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Abstract. In this paper we generalize the idea of QuickHeapsort lead-
ing to the notion of QuickXsort. Given some external sorting algo-
rithm X, QuickXsort yields an internal sorting algorithm if X satisfies
certain natural conditions. We show that up to o(n) terms the average
number of comparisons incurred by QuickXsort is equal to the average
number of comparisons of X.

Wealso describe a new variant ofWeakHeapsort.WithQuickWeak-
Heapsort and QuickMergesort we present two examples for the
QuickXsort construction. Both are efficient algorithms that perform
approximately n log n − 1.26n + o(n) comparisons on average. Moreover,
we show that this bound also holds for a slight modification which guaran-
tees an n log n+O(n) bound for the worst case number of comparisons.

Finally, we describe an implementation of MergeInsertion and an-
alyze its average case behavior. Taking MergeInsertion as a base case
for QuickMergesort, we establish an efficient internal sorting algo-
rithm calling for at most n log n − 1.3999n + o(n) comparisons on av-
erage. QuickMergesort with constant size base cases shows the best
performance on practical inputs and is competitive to STL-Introsort.

Keywords: in-place sorting, quicksort, mergesort, analysis of algorithms.

1 Introduction

Sorting a sequence of n elements remains one of the most frequent tasks carried
out by computers. A lower bound for sorting by only pairwise comparisons is
log(n!) ≈ n logn− 1.44n+O(log n) comparisons for the worst and average case
(logarithms denoted by log are always base 2, the average case refers to a uniform
distribution of all input permutations assuming all elements are different). Sort-
ing algorithms that are optimal in the leading term are called constant-factor-
optimal. Tab. 1 lists some milestones in the race for reducing the coefficient in
the linear term. One of the most efficient (in terms of number of comparisons)
constant-factor-optimal algorithms for solving the sorting problem is Ford and
Johnson’sMergeInsertion algorithm [9]. It requires n logn−1.329n+O(logn)
comparisons in the worst case [12]. MergeInsertion has a severe drawback
that makes it uninteresting for practical issues: similar to Insertionsort the
number of element moves is quadratic in n, i. e., it has quadratic running time.
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With Insertionsort we mean the algorithm that inserts all elements succes-
sively into the already ordered sequence finding the position for each element
by binary search (not by linear search as frequently done). However, MergeIn-
sertion and Insertionsort can be used to sort small subarrays such that
the quadratic running time for these subarrays is small in comparison to the
overall running time. Reinhardt [15] used this technique to design an internal
Mergesort variant that needs in the worst case n logn − 1.329n + O(logn)
comparisons. Unfortunately, implementations of this InPlaceMergesort al-
gorithm have not been documented. Katajainen et al.’s [11,8] work inspired by
Reinhardt is practical, but the number of comparisons is larger.

Throughout the text we avoid the terms in-place or in-situ and prefer the
term internal (opposed to external). We call an algorithm internal if it needs
at most O(log n) space (computer words) in addition to the array to be sorted.
That means we consider Quicksort as an internal algorithm whereas standard
Mergesort is external because it needs a linear amount of extra space.

Based on QuickHeapsort [2], we develop the concept of QuickXsort in
this paper and apply it to Mergesort and WeakHeapsort, what yields effi-
cient internal sorting algorithms. The idea is very simple: as in Quicksort the
array is partitioned into the elements greater and less than some pivot element.
Then one part of the array is sorted by some algorithm X and the other part is
sorted recursively. The advantage of this procedure is that, if X is an external
algorithm, then in QuickXsort the part of the array which is not currently
being sorted may be used as temporary space, what yields an internal variant
of X. We give an elementary proof that under natural assumptions QuickX-
sort performs up to o(n) terms on average the same number of comparisons as
X. Moreover, we introduce a trick similar to Introsort [14] which guarantees
n logn+O(n) comparisons in the worst case.

The concept of QuickXsort (without calling it like that) was first applied in
UltimateHeapsort by Katajainen [10]. In UltimateHeapsort, first the me-
dian of the array is determined, and then the array is partitioned into subarrays of
equal size. Finding the median means significant additional effort. Cantone and
Cincotti [2] weakened the requirement for the pivot and designed QuickHeap-
sort which uses only a sample of smaller size to select the pivot for partition-
ing.UltimateHeapsort is inferior toQuickHeapsort in terms of average case
number of comparisons, although, unlike QuickHeapsort, it allows an n logn+
O(n) bound for the worst case number of comparisons. Diekert and Weiß [3] an-
alyzed QuickHeapsort more thoroughly and described some improvements re-
quiring less than n logn− 0.99n+ o(n) comparisons on average.

Edelkamp and Stiegeler [5] applied the idea of QuickXsort to WeakHeap-
sort (which was first described by Dutton [4]) introducing QuickWeakHeap-
sort. The worst case number of comparisons of WeakHeapsort is n�logn� −
2�logn� + n− 1 ≤ n logn+ 0.09n, and, following Edelkamp and Wegener [6], this
bound is tight. In [5] an improved variant with n logn− 0.91n comparisons in the
worst case and requiring extra space is presented. With ExternalWeakHeap-
sort we propose a further refinement with the same worst case bound, but on
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Table 1. Constant-factor-optimal sorting with n log n+ κn+ o(n) comparisons

Mem. Other κ Worst κ Avg. κ Exper.

Lower bound O(1) O(n log n) -1.44 -1.44

BottomUpHeapsort [16] O(1) O(n log n) ω(1) – [0.35,0.39]
WeakHeapsort [4,6] O(n/w) O(n log n) 0.09 – [-0.46,-0.42]

RelaxedWeakHeapsort [5] O(n) O(n log n) -0.91 -0.91 -0.91
Mergesort [12] O(n) O(n log n) -0.91 -1.26 –

ExternalWeakHeapsort # O(n) O(n log n) -0.91 -1.26* –
Insertionsort [12] O(1) O(n2) -0.91 -1.38 # –

MergeInsertion [12] O(n) O(n2) -1.32 -1.3999 # [-1.43,-1.41]
InPlaceMergesort [15] O(1) O(n log n) -1.32 – –
QuickHeapsort [2,3] O(1) O(n log n) ω(1) -0.03 ≈ 0.20

O(n/w) O(n log n) ω(1) -0.99 ≈ -1.24

QuickMergesort (IS) # O(log n) O(n log n) -0.32 -1.38 –
QuickMergesort # O(1) O(n log n) -0.32 -1.26 [-1.29,-1.27]

QuickMergesort (MI) # O(log n) O(n log n) -0.32 -1.3999 [-1.41,-1.40]

Abbreviations: # established in this paper, MI MergeInsertion, – not analyzed, * for
n = 2k, w: computer word width in bits; we assume log n ∈ O(n/w).
For QuickXsort we assume InPlaceMergesort as a worst-case stopper (without
κworst ∈ ω(1)). The column “Mem.” exhibits the amount of computer words of memory
needed additionally to the data. “Other” gives the amount of other operations than
comparisons performed during sorting.

average requiring approximately n logn − 1.26n comparisons. Using External-
WeakHeapsort as X in QuickXsort we obtain an improvement over Quick-
WeakHeapsort of [5].

Mergesort is another good candidate for applying the QuickXsort con-
struction. With QuickMergesort we describe an internal variant of Merge-
sort which not only in terms of number of comparisons competes with standard
Mergesort, but also in terms of running time. As mentioned before, MergeIn-
sertion can be used to sort small subarrays. We study MergeInsertion and
provide an implementation based on weak heaps. Furthermore, we give an av-
erage case analysis. When sorting small subarrays with MergeInsertion, we
can show that the average number of comparisons performed by Mergesort
is bounded by n logn− 1.3999n+ o(n), and, therefore, QuickMergesort uses
at most n logn − 1.3999n+ o(n) comparisons in the average case. To our best
knowledge this is better than any previously known bound.

The paper is organized as follows: in Sect. 2 the concept of QuickXsort is
described and our main theorems about the average and worst case number of
comparisons are stated. The following sections are devoted to present examples
for X in QuickXsort: In Sect. 3 we develop ExternalWeakHeapsort, an-
alyze it, and show how it can be used for QuickWeakHeapsort. The next
section treats QuickMergesort and the modification that small base cases
are sorted with some other algorithm, e. g. MergeInsertion, which is then
described in Sect. 5. Finally, we present our experimental results in Sect. 6.

Due to space limitations most proofs can be found in the arXiv version [7].
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2 QuickXsort

In this section we give a more precise description of QuickXsort and derive
some results concerning the number of comparisons performed in the average
and worst case. Let X be some sorting algorithm. QuickXsort works as fol-
lows: First, choose some pivot element as median of some random sample. Next,
partition the array according to this pivot element, i. e., rearrange the array such
that all elements left of the pivot are less or equal and all elements on the right
are greater or equal than the pivot element. (If the algorithms X outputs the
sorted sequence in the extra memory, the partitioning is performed such that the
all elements left of the pivot are greater or equal and all elements on the right
are less or equal than the pivot element.) Then, choose one part of the array and
sort it with algorithm X. (The preferred choice depends on the sorting algorithm
X.) After one part of the array has been sorted with X, move the pivot element
to its correct position (right after/before the already sorted part) and sort the
other part of the array recursively with QuickXsort.

The main advantage of this procedure is that the part of the array that is
not being sorted currently can be used as temporary memory for the algorithm
X. This yields fast internal variants for various external sorting algorithms such
as Mergesort. The idea is that whenever a data element should be moved
to the external storage, instead it is swapped with the data element occupying
the respective position in part of the array which is used as temporary memory.
Of course, this works only if the algorithm needs additional storage only for
data elements. Furthermore, the algorithm has to be able to keep track of the
positions of elements which have been swapped. As the specific method depends
on the algorithm X, we give some more details when we describe the examples
for QuickXsort.

For the number of comparisons we can derive some general results which hold
for a wide class of algorithms X. Under natural assumptions the average number
of comparisons of X and ofQuickXsort differ only by an o(n)-term. For the rest
of the paper, we assume that the pivot is selected as the median of approximately√
n randomly chosen elements. Sample sizes of approximately

√
n are likely to

be optimal as the results in [3,13] suggest.
The following theorem is one of our main results. It can be proved using

Chernoff bounds and then solving the linear recurrence.

Theorem 1 (QuickXsort Average-Case). Let X be some sorting algorithm
requiring at most n logn + cn + o(n) comparisons in the average case. Then,
QuickXsort implemented with Θ(

√
n) elements as sample for pivot selection

is a sorting algorithm that also needs at most n logn+ cn+ o(n) comparisons in
the average case.

Does QuickXsort provide a good bound for the worst case? The obvious
answer is “no”. If always the

√
n smallest elements are chosen for pivot selection,

Θ(n3/2) comparisons are performed. However, we can prove that such a worst
case is very unlikely. Let R(n) be the worst case number of comparisons of the
algorithm X.
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Proposition 1. Let ε > 0. The probability that QuickXsort needs more than
R(n) + 6n comparisons is less than (3/4 + ε)

4
√
n for n large enough.

In order to obtain a provable bound for the worst case complexity we apply
a simple trick similar to the one used in Introsort [14]. We fix some worst
case efficient sorting algorithm Y. This might be, e. g., InPlaceMergesort.
(In order to obtain an efficient internal sorting algorithm, Y has to be internal.)
Worst case efficient means that we have a n logn + O(n) bound for the worst
case number of comparisons. We choose some slowly decreasing function δ(n) ∈
o(1) ∩ Ω(n− 1

4+ε), e. g., δ(n) = 1/ logn. Now, whenever the pivot is more than
n ·δ(n) off the median, we stop with QuickXsort and continue by sorting both
parts of the partitioned array with the algorithm Y. We call this QuickXYsort.
To achieve a good worst case bound, of course, we also need a good bound for
algorithm X. W. l. o. g. we assume the same worst case bounds for X as for Y.
Note that QuickXYsort only makes sense if one needs a provably good worst
case bound. Since QuickXsort is always expected to make at most as many
comparisons as QuickXYsort (under the reasonable assumption that X on
average is faster than Y – otherwise one would use simply Y), in every step of
the recursion QuickXsort is the better choice for the average case.

Theorem 2 (QuickXYsort Worst-Case). Let X be a sorting algorithm with
at most n logn+ cn+o(n) comparisons in the average case and R(n) = n logn+
dn + o(n) comparisons in the worst case (d ≥ c). Let Y be a sorting algorithm
with at most R(n) comparisons in the worst case. Then, QuickXYsort is a
sorting algorithm that performs at most n logn + cn + o(n) comparisons in the
average case and n logn+ (d+ 1)n+ o(n) comparisons in the worst case.

In order to keep the the implementation ofQuickXYsort simple, we propose
the following algorithm Y: Find the median with some linear time algorithm
(see e.g. [1]), then apply QuickXYsort with this median as first pivot element.
Note that this algorithm is well defined because by induction the algorithm Y is
already defined for all smaller instances. The proof of Thm. 2 shows that Y, and
thus QuickXYsort, has a worst case number of comparisons in n logn+O(n).

3 QuickWeakHeapsort

In this section consider QuickWeakHeapsort as a first example of Quick-
Xsort. We start by introducing weak heaps and then continue by describing
WeakHeapsort and a novel external version of it. This external version is a
good candidate for QuickXsort and yields an efficient sorting algorithm that
uses approximately n logn−1.2n comparisons (this value is only a rough estimate
and neither a bound from below nor above). A drawback of WeakHeapsort
and its variants is that they require one extra bit per element. The exposition
also serves as an intermediate step towards our implementation of MergeIn-
sertion, where the weak-heap data structure will be used as a building block.
Conceptually, a weak heap (see Fig. 1) is a binary tree satisfying the following
conditions:
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Fig. 1. A weak heap (reverse bits are set for grey nodes, above the nodes are array
indices.)

(1) The root of the entire tree has no left child.

(2) Except for the root, the nodes that have at most one child are in the last
two levels only. Leaves at the last level can be scattered, i. e., the last level
is not necessarily filled from left to right.

(3) Each node stores an element that is smaller than or equal to every element
stored in its right subtree.

From the first two properties we deduce that the height of a weak heap that has
n elements is �logn� + 1. The third property is called the weak-heap ordering
or half-tree ordering. In particular, this property enforces no relation between
an element in a node and those stored its left subtree. On the other hand, it
implies that any node together with its right subtree forms a weak heap on its
own. In an array-based implementation, besides the element array s, an array
r of reverse bits is used, i. e., ri ∈ {0, 1} for i ∈ {0, . . . , n − 1}. The root has
index 0. The array index of the left child of si is 2i+ ri, the array index of the
right child is 2i + 1 − ri, and the array index of the parent is 
i/2� (assuming
that i �= 0). Using the fact that the indices of the left and right children of si
are exchanged when flipping ri, subtrees can be reversed in constant time by
setting ri ← 1− ri. The distinguished ancestor (d -ancestor (j)) of sj for j �= 0, is
recursively defined as the parent of sj if sj is a right child, and the distinguished
ancestor of the parent of sj if sj is a left child. The distinguished ancestor of
sj is the first element on the path from sj to the root which is known to be
smaller or equal than sj by (3). Moreover, any subtree rooted by sj , together
with the distinguished ancestor si of sj , forms again a weak heap with root si
by considering sj as right child of si.

The basic operation for creating a weak heap is the join operation which
combines two weak heaps into one. Let i < j be two nodes in a weak heap
such that si is smaller than or equal to every element in the left subtree of sj .
Conceptually, sj and its right subtree form a weak heap, while si and the left
subtree of sj form another weak heap. (Note that si is not part of the subtree
with root sj .) The result of join is a weak heap with root at position i. If sj < si,
the two elements are swapped and rj is flipped. As a result, the new element sj
will be smaller than or equal to every element in its right subtree, and the new
element si will be smaller than or equal to every element in the subtree rooted at
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sj . To sum up, join requires constant time and involves one element comparison
and a possible element swap in order to combine two weak heaps to a new one.

The construction of a weak heap consisting of n elements requires n− 1 com-
parisons. In the standard bottom-up construction of a weak heap the nodes are
visited one by one. Starting with the last node in the array and moving to the
front, the two weak heaps rooted at a node and its distinguished ancestor are
joined. The amortized cost to get from a node to its distinguished ancestor is
O(1) [6].

When using weak heaps for sorting, the minimum is removed and the weak
heap condition restored until the weak heap becomes empty. After extracting an
element from the root, first the special path from the root is traversed top-down,
and then, in a bottom-up process the weak-heap property is restored using at
most �logn� join operations. (The special path is established by going once to
the right and then to the left as far as it is possible.) Hence, extracting the
minimum requires at most �logn� comparisons.

Now, we introduce a modification to the standard procedure described by
Dutton [4], which has a slightly improved performance, but requires extra space.
We call this modified algorithm ExternalWeakHeapsort. This is because it
needs an extra output array, where the elements which are extracted from the
weak heap are moved to. On average ExternalWeakHeapsort requires less
comparisons thanRelaxedWeakHeapsort [5]. Integrated inQuickXsortwe
can implement it without extra space other than the extra bits r and some other
extra bits. We introduce an additional array active and weaken the requirements
of a weak heap: we also allow nodes on other than the last two levels to have
less than two children. Nodes where the active bit is set to false are considered
to have been removed. ExternalWeakHeapsort works as follows: First, a
usual weak heap is constructed using n − 1 comparisons. Then, until the weak
heap becomes empty, the root – which is the minimal element – is moved to
the output array and the resulting hole has to be filled with the minimum of
the remaining elements (so far the only difference to normal WeakHeapsort
is that there is a separate output area).

The hole is filled by searching the special path from the root to a node x which
has no left child. Note that the nodes on the special path are exactly the nodes
having the root as distinguished ancestor. Finding the special path does not need
any comparisons since one only has to follow the reverse bits. Next, the element
of the node x is moved to the root leaving a hole. If x has a right subtree (i. e.,
if x is the root of a weak heap with more than one element), this hole is filled
by applying the hole-filling algorithm recursively to the weak heap with root x.
Otherwise, the active bit of x is set to false. Now, the root of the whole weak heap
together with the subtree rooted by x forms a weak heap. However, it remains
to restore the weak heap condition for the whole weak heap. Except for the root
and x, all nodes on the special path together with their right subtrees form weak
heaps. Following the special path upwards these weak heaps are joined with their
distinguished ancestor as during the weak heap construction (i. e., successively
they are joined with the weak heap consisting of the root and the already treated
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nodes on the special path together with their subtrees). Once, all the weak heaps
on the special path are joined, the whole array forms a weak heap again.

Theorem 3. For n = 2k ExternalWeakHeapsort performs exactly the
same comparisons as Mergesort applied on a fixed permutation of the same
input array.

By [12, 5.2.4–13] we obtain the following corollary.

Corollary 1 (Average Case ExternalWeakHeapsort). For n = 2k the
algorithm ExternalWeakHeapsort uses approximately n logn− 1.26n com-
parisons in the average case.

If n is not a power of two, the sizes of left and right parts of WeakHeapsort
are less balanced than the left and right parts of ordinary Mergesort and one
can expect a slightly higher number of comparisons. ForQuickWeakHeapsort,
the half of the array which is not sorted by ExternalWeakHeapsort is used
as output area. Whenever the root is moved to the output area, the element that
occupied that place before is inserted as a dummy element at the position where
the active bit is set to false. Applying Thm. 1, we obtain the rough estimate of
n logn− 1.2n comparisons for the average case ofQuickWeakHeapsort.

4 QuickMergesort

As another example for QuickXsort we consider QuickMergesort. For the
Mergesort part we use standard (top-down) Mergesort which can be im-
plemented using m extra spaces to merge two arrays of length m. After the
partitioning, one part of the array – we assume the first part – has to be sorted
with Mergesort. In order to do so, the second half of this first part is sorted
recursively with Mergesort while moving the elements to the back of the whole
array. The elements from the back of the array are inserted as dummy elements
into the first part. Then, the first half the first part is sorted recursively with
Mergesort while being moved to the position of the former second part. Now,
at the front of the array, there is enough space (filled with dummy elements)
such that the two halves can be merged. The procedure is depicted in Fig. 2. As
long as there is at least one third of the whole array as temporary memory left,
the larger part of the partitioned array is sorted with Mergesort, otherwise
the smaller part is sorted with Mergesort. Hence, the part which is not sorted
by Mergesort always provides enough temporary space. Whenever a data ele-
ment is moved to or from the temporary space, it is swapped with the dummy
element occupying the respective position. Since Mergesort moves through
the data from left to right, it is always clear which elements are the dummy
elements. Depending on the implementation the extra space needed is O(logn)
words for the recursion stack of Mergesort. By avoiding recursion this can be
reduced to O(1). Thm. 1 together with [12, 5.2.4–13] yields the next result.
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Pivot Pivot

Pivot

Fig. 2. First the two halves of the left part are sorted moving them from one place to
another. Then, they are merged to the original place.

Theorem 4 (Average Case QuickMergesort). QuickMergesort is an
internal sorting algorithm that performs at most n logn− 1.26n+ o(n) compar-
isons on average.

We can do even better if we sort small subarrays with another algorithm Z
requiring less comparisons but extra space and more moves, e. g., Insertion-
sort or MergeInsertion. If we use O(logn) elements for the base case of
Mergesort, we have to call Z at most O(n/ logn) times. In this case we can
allow additional operations of Z like moves in the order of O(n2) given that
O((n/ logn) · log2 n) = O(n logn). Note that for the next result we only need
that the size of the base cases grows as n grows. Nevertheless, when applying
an algorithm which uses Θ(n2) moves, the size of the base cases has to be in
O(log n) in order to achieve an O(n logn) overall running time.

Theorem 5 (QuickMergesort with Base Case). Let Z be some sorting
algorithm with n logn+ en+ o(n) comparisons on average and other operations
taking at most O(n2) time. If base cases of size O(log n) are sorted with Z,
QuickMergesort uses at most n logn+ en+ o(n) comparisons and O(n logn)
other instructions on average.

Proof. By Thm. 1 and the preceding remark, the only thing we have to prove is
that Mergesort with base case Z requires on average at most ≤ n logn+ en+
o(n) comparisons, given that Z needs≤ U(n) = n logn+en+o(n) comparisons on
average. The latter means that for every ε > 0 we have U(n) ≤ n logn+(e+ε) ·n
for n large enough.

Let Sk(m) denote the average case number of comparisons of Mergesort
with base cases of size k sorted with Z and let ε > 0. Since logn grows as n grows,
we have that Slogn(m) = U(m) ≤ m logm+ (e + ε) ·m for n large enough and
(log n)/2 < m ≤ logn. For m > logn we have Slog n(m) ≤ 2 · Slog n(m/2) + m
and by induction we see that Slogn(m) ≤ m logm + (e + ε) · m. Hence, also
Slogn(n) ≤ n logn+ (e + ε) · n for n large enough. ��

Recall that Insertionsort inserts the elements one by one into the already
sorted sequence by binary search. Using Insertionsort we obtain the following
result. Here, ln denotes the natural logarithm.

Proposition 2 (Average Case of Insertionsort). The sorting algorithm
Insertionsort needs n logn − 2 ln 2 · n + c(n) · n + O(log n) comparisons on
average where c(n) ∈ [−0.005, 0.005].
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Corollary 2 (QuickMergesort with Base Case Insertionsort). If we
use as base case Insertionsort, QuickMergesort uses at most n logn −
1.38n+ o(n) comparisons and O(n log n) other instructions on average.

Bases cases of growing size always lead to a constant factor overhead in run-
ning time if an algorithm with a quadratic number of total operations is applied.
Therefore, in the experiments we also consider constant size base cases, which
offer a slightly worse bound for the number of comparisons, but are faster in
practice. We do not analyze them separately since the preferred choice for the
size depends on the type of data to be sorted and the system on which the
algorithms run.

5 MergeInsertion

MergeInsertion by Ford and Johnson [9] is one of the best sorting algorithms
in terms of number of comparisons. Hence, it can be applied for sorting base
cases ofQuickMergesort what yields even better results than Insertionsort.
Therefore, we want to give a brief description of the algorithm and our imple-
mentation. Algorithmically,MergeInsertion(s0, . . . , sn−1) can be described as
follows (an intuitive example for n = 21 can be found in [12]):

1. Arrange the input such that si ≥ si+�n/2� for 0 ≤ i < 
n/2� with one
comparison per pair. Let ai = si and bi = si+�n/2� for 0 ≤ i < 
n/2�, and
b�n/2� = sn−1 if n is odd.

2. Sort the values a0,...,a�n/2�−1 recursively with MergeInsertion.
3. Rename the solution as follows: b0 ≤ a0 ≤ a1 ≤ · · · ≤ a�n/2�−1 and insert

the elements b1, . . . , b�n/2�−1 via binary insertion, following the ordering b2,
b1, b4, b3, b10, b9, . . . , b5, . . . , btk−1

, btk−1−1, . . . btk−2+1, btk , . . . into the main
chain, where tk = (2k+1 + (−1)k)/3.

While the description is simple, MergeInsertion is not easy to implement
efficiently because of the different renamings, the recursion, and the change of
link structure. Our proposed implementation of MergeInsertion is based on a
tournament tree representation with weak heaps as in Sect. 3. It uses n logn+n
extra bits and works as follows: First, step 1 is performed for all recursion levels
by constructing a weak heap. (Pseudo-code implementations for all the opera-
tions to construct a tournament tree with a weak heap and to access the part-
ners in each round can be found in [7] – note that for simplicity in the above
formulation the indices and the order are reversed compared to our implemen-
tation.) Then, in a second phase step 3 is executed for all recursion levels, see
Fig. 3. One main subroutine of MergeInsertion is binary insertion. The call
binary-insert(x, y, z) inserts the element at position z between position x − 1
and x+ y by binary insertion. In this routine we do not move the data elements
themselves, but we use an additional index array φ0, . . . , φn−1 to point to the
elements contained in the weak heap tournament tree and move these indirect
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procedure: merge(m: integer)
global: φ array of n integers imposed by weak-heap
for l ← 0 to �m/2� − 1

φm−odd(m)−l−1 ← d -child(φl,m− odd(m));

k ← 1; e ← 2k; c ← f ← 0;
while e < m

k ← k + 1; e ← 2e;
l ← �m/2� + f ; f ← f + (tk − tk−1);
for i ← 0 to (tk − tk−1)− 1

c ← c+ 1;
if c = �m/2� then

return;
if tk > �m/2� − 1 then

binary-insert(i+ 1− odd(m), l,m− 1);
else

binary-insert(�m/2� − f + i, e− 1, �m/2�+ f);

Fig. 3. Merging step in MergeInsertion with tk = (2k+1+(−1)k)/3 , odd(m) =
m mod 2, and d -child(φi, n) returns the highest index less than n of a grandchild
of φi in the weak heap (i. e, d -child(φi, n) = index of the bottommost element in
the weak heap which has d -ancestor = φi and index < n)

addresses. This approach has the advantage that the relations stored in the tour-
nament tree are preserved. The most important procedure forMergeInsertion
is the organization of the calls for binary-insert . After adapting the addresses
for the elements bi (w. r. t. the above description) in the second part of the array,
the algorithm calls the binary insertion routine with appropriate indices. Note
that we always use k comparisons for all elements of the k-th block (i. e., the
elements btk , . . . , btk−1+1) even if there might be the chance to save one compar-
ison. By introducing an additional array, which for each bi contains the current
index of ai, we can exploit the observation that not always k comparisons are
needed to insert an element of the k-th block. In the following we call this the
improved variant. The pseudo-code of the basic variant is shown in Fig. 3. The
last sequence is not complete and is thus tackled in a special case.

Theorem 6 (Average Case of MergeInsertion). The sorting algorithm
MergeInsertion needs n logn − c(n) · n + O(logn) comparisons on average,
where c(n) ≥ 1.3999.

Corollary 3 (QuickMergesort with Base Case MergeInsertion). When
using MergeInsertion as base case, QuickMergesort needs at most n logn−
1.3999n+ o(n) comparisons and O(n log n) other instructions on average.

6 Experiments

Our experiments consist of two parts. First, we compare the different algorithms
we use as base cases, i. e., MergeInsertion, its improved variant, and Inser-
tionsort. The results can be seen in Fig. 4. Depending on the size of the arrays
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the displayed numbers are averages over 10-10000 runs1. The data elements we
sorted were randomly chosen 32-bit integers. The number of comparisons was
measured by increasing a counter in every comparison2.

The outcome in Fig. 4 shows that our improved MergeInsertion imple-
mentation achieves results for the constant κ of the linear term in the range of
[−1.43,−1.41] (for some values of n are even smaller than −1.43). Moreover, the
standard implementation with slightly more comparisons is faster than Inser-
tionsort. By the O(n2) work, the resulting runtimes for all three implementa-
tions raise quickly, so that only moderate values of n can be handled.
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Fig. 4. Comparison of MergeInsertion, its improved variant and Insertionsort.
For the number of comparisons n log n+ κn the value of κ is displayed.

The second part of our experiments (shown in Fig. 5) consists of the compar-
ison of QuickMergesort (with base cases of constant and growing size) and
QuickWeakHeapsort with state-of-the-art algorithms as STL-Introsort
(i. e., Quicksort), STL-stable-sort (BottomUpMergesort) and Quick-
sort with median of

√
n elements for pivot selection. For QuickMergesort

with base cases, the improved variant of MergeInsertion is used to sort sub-
arrays of size up to 40 log10 n. For the normal QuickMergesort we used base
cases of size ≤ 9. We also implemented QuickMergesort with median of three
for pivot selection, which turns out to be practically efficient, although it needs
slightly more comparisons thanQuickMergesort with median of

√
n. However,

1 Our experiments were run on one core of an Intel Core i7-3770 CPU (3.40GHz, 8MB
Cache) with 32GB RAM; Operating system: Ubuntu Linux 64bit; Compiler: GNU’s
g++ (version 4.6.3) optimized with flag -O3.

2 To rely on objects being handled we avoided the flattening of the array structure
by the compiler. Hence, for the running time experiments, and in each comparison
taken, we left the counter increase operation intact.
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since also the larger half of the partitioned array can be sorted with Mergesort,
the difference to the median of

√
n version is not as big as in QuickHeapsort

[3]. As suggested by the theory, we see that our improved QuickMergesort
implementation with growing size base cases MergeInsertion yields a result
for the constant in the linear term that is in the range of [−1.41,−1.40] – close
to the lower bound. However, for the running time, normal QuickMergesort
as well as the STL-variants Introsort (std::sort) and BottomUpMerge-
sort (std::stable sort) are slightly better. With about 15% the time gap,
however, is not overly big, and may be bridged with additional optimizations.
Also, when comparisons are more expensive, QuickMergesort performs faster
than Introsort and BottomUpMergesort, see the arXiv version [7].
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Fig. 5. Comparison of QuickMergesort (with base cases of constant and growing
size) and QuickWeakHeapsort with other sorting algorithms; (MI) is short for in-
cluding growing size base cases derived from MergeInsertion. For the number of
comparisons n log n+ κn the value of κ is displayed.

7 Concluding Remarks

Sorting n elements remains a fascinating topic for computer scientists both from
a theoretical and from a practical point of view. With QuickXsort we have
described a procedure how to convert an external sorting algorithm into an inter-
nal one introducing only o(n) additional comparisons on average. We presented
QuickWeakHeapsort and QuickMergesort as two examples for this con-
struction. QuickMergesort is close to the lower bound for the average number
of comparisons and at the same time is practically efficient, even when the com-
parisons are fast.

Using MergeInsertion to sort base cases of growing size for QuickMerge-
sort, we derive an an upper bound of n logn− 1.3999n+ o(n) comparisons for
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the average case. As far as we know a better result has not been published before.
We emphasize that the average of our best implementation has a proven gap of
at most 0.05n+o(n) comparisons to the lower bound. The value n logn−1.4n for
n = 2k matches one side of Reinhardt’s conjecture that an optimized in-place
algorithm can have n logn − 1.4n + O(log n) comparisons in the average [15].
Moreover, our experimental results validate the theoretical considerations and
indicate that the factor −1.43 can be beaten. Of course, there is still room in
closing the gap to the lower bound of n logn− 1.44n+O(log n) comparisons.
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