li) add items to C(e) and
W (e) sets. When pruning e in a sequence Li with
rank r > r0 and r − r0 even, we append e and C(e)
to C(e′) for the successor e′ of e in Li (and e and W (e)
to W (e′′) for the predecessor e′′ of e in Li). By only
pruning every second item in a sequence, additions to
a corruption-set (witness-set) can only come from the
predecessor (successor) item in the sequence. We have
the recurrence

cr =

0 for r ≤ r0
cr−1 for r > r0 and r − r0 odd

2 · cr−1 + 1 for r > r0 and r − r0 even ,

which solves to cr = 2b(r−r0)/2c − 1 for r > r0, since
cr0+2p = (· · · ((0 · 2 + 1) · 2 + 1) · · ·) · 2 + 1 =

∑p−1
i=0 2i =

2p − 1. Similarly we have wr = 2b(r−r0)/2c − 1.

For a sequence Li and a possible key value x we let
D(Li, x) denote the set of items e in corrupted-sets in
Li where the interval I(e) contains x, i.e.

D(Li, x) = {e | ∃e′ ∈ Li : e ∈ C(e′) ∧ x ∈ I(e)} .

Note that the corrupted items in Li are exactly
D(Li,−∞). We let dr denote an upper bound on
|D(Li, x)| for a rank r sequence Li, i.e. dr is an up-
per bound on the number of corruptions in a sequence
of rank r.

Lemma 3.7. dr = 0 for r ≤ r0, and dr = 2r−r0−1 for
r > r0.

Proof. Since corruption-sets are empty for r ≤ r0 we
have dr = 0 for r ≤ r0. When merging two sequences
Li and Li+1 of rank r − 1 we have D(Li ∪ Li+1, x) =
D(Li, x) ∪ D(Li+1, x), i.e. dr = 2 · dr−1. If we apply
prune to the merged sequence, we prune an item e with
predecessor e′′ and successor e′. This assigns I(e) =
]key(e′′), key(e′)], and the at most cr−1 items in C(e)
all have their interval extended with]key(e), key(e′)],
and the at most wr−1

items in W (e) all have their interval extended by
]key(e′′), key(e)]. Since the pruning of every second
item ensures that the prunings affect disjoint intervals
of the key space, it follows that prune increases dr
additionally by at most 1 + max(cr−1, wr−1). Since
cr−1 = wr−1, we get the following recurrence

dr =

0 for r ≤ r0
2 · dr−1 for r > r0 and r − r0 odd

2 · dr−1 + cr−1 + 1 for r > r0 and r − r0 even.

Using cr = 2b(r−r0)/2c − 1 (Lemma 3.6), for r > r0, the
recurrence solves to

dr =

b r−r0
2 c∑

i=1

(c(r0+2i)−1 + 1) · 2r−(r0+2i)

=

b r−r0
2 c∑

i=1

(
2b(r0+2i−1−r0)/2c − 1 + 1

)
· 2r−r0−2i

=

b r−r0
2 c∑

i=1

2i−1 · 2r−r0−2i

= 2r−r0−1 ·
b r−r0

2 c∑
i=1

2−i < 2r−r0−1 .

Note that when extract-min removes the first
item e in Li this causes all items in W (e) to loose
their witness. But his only happens when C(e) = ∅,
i.e. no interval ends at key(e), and all intervals for
items in W (e) are extended with] − ∞, key(e)]. It
follows after e is removed we have D(Li, key(e)−) =
D(Li, key(e)+) ≤ dr.

Lemma 3.8. The total number of corruptions in a soft
sequence heap after N insertions is bounded by εN .

Proof. Recall that the sequences L1, L2, . . . , L` have
distinct rank and that the maximum rank is bounded
by blgNc. For a sequence Li of rank r, the number of
corruptions is |D(Li,−∞)| ≤ dr, i.e. by Lemma 3.7 the
total number of corruptions is bounded by

blgNc∑
r=0

dr =

blgNc∑
r=r0+1

2r−r0−1 =

blgNc−r0−1∑
i=0

2i

= 2blgNc−r0 − 1 < N/2r0 ≤ εN .

Theorem 1.1 follows from Lemma 3.8 and Lemma 3.5.

3.5 Remarks Essential to our construction is that
we reduce the length of the merged sequences to avoid
spending Θ(N lgN) time on merging sequences during
N insertions. The presented solution is based on binary
merging and applies prune at every second rank –
inspired by the “double even fill” car-pooling used by
Kaplan et al. [13]. Alternatively, one could achieve
the same asymptotic bounds by increasing the merging
degree to three (or more) and apply reductions at all
ranks ≥ r0. (In Section 4 we apply a similar idea to the
structure of Kaplan et al. [13] to eliminate “double even

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited21

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

fill” from their structure by increasing the degree of the
nodes in the trees used).

Comparing our construction to previous construc-
tions, our construction maintains a collection of sorted
sequences whereas all previous soft heaps maintain heap
ordered binomial trees or binary trees. Similar to our
and all previous constructions is the application of car-
pooling to achieve the improved performance over (non-
soft) heaps and the usage of corruption-sets. Whereas
our solution allows a sub-linear number of items not to
be stored in corruption-sets (Lemma 3.3), previous so-
lutions require a larger number of elements not to be
stored in corruption-sets, i.e. our solution maintains or-
der among a smaller subset of items not in corruption-
sets. To be able to report when elements should be
considered corrupted, i.e. to satisfy the the soft heap in-
terface required by Kaplan et al. [12], we apply witness-
sets.

Note that the witness-sets can be removed com-
pletely from the construction if deletions are not re-
quired to return the set of items getting corrupted by
a deletion — but witness-sets are still crucial for the
analysis to bound the number of corruptions in a soft
sequence heap. Interestingly, this implies a structure
where only o(N) items are not in corruption-sets, but
still guarantees that only εN keys need to be considered
corrupted.

4 Heap ordered ternary tree based soft-heaps

Kaplan et al. [13] describe a soft heap implementation
based on a forest of perfectly balanced binary trees, and
Kaplan et al. [12] describe how to modify the structure
to support the interface described in Section 1.1. In
particular they apply lazy insertions, to circumvent
that the original structure might introduce corruptions
during insertions. Their structure also adopts the
notion “double even fill”. In this section we discuss
a variant of their structure that avoids both these
concepts. The performance remains unchanged, i.e.
all operations are amortized constant (and independent
of ε), except extract-min and delete which require
amortized time O(lg 1

ε). In the following we skip
addressing delete (which can be handled by lazy
deletions) and meld (which proceeds very similar as
for soft sequence heaps).

4.1 Non-soft forest heaps The basic structures are
perfectly balanced heap-ordered trees. We describe the
construction generalized by a degree parameter d ≥ 3,
although for our result we only need d = 3. [This
deviates from [13] that uses d = 2.] A rank r tree is a
perfectly balanced tree with dr leaves, where all leaves
have depth r and all internal nodes have d children.

Each leaf corresponds to a unique insertion. A tree is
kept heap ordered by recursively pulling items up in the
tree, leaving subtrees empty (i.e. nodes without items),
such that the root stores the item with minimum value
in the tree.

A simple (non-soft) “forest heap” consists of a list L
of trees in non-decreasing rank order, with at most d−1
trees of each rank. The insertion of an item e creates a
single node rank zero tree at the front of L, storing e.
While the first d trees of L have equal rank r, we link
these trees to create a rank r + 1 tree: create a new
rank r+1 node and make the d rank r roots the children
of this node, and recursively fill the node with an item
by moving an item with minimum key from a child one
level up, recursively filling the child until no item can
be moved up. Filling the new rank r+1 root takes time
O(d · (r + 1)). During N insert operations at most⌊
N
dr

⌋
roots of rank r are created. Since the maximal

rank of a tree is blgdNc, the total time to link roots

during insertions is at most O(
∑blgd Nc

r=1

⌊
N
dr

⌋
· d · r) =

O(N), i.e. insertions take amortized constant time. An
extract-min operation identifies a root with an item
with minimum key, removes this item, and recursively
refills a rank r root in time O(d ·r). Since there at most
(d−1) · blgdNc roots, an extract-min operation takes
time O(d · lgdN).

4.2 Soft forest heaps To improve performance, car-
pooling is adapted, to avoid moving each item all the
way from a leaf to the root. With each item e at a
node we store a corruption-set C(e) of corrupted items
e′ with key(e′) ≤ key(e). Similarly to other soft heap
implementations, we maintain suffix-min references for
the roots in L. The implementation of insert proceeds
as described above for the non-soft case using repeated
linking of d trees of equal rank in amortized O(1)
time, except that we also need to update in constant
time the suffix-min reference for the resulting first tree
in L. [This deviates from the solution in [13] that uses
“double even fill” during insertions, which can introduce
corruptions, and require the insertions to be buffered
and be performed lazily.]

For the implementation of extract-min we use
a rank threshold r0 = max(2,

⌈
lg 1

ε

⌉
). We find the

root v storing an item e with minimum non-corrupted
key in constant time, using the suffix-min reference
of the first tree in L. If C(e) 6= ∅, we return a
corrupted item from C(e) with current key equal to
key(e), without generating any corruptions. Otherwise,
e will be returned with its real key. Before doing so, we
need to refill v with a new item and update suffix-min
references for all roots in L from right-to-left starting
at v. The refilling of an empty node is done with a

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited22

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

twist, possibly creating corruptions. Whenever a node
of rank r (i.e. the height of the subtree rooted at the
node is r) is to be refilled, we refill it recursively as in the
non-soft case if r ≤ r0. If r > r0 recursively move two
items e1 and e2 with smallest keys from the subtree to
the node, key(e1) ≤ key(e2), and make e1 corrupted
(and to be returned as corrupted by extract-min) by
appending e1 and C(e1) to C(e2), and leave e2 as the
new item at the node. [This deviates from the solution
in [13], that only recursively double fills for even ranks,
which limits the number of courruptions introduced
when binary linking is applied.] The amortized analysis
of extract-min is given below.

4.3 Analysis To bound the total number of corrup-
tions, let cr denote an upper bound on the size of
a corruption-set C(e) for an item e stored at a node
of rank r. Since corruptions only are introduced at
nodes with rank r > r0, we have cr = 0 for r ≤ r0.
The size of C(e2) only increases at a node at rank
r, when e2 and another item e1 are moved up from
rank r − 1 nodes, and e1 and C(e1) are appended to
C(e2). It follows cr = 2cr−1 + 1 for r > r0, implying

cr =
∑r−r0+1

i=0 2i = 2r−r0 − 1 for r > r0. By sum-
ming over all possible nodes, the total number of cor-

ruptions in a structure is bounded by
∑blgd Nc

r=0

⌊
N
dr

⌋
·cr ≤∑blgd Nc

r=r0+1
N
dr · 2r−r0 < N

2r0 ·
(
2
d

)r0+1 · d
d−2 ≤

N
2r0 ≤ εN ,

since r0 = max(2,
⌈
lg 1

ε

⌉
).

Next we bound the time spend on refilling nodes
during δ extract-min operations. After N insertions
there are at most N/2r0 nodes with rank > r0, and
N/2r0 items in the corrupted-sets. Together with the δ
deleted items, a total of at most δ+2N/2r0 items need to
have moved up to nodes with rank > r0. The recursive
pull of an item from rank r0 to r0 + 1 takes worst-case
O(d · r0) time, i.e. over all extract-min operations we
spend O(d ·r0 · (δ+N/2r0)) = O(d ·N+d ·r0 ·δ) time on
recursively filling nodes at ranks ≤ r0. For moving items
up to nodes at rank > r0, we observe that whenever
we move two items one level up, one of the items get
corrupted — except for the last possible item being
moved into a node before the subtree becomes empty.
Since an item can at most get corrupted once, and there
are at most N/2r0 nodes with rank > r0, at most O(N)
times an item is moved one level up. We conclude that a
sequence withN insert and δ extract-min operations
in total spend O(d · N + d · r0 · δ) time on recursively
pulling items up during the extract-min operations.

Finally,we consider the time to update the suffix-
min pointers during extract-min. If the item at a
root of rank r changes, at most (d − 1) · (r + 1) suffix-
min references need to be updated in time O(d · r). We

charge the cost for updating the suffix-min references
at the roots of rank ≤ r0 directly to the extract-min
operation, i.e. O(d · r0). For updating roots of ranks
r0 + 1 to r we just consider a very rough bound on the
total number of different items that can become the root
of rank r trees. At most bN/drc trees are ever created
of rank r, each such tree contains at most dr items, of
which only a fraction Θ(1

2r−r0
) can reach the root, due

to the pruning of every second item reaching nodes of
rank r0 + 1, . . . , r. In total

O

(⌊
N

dr

⌋
· dr · 1

2r−r0

)
different items can become the root of rank r trees.
Charging updating O(d · (r − r0)) suffix-min references
to each of these items, and summing over all ranks gives

O

blgd Nc∑
r=r0+1

N · 1

2r−r0
· d · (r − r0)

 = O(N · d)

as an upper bound of updating sufffix-min references.
We conclude that a sequence with N insert and δ

extract-min operations requires total time

O(d ·N + d · r0 · δ) = O

(
N + δ lg

1

ε

)
,

for d = 3 and r0 = max(2,
⌈
1
ε

⌉
), i.e. insert takes

amortized constant time and extract-min amortized
O(lg 1

ε) time.

References

[1] Alka Bhushan and Sajith Gopalan. External memory
soft heap, and hard heap, a meldable priority queue. In
Proc. 18th Annual International Conference on Com-
puting and Combinatorics (COCOON), volume 7434
of Lecture Notes in Computer Science, pages 360–371.
Springer, 2012. doi:10.1007/978-3-642-32241-9_

31.
[2] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt,

Ronald L. Rivest, and Robert Endre Tarjan. Time
bounds for selection. Journal of Computer and Sys-
tem Sciences, 7(4):448–461, 1973. doi:10.1016/

S0022-0000(73)80033-9.
[3] Klaus Brengel, Andreas Crauser, Paolo Ferragina, and

Ulrich Meyer. An experimental study of priority
queues in external memory. ACM Journal of Ex-
perimental Algorithmics, 5:17, 2000. doi:10.1145/

351827.384259.
[4] Gerth Stølting Brodal and Jyrki Katajainen. Worst-

case external-memory priority queues. In Proc.
6th Scandinavian Workshop on Algorithm Theory
(SWAT), volume 1432 of Lecture Notes in Computer
Science, pages 107–118. Springer, 1998. doi:10.1007/

BFb0054359.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited23

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1007/978-3-642-32241-9_31
https://doi.org/10.1007/978-3-642-32241-9_31
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1145/351827.384259
https://doi.org/10.1145/351827.384259
https://doi.org/10.1007/BFb0054359
https://doi.org/10.1007/BFb0054359

[5] Soumen Chakrabarti, Amit Pathak, and Manish
Gupta. Index design and query processing for graph
conductance search. The VLDB Journal, 20(3):445–
470, 2011. doi:10.1007/s00778-010-0204-8.

[6] Bernard Chazelle. Car-pooling as a data structuring
device: The soft heap. In Proc. 6th Annual European
Symposium on Algorithms (ESA), volume 1461 of Lec-
ture Notes in Computer Science, pages 35–42. Springer,
1998. doi:10.1007/3-540-68530-8_3.

[7] Bernard Chazelle. A minimum spanning tree algorithm
with inverse-Ackermann type complexity. Journal
of the ACM, 47(6):1028–1047, 2000. doi:10.1145/

355541.355562.
[8] Bernard Chazelle. The soft heap: An approximate

priority queue with optimal error rate. Journal of the
ACM, 47(6):1012–1027, 2000. doi:10.1145/355541.

355554.
[9] Michael J. Fischer and Mike Paterson. Fishspear:

A priority queue algorithm. Journal of the ACM,
41(1):3–30, 1994. doi:10.1145/174644.174645.

[10] Greg N. Frederickson. An optimal algorithm for
selection in a min-heap. Information and Computation,
104(2):197–214, 1993. doi:10.1006/inco.1993.1030.

[11] Greg N. Frederickson and Donald B. Johnson. The
complexity of selection and ranking in X + Y and
matrices with sorted columns. Journal of Computer
and System Sciences, 24(2):197–208, 1982. doi:10.

1016/0022-0000(82)90048-4.
[12] Haim Kaplan, László Kozma, Or Zamir, and Uri

Zwick. Selection from heaps, row-sorted matrices, and
X + Y using soft heaps. In Proc. 2nd Symposium
on Simplicity in Algorithms (SOSA), volume 69 of
OASICS, pages 5:1–5:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019. doi:10.4230/OASIcs.

SOSA.2019.5.

[13] Haim Kaplan, Robert Endre Tarjan, and Uri Zwick.
Soft heaps simplified. SIAM Journal on Computing,
42(4):1660–1673, 2013. doi:10.1137/120880185.

[14] Haim Kaplan and Uri Zwick. A simpler implemen-
tation and analysis of Chazelle’s soft heaps. In Pro-
ceedings of the Twentieth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 477–485.
SIAM, 2009. URL: http://dl.acm.org/citation.

cfm?id=1496770.1496823.
[15] Seth Pettie and Vijaya Ramachandran. An optimal

minimum spanning tree algorithm. In Proc. 27th
International Colloquium on Automata, Languages and
Programming (ICALP), volume 1853 of Lecture Notes
in Computer Science, pages 49–60. Springer, 2000.
doi:10.1007/3-540-45022-X_6.

[16] Seth Pettie and Vijaya Ramachandran. An opti-
mal minimum spanning tree algorithm. Journal of
the ACM, 49(1):16–34, 2002. doi:10.1145/505241.

505243.
[17] Peter Sanders. Fast priority queues for cached memory.

ACM Journal of Experimental Algorithmics, 5:7, 2000.
doi:10.1145/351827.384249.

[18] Mikkel Thorup. On RAM priority queues. SIAM
Journal on Computing, 30(1):86–109, 2000. doi:10.

1137/S0097539795288246.
[19] Mikkel Thorup, Or Zamir, and Uri Zwick. Dynamic

ordered sets with approximate queries, approximate
heaps and soft heaps. In 46th International Col-
loquium on Automata, Languages, and Programming
(ICALP), volume 132 of LIPIcs, pages 95:1–95:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.ICALP.2019.95.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited24

D
ow

nl
oa

de
d

04
/2

7/
23

 to
 1

51
.4

8.
22

3.
14

2
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1007/s00778-010-0204-8
https://doi.org/10.1007/3-540-68530-8_3
https://doi.org/10.1145/355541.355562
https://doi.org/10.1145/355541.355562
https://doi.org/10.1145/355541.355554
https://doi.org/10.1145/355541.355554
https://doi.org/10.1145/174644.174645
https://doi.org/10.1006/inco.1993.1030
https://doi.org/10.1016/0022-0000(82)90048-4
https://doi.org/10.1016/0022-0000(82)90048-4
https://doi.org/10.4230/OASIcs.SOSA.2019.5
https://doi.org/10.4230/OASIcs.SOSA.2019.5
https://doi.org/10.1137/120880185
http://dl.acm.org/citation.cfm?id=1496770.1496823
http://dl.acm.org/citation.cfm?id=1496770.1496823
https://doi.org/10.1007/3-540-45022-X_6
https://doi.org/10.1145/505241.505243
https://doi.org/10.1145/505241.505243
https://doi.org/10.1145/351827.384249
https://doi.org/10.1137/S0097539795288246
https://doi.org/10.1137/S0097539795288246
https://doi.org/10.4230/LIPIcs.ICALP.2019.95

	Introduction
	Soft heaps
	Applications of soft heaps
	Results
	Structure of paper

	Sequence heaps
	Soft sequence heaps
	Corruption-sets and witness-sets
	The representation details
	Soft heap operations
	Analysis
	Remarks

	Heap ordered ternary tree based soft-heaps
	Non-soft forest heaps
	Soft forest heaps
	Analysis

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 -1130
 -282
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 11
 10
 11

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 -1130
 -282
 Fixed
 Up
 7.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 11
 0
 1

 1

 HistoryList_V1
 qi2base

