
Theory Comput Syst (2016) 59:209–230
DOI 10.1007/s00224-015-9656-y

QuickHeapsort: Modifications and Improved Analysis

Volker Diekert1 ·Armin Weiß1

Published online: 15 September 2015
© Springer Science+Business Media New York 2015

Abstract QuickHeapsort is a combination of Quicksort and Heapsort. We show that
the expected number of comparisons for QuickHeapsort is always better than for
Quicksort if a usual median-of-constant strategy is used for choosing pivot elements.
In order to obtain the result we present a new analysis for QuickHeapsort splitting
it into the analysis of the partition-phases and the analysis of the heap-phases. This
enables us to consider samples of non-constant size for the pivot selection and leads
to better theoretical bounds for the algorithm. Furthermore, we introduce some mod-
ifications of QuickHeapsort. We show that for every input the expected number of
comparisons is at most n log2 n − 0.03n + o(n) for the in-place variant. If we allow
n extra bits, then we can lower the bound to n log2 n − 0.997n + o(n). Thus, spend-
ing n extra bits we can save more that 0.96n comparisons if n is large enough. Both
estimates improve the previously known results. Moreover, our non-in-place variant
does essentially use the same number of comparisons as index based Heapsort vari-
ants and Relaxed-Weak-Heapsort which use n log2 n − 0.9n + o(n) comparisons in
the worst case. However, index based Heapsort variants and Relaxed-Weak-Heapsort
require �(n log n) extra bits whereas we need n bits only. Our theoretical results are
upper bounds and valid for every input. Our computer experiments show that the
gap between our bounds and the actual values on random inputs is small. Moreover,
the computer experiments establish QuickHeapsort as competitive with Quicksort in
terms of running time.

Keywords In-place sorting · Heapsort · Quicksort · Analysis of algorithms

� Armin Weiß
armin.weiss@fmi.uni-stuttgart.de

Volker Diekert
diekert@fmi.uni-stuttgart.de

1 FMI, Universität Stuttgart, Universitätsstr. 38, D-70569 Stuttgart, Germany

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s00224-015-9656-y-x&domain=pdf
mailto:armin.weiss@fmi.uni-stuttgart.de
mailto:diekert@fmi.uni-stuttgart.de

210 Theory Comput Syst (2016) 59:209–230

1 Introduction

QuickHeapsort is a combination of Quicksort and Heapsort which was first described
by Cantone and Cincotti [2]. It is based on Katajainen’s idea for Ultimate Heapsort
[11]. Ultimate Heapsort needs n log2 n+O(n) comparisons in the worst case, but, due
to exact median computations, the hidden constant in the linear term is very high. In
contrast to Ultimate Heapsort, the worst case behavior of QuickHeapsort is quadratic,
but it performs well in practice: just as Quicksort does and for the very same reason.
QuickHeapsort always beats Quicksort with respect to the number of comparisons if
the same strategy for pivot selection is applied. For example, consider the median-of-
three method for choosing pivot elements. This pivot selection is also called Clever
Quicksort, see e.g. [17]. Clever Quicksort needs 1.18n log2 n comparisons on average
– whereas the expected number of comparisons is only n log2 n + 1.92n for Quick-
Heapsort. The strength of QuickHeapsort lies in the optimal n log2 n term and the
small constant in the linear term. Moreover, we show that the linear term can be made
smaller by applying some improved variants of QuickHeapsort. Using n extra bits
and choosing the pivot element as the median out of

√
n random elements, we obtain

a variant where the expected number of comparisons is less than n log2 n − 0.997n,
see Theorem 4.

Quicksort and QuickHeapsort have in common that the array is partitioned into
two parts by some pivot element. Quicksort is called recursively for both parts
whereas QuickHeapsort sorts the smaller part differently and calls itself recursively
for the larger part, only. In the smaller part a heap is constructed and the elements
are successively extracted. The crucial observation is that for the sift-down only one
comparison per level is needed. This is the point where QuickHeapsort is superior to
standard Heapsort which uses two comparisons per level during the sift-down phase,
see e.g. the textbook [6, 12]. This is one of the reasons why standard Heapsort cannot
compete with Quicksort in practice (of course there are also other reasons like cache
behavior). Over the time a lot of solutions to this problem appeared like Bottom-Up-
Heapsort [18] or MDR-Heapsort [14, 17], which both perform the sift-down by first
going down to some leaf and then searching upward for the correct position.

In [2] the basic version of QuickHeapsort with a fixed position in the array
as pivot is analyzed, but no other method for pivot selection is considered. How-
ever, the authors compare an implementation of the median-of-three version with
other Quick- and Heapsort variants, too. In [8] Edelkamp and Stiegeler compare
these variants with so-called Weak-Heapsort [7] and some modifications of it like
Relaxed-Weak-Heapsort [8]. Weak-Heapsort needs n log2 n − 0.42n comparisons
in the average case and n log2 n + 0.1n in the worst case; hence, it beats basic
QuickHeapsort with respect to the number of comparisons (n log2 n + 0.72n + o(n)

expected number of comparisons when implemented with
√

n elements for pivot
selection). However, Weak-Heapsort needs O(n) bits extra-space. Wang and Wu
introduced Rank-Heapsort [16]. Rank-Heapsort as well as Relaxed-Weak-Heapsort
needs n log2 n − 0.91n comparisons in the worst case, but O(n log n) bits extra-
space. The in-place algorithm Bottom-Up-Heapsort is conjectured to use at most

Theory Comput Syst (2016) 59:209–230 211

n log2 n + 0.4n on average [18]. One should also note that Ultimate Heapsort can be
viewed as a special case of QuickHeapsort where the sample to choose the median is
the whole array, thus Ultimate Heapsort determines the exact median position. This
bounds the worst-case, but it is too expensive in practice where the average case
becomes more interesting. There is also a complicated, iterated in-place MergeInser-
tion due to Reinhardt [15] which uses only n log2 n − 1.3n +O(log n) comparisons,
but the algorithm is not suitable in practice.

The organization of the present paper is as follows. QuickHeapsort together with
our first improvement is described in Section 2. In Section 4 and Section 5, we
analyze the expected number of comparisons of QuickHeapsort. Then we introduce
some improvements in Section 6 allowing n additional bits. Finally, in Section 7, we
present our experimental results comparing the different versions of QuickHeapsort
with other Quicksort and Heapsort variants. In our experiments we focus on the num-
ber of comparisons but our tables also include some running times in order to show
the practical performances. Our paper yields the following results.

1. We give a simplified analysis for the expected number of comparisons which
gives better bounds than previously known for QuickHeapsort. This is done by
splitting the analysis into three parts: the partitioning phases, the heap construc-
tion and the heap extraction. Our approach yields the first precise analysis of
QuickHeapsort when the pivot element is taken from a larger sample. In par-
ticular, we analyze the median-of-three situation or the even more interesting
situation where the sample has size

√
n.

2. We give a simple in-place modification of QuickHeapsort which saves 0.75n

comparisons.
3. We give a modification of QuickHeapsort using n extra bits only and we can

bound the expected number of comparisons to n log2 n − 0.997n + o(n). This
bound is better than all previously known bounds for the worst case of Heapsort
variants using O(n log n) extra bits.

4. We have implemented QuickHeapsort and we have performed various computer
experiments counting comparisons and measuring running times. The experi-
ments confirm that our theoretical upper bounds on the number match realistic
values. For the running time we measured the cost of a comparison using two
different functions simulating cheap and expensive comparisons. The experi-
ments show that using extra bits is the better method when comparisons are
expensive.

2 QuickHeapsort

A two-layer-min-heap is an array A[1..n] of n elements together with a partition
(G, R) of {1, . . . , n} into green and red elements such that for all g ∈ G, r ∈ R

we have A[g] ≤ A[r]. Furthermore, the green elements g satisfy the heap condition
A[g] ≤ min{A[2g], A[2g + 1]}, and if g is red, then 2g and 2g + 1 are red, too.

212 Theory Comput Syst (2016) 59:209–230

(The conditions are required to hold, only if the indices involved are in the range of
1 to n.) The green elements are called “green” because they can be extracted out of
the heap without caution, whereas the “red” elements are blocked. Two-layer-max-
heaps are defined analogously. We can think of a two-layer-heap as rooted binary
tree such that each node is either green or red. Green nodes satisfy the standard heap-
condition, children of red nodes are red. Two-layer-heaps were defined in [11]. In
[2] for the same concept a different language is used (they describe the algorithm
in terms of External Heapsort). Now, we are ready to describe the QuickHeapsort
algorithm as it has been proposed in [2]. Most of it can be found in pseudocode in
Section 3.

QuickHeapsort sorts an array A[1..n] as follows. A pivot element p ∈
{A[1], . . . , A[n]} is selected as median of some random sample. This is the random-
ized part of the algorithm. Once p is chosen, the array is rearranged according to p as
in Quicksort. That means, using n − 1 comparisons the partitioning function returns
an index k and rearranges the array A so that A[i] ≥ A[k] for i < k, A[k] = p, and
A[k] ≥ A[j] for k < j . After the partitioning a two-layer-heap is built out of the ele-
ments of the smaller part of the array, either the part left of the pivot or right of the
pivot. We call this smaller part heap-area and the larger part work-area. More pre-
cisely, if k − 1 < n− k, then {1, . . . , k − 1} is the heap-area and {k + 1, . . . , n} is the
work-area. If k−1 ≥ n−k, then {1, . . . , k−1} is the work-area and {k+1, . . . , n} is
the heap-area. Note that we know the final position of the pivot element without any
further comparison. Therefore, we do not count it to the heap-area nor to the work-
area. If the heap-area is the part of the array left of the pivot, a two-layer-max-heap
is built, otherwise a two-layer-min-heap is built.

At the beginning, the heap-area is an ordinary heap; hence, it is a two-layer-heap
consisting of green elements, only. Now, the heap extraction phase starts. We assume
that we are in the case of a max-heap. The other case is symmetric. Let m denote the
size of the heap-area. The m elements of the heap-area are moved to the work-area.
The extraction of one element works as follows: the root of the heap is placed at the
current position of the work-area (which at the beginning is its last position). Then,
starting from the root the resulting “hole” is trickled down: always the larger child
is moved up into the vacant position and then this child is treated recursively. This
stops as soon as a leaf is reached. We call this the SpecialLeaf procedure (Algorithm
2) according to [2]. Now, the element which previously was at the current position in
the work-area is placed as red element in this hole at the leaf in the heap-area. Finally,
the current position in the work-area is moved by one and the next element can be
extracted.

After the partitioning it is guaranteed that no red element is greater than any green
element because we assumed to be in the situation of a max-heap. Moreover, when we
start heap extraction, we know in addition that A[g] ≥ max{A[2g], A[2g+1]} when-
ever g is green. Hence, the procedure sorts correctly. Furthermore, there is enough
space in the work-area to place all green elements of the heap since the heap is always
the smaller part of the array. After extracting all green elements the pivot element

Theory Comput Syst (2016) 59:209–230 213

it placed at its final position and the remaining elements are sorted recursively. The
pseudo code of the algorithm is in Section 3.

Actually we can improve the procedure, thereby saving 3n/4 comparisons by a
simple trick. Before the heap extraction phase starts in the heap-area with m elements,
we perform at most m+2

4 additional comparisons in order to arrange all pairs of leaves
which share a parent such that the left child is not smaller than its right sibling. Now,
in every call of SpecialLeaf, we can save exactly one comparison since we do not
need to compare two leaves. For a max-heap we only need to move up the left child
and put the right one at the place of the former left one. Summing up over all heaps
during an execution of standard QuickHeapsort, we invest n+2t

4 comparisons in order
to save n comparisons, where t is the number of recursive calls. The expected number
of t is in O(log n). Hence, we can expect to save 3n

4 +O(log n) comparisons. We call
this version the improved variant of QuickHeapsort.

3 Pseudocode

Algorithm 1 is the main procedure. It uses the following subroutines.

– ChoosePivot: It returns an element p of the array.
– PartitionReverse: It returns an index k and rearranges the array A so that p =

A[k], A[i] ≥ A[k] for i < k and A[i] ≤ A[k] for i > k using n−1 comparisons.
– ConstructMaxHeap: Constructs a max-heap on the input array.

214 Theory Comput Syst (2016) 59:209–230

The procedure TwoLayerMinHeap is symmetric to TwoLayerMaxHeap.

4 Analysis of QuickHeapsort

This section contains the main contribution of the paper. We analyze the number of
comparisons. By n we denote the number of elements of an array to be sorted. We use
standard O-notation where O(g), �(g), o(g), and ω(g) denote classes of functions.
Throughout, the logarithm is to base 2 and it is denoted by lg, thus, lg n = log2 n.
In our analysis we do not assume any probability distribution of the input, i.e., our
bound for the expected number of comparisons is valid for every permutation of the
input array. Randomization is used however for pivot selection.

4.1 Comparison Between Quicksort and QuickHeapsort

Let us start with an informal discussion which explains why QuickHeapsort is able
to beat Quicksort with respect to the number of comparisons. We assume a median-

Theory Comput Syst (2016) 59:209–230 215

of-constant pivot selection. In Quicksort every position in the array is chosen exactly
once as pivot. Thus, the random process yields a permutation of the set {1, . . . , n}.
More precisely, it yields a binary search tree where the root r is the position of the
first pivot, the root of its left subtree is the pivot chosen in the array A[1..r − 1], etc.
QuickHeapsort deviates from Quicksort in such a way that the recursion is only used
for the larger subtree. This means that we expect only O(log n) pivot elements to be
chosen rather then n for Quicksort. Therefore, costs for finding the pivot elements
sum up to o(n) in QuickHeapsort, only (also when the pivot is selected from a sample
of growing size); and it has no effect on the linear term. This is true, as long as pivot
elements are chosen from a sample of size o(n), e.g.

√
n elements.

Quicksort and QuickHeapsort both call a recursion for the larger subtree, but for
the smaller subtree QuickHeapsort creates a heap and then performs the sorting using
heap extraction. Assume that the smaller subtree has m elements. Quicksort with a
median-of-constant pivot selection is expected to make at least c ·m lg m comparisons
with c > 1 and with c ≈ 1.18 for the median-of-three method. But QuickHeapsort
uses here m lg m+O(m) comparisons, only. Indeed, the standard procedure for heap
construction needs O(m) comparisons. Now the heap extraction amounts to m lg m

comparisons, because whenever an element is extracted from the heap, a new element
is inserted and sifts down to the bottom. The sift down needs one comparison per
level because the newly inserted element is always smaller (resp. greater) than any
element in the heap.

4.2 The Main Result

With Pr[e] we denote the probability of some event e. The expected value of a ran-
dom variable T is denoted by E[T]. Let T (n) denote the number of comparisons
during QuickHeapsort on a fixed array of n elements. We do not count assignments
or “swaps” since their number is of the same magnitude. We split the analysis of
QuickHeapsort into three parts:

1. Partitioning with an expected number of comparisons E[Tpart(n)].
2. Heap construction with at most Tcstr(n) comparisons (worst case).
3. Heap extraction or “sorting phase” with at most Text(n) comparisons (worst

case).

We analyze the three parts separately and put them together at the end. The par-
titioning is the only randomized part of our algorithm. The expected number of
comparisons depends on the selection method for the pivot. Throughout we use the
fact that the median of k elements can be determined with O(k) comparisons, see
for example [1]. The expected number of comparisons by QuickHeapsort on an input
array of size n is given by the following inequality

E[T (n)] ≤ Tcstr(n) + Text(n) + E[Tpart(n)].
Note that the Heapsort part of the algorithm is not randomized. Therefore we

bound the worst case. An alternative approach would be to average Tcstr(n) and
Text(n) over all possible input permutations. However, this alternative would not
bound the expected number of comparisons for one fixed input.

216 Theory Comput Syst (2016) 59:209–230

Theorem 1 The expected number E[T (n)] of comparisons by basic (resp. improved)
QuickHeapsort with pivot as median of k randomly selected elements on an input
array of size n satisfies E[T (n)] ≤ n lg n + ckn + o(n) with ck as follows:

k ck basic QHS variant ck improved QHS variant
1 +2.72 +1.97
3 +1.92 +1.17

f (n) +0.72 −0.03

The last row is valid for all f ∈ ω(1)∩o(n) with 1 ≤ f (n) ≤ n, e.g., f (n) = √
n.

The proof of Theorem 1 is given in Section 5.

5 Proof of Theorem 1

Note that it is enough to prove the results without the improvement since the differ-
ence is always 0.75n as explained above. The table shows that the selection method
for the pivot is relevant although the bounds for fixed size samples for pivot selection
are not tight.

5.1 Heap Construction

The standard heap construction [9] needs at most 2m comparisons to construct a heap
of size m in the worst case and approximately 1.88m in the average case. For the
mathematical analysis better theoretical bounds can be used. The best result we are
aware of is due to Chen et al. in [5]. According to this result we have Tcstr(m) ≤
1.625m+o(m). Earlier results are of similar magnitude, by [4] it has been known that
Tcstr(m) ≤ 1.632m+o(m) and by [10] it has been known Tcstr(m) ≤ 1.625m+o(m),
but Gonnet and Munro used O(m) extra bits to get this result, whereas the new result
of Chen et al. is in-place (by using only O(lg m) extra bits). During the execution of
QuickHeapsort over n elements, every element is part of a heap only once. Hence,
the sizes of all heaps during the entire procedure sum up to n. With the result of [5]
the total number of comparisons performed in the construction of all heaps satisfies:

Proposition 1 Tcstr(n) ≤ 1.625n + o(n).

5.2 Heap Extraction

For a real number r ∈ R with r > 0 we define {r} by the following condition

r = 2k + {r} with k ∈ Z and 0 ≤ {r} < 2k.

This means that 2k is largest power of 2 which is less than or equal to r and {r} is
the difference to that power, i.e., {r} = r − 2�lg r	. In this section we first analyze the
extraction phase of one two-layer-heap of size m. After that, we bound the number
of comparisons Text(n) performed in the worst case during all heap extraction phases

Theory Comput Syst (2016) 59:209–230 217

of one execution of QuickHeapsort on an array of size n. Theorem 2 is our central
result about heap extraction.

Theorem 2 Text(n) ≤ n · (�lg n	 − 3) + 2{n} + O(lg2 n).

The proof of Theorem 2 covers almost the rest of Section 5.2. In the following,
the height height(υ) of an element υ in a heap H is the maximal distance from that
node to a leaf below it. The height of H is the height of its root. The level level(υ)
of υ is its distance from the root. In this section we want to count the comparisons
during SpecialLeaf procedures, only. Recall that a SpecialLeaf procedure is a cyclic
shift on a path from the root down to some leaf, and the number of comparisons is
exactly the length of this path. Hence, an upper bound is the height of the heap. But
there is a better analysis.

Let us consider a heap with m green elements which are all extracted by Special-
Leaf procedures. The picture is as follows: First, we color the green root red. Next,
we perform a cyclic shift defined by the SpecialLeaf procedure. In particular, the leaf
is now red. Moreover, red positions remain red, but there is exactly one position υ

which has changed its color from green to red. This position υ is on the path defined
by the SpecialLeaf procedure. Hence, the number of comparisons needed to color the
position υ red is bounded by height(υ) + level(υ).

The total number of comparisons E(m) to extract all m elements of a Heap H is
therefore bounded by

E(m) ≤
∑

υ∈H

(height(υ) + level(υ)).

We have height(H) − 1 ≤ height(υ) + level(υ) ≤ height(H) = �lg m	 for all
υ ∈ H . We now count the number of elements υ where height(υ)+level(υ) = �lg m	
and the number of elements υ where height(υ) + level(υ) = �lg m	 − 1. Since there
are exactly {m}+1 nodes of level �lg m	, there are at most 2{m}+1+lg m elements υ

with height(υ)+level(υ) = �lg m	. All other elements satisfy height(υ)+level(υ) =
�lg m	 − 1. We obtain

E(m) ≤ 2 · {m} · �lg m	 + (m − 2 · {m})(�lg m	 − 1) + O(lg m)

= m · (�lg m	 − 1) + 2 · {m} + O(lg m). (1)

Note that this is an estimate of the worst case, however this analysis also shows
that the best case only differs by O(lg m)-terms from the worst case.

Now, we want to estimate the number of comparisons in the worst case performed
during all heap extraction phases together. During QuickHeapsort over n elements we
create a sequence H1, . . . , Ht of heaps of green elements which are extracted using
the SpecialLeaf procedure. Let mi = |Hi | be the size of the i-th Heap. The sequence
satisfies 2mi ≤ n − ∑

j<i mj because heaps are constructed and extracted on the
smaller part of the array.

Here comes a subtle observation: Assume that m1 + m2 ≤ n/2. If we replace the
first two heaps with one heap H ′ of size |H |′ = m1 + m2, then the analysis using
the sequence H ′, H3, . . . , Ht cannot lead to a better bound. Continuing this way, we

218 Theory Comput Syst (2016) 59:209–230

may assume that we have t ∈ O(lg n) and therefore
∑

1≤i≤t O(lg mi) ⊆ O(lg2 n).
With (1) we obtain the bound

Text(n) ≤
t∑

i=1

E(mi) =
(

t∑

i=1

(mi · �lg mi	 + 2{mi})
)

− n + O(lg2 n). (2)

Later we will replace the mi by other positive real numbers. Therefore, we define
the following notion. Let 1 ≤ ν ∈ R. We say a sequence x1, x2, . . . , xt with xi ∈ R

>0

is valid w.r.t. ν if for all 1 ≤ i ≤ t we have 2xi ≤ ν − ∑
j<i

xj .

As just mentioned the initial sequence m1, m2 . . . , mt is valid w.r.t. n. Let us
define a continuous function F : R>0 → R by F(x) = x · �lg x	+ 2{x}. It is contin-
uous since for x = 2k , k ∈ Z we have F(x) = xk = limε→0(x−ε)(k−1)+2{x−ε}.
It is piecewise differentiable with right derivative �lg x	 + 2. Therefore:

Lemma 1 Let x ≥ y > δ ≥ 0. Then we have the inequalities:

F(x) + F(y) ≤ F(x + δ) + F(y − δ) and F(x) + F(y) ≤ F(x + y).

Proof Since the right derivative is monotonically increasing we have:

F(x + δ) − F(x) =
∫ x+δ

x

F ′(t) dt ≥ F ′(x) · δ = (�lg x	 + 2)δ

and

F(y) − F(y − δ) =
∫ y

y−δ

F ′(t) dt ≤ F ′(y) · δ = (�lg y	 + 2)δ.

This yields:

F(y) − F(y − δ) ≤ (�lg y	 + 2)δ ≤ (�lg x	 + 2)δ ≤ F(x + δ) − F(x).

By adding F(x)+F(y −δ) on both sides we obtain the first claim of Lemma 1. Note
that limε→0 F(ε) = 0. Hence, the second claim follows from the first by considering
the limit δ → y.

Lemma 2 Let 1 ≤ ν ∈ R. For all sequences x1, x2, . . . , xt with xi ∈ R
>0, which are

valid w.r.t. ν, we have
t∑

i=1

F(xi) ≤
�lg ν	∑

i=1

F
(ν

2i

)
.

Proof The result is true for ν ≤ 2 because then F(xi) ≤ F(ν/2) ≤ F(1) = 0
for all i. Thus, we may assume ν ≥ 2. We perform induction on t . For t = 1 the
statement is clear since lg ν ≥ 1 and x1 ≤ ν/2. Now, let t > 1. By Lemma 1,
we have F(x1) + F(x2) < F(x1 + x2). Now, if x1 + x2 ≤ ν

2 , then the sequence
x1+x2, x3, . . . , xt is valid, too; and we are done by induction. Hence, we may assume
x1 + x2 > ν

2 . If x1 ≤ x2, then

2x1 = 2x2 + 2(x1 − x2) ≤ ν − x1 + 2(x1 − x2) = ν − x2 + x1 − x2 ≤ ν − x2.

Theory Comput Syst (2016) 59:209–230 219

Thus, if x1 ≤ x2, then the sequence x2, x1, x3, . . . , xt is valid, too. Thus, it is enough
to consider x1 ≥ x2 with x1 + x2 > ν

2 .
We have ν

2 ≥ 1 and the sequence x′
2, x3, . . . xt with x′

2 = x1 +x2 − ν
2 is valid w.r.t.

ν/2 because

x′
2 = x1 + x2 − ν

2
≤ x1 + ν − x1

2
− ν

2
= x1

2
≤ ν

4
.

Therefore, by induction on t and Lemma 1 we obtain the claim:

t∑

i=1

F(xi) ≤ F(ν/2) + F(x′
2) +

t∑

i=3

F(xi)

≤ F(ν/2) +
�lg ν	∑

i=2

F
(ν

2i

)
≤

�lg ν	∑

i=1

F
(ν

2i

)
.

Lemma 3
�lg n	∑
i=1

F
(

n
2i

)
≤ F(n) − 2n + O(lg n).

Proof

�lg n	∑

i=1

F
(n

2i

)
= n�lg n	 ·

�lg n	∑

i=1

1

2i
− n ·

�lg n	∑

i=1

i

2i
+ 2{n} ·

�lg n	∑

i=1

1

2i

≤ n�lg n	 ·
∑

i≥1

1

2i
− n ·

∑

i≥1

i

2i
+ 2{n} ·

∑

i≥1

1

2i
+ n

2�lg n	 ·
∑

i>0

i + �lg n	
2i

= n�lg n	 − 2n + 2{n} + O(lg n).

Applying these lemmata to (2) yields the proof of Theorem 2.

Corollary 1 We have Text(n) ≤ n lg n − 2.9139n + O(lg2 n).

Proof By [17, Thm. 1] we have F(n) − 2n ≤ n lg n − 1.9139n. Hence, Corollary 1
follows directly from Theorem 2.

5.3 Partitioning

In the following Tpivot(n) denotes the number of comparisons required to choose
the pivot element in the worst case; and, as before, E[Tpart(n)] denotes the expected

220 Theory Comput Syst (2016) 59:209–230

number of comparisons performed during partitioning. We have the following
recurrence:

E[Tpart(n)]

≤ n − 1 + Tpivot(n) +
n∑

k=1

Pr[pivot =k] · E[Tpart(max{k − 1, n − k})]. (3)

If we choose the pivot at random, then we obtain by standard methods, see for
example [6, Section 9.2]:

E[Tpart(n)] = n − 1 + 1

n
·

n∑

k=1

E[Tpart(max{k − 1, n − k})] ≤ 4n. (4)

Similarly, if we choose the pivot with the median-of-three method, we obtain:

E[Tpart(n)] = n − 1 + 1(
n

3

) ·
n∑

k=1

(k − 1)(n − k)E[Tpart(max{k − 1, n − k})]. (5)

Equation 5 holds since we assume that all

(
n

3

)
three-element-sets are chosen

equally likely as sample for pivot selection. Moreover, for a fixed k ∈ {1, . . . , n} there
are exactly (k − 1)(n− k) three-element-sets where k is the median. By induction on
n, (5) yields:

E[Tpart(n)] ≤ 3.2n + O(log n). (6)

The proof of the first part of Theorem 1 (when the pivot is chosen randomly or as
median of three random elements) follows from (4) and (6), Theorem 2, and Propo-
sition 1. The more interesting case is when the sample size grows with n. Here, we
obtain significantly better bounds. The key step is Lemma 4. It is a Chernoff type
result and actually it can be derived using classical Chernoff bounds. However, we
prefer a direct proof because it is straightforward and does not require any additional
results.

Lemma 4 Let 0 < δ < 1
2 and α = 4

(
1
4 − δ2

)
< 1. If we choose the pivot as median

of 2c + 1 elements such that 2c + 1 ≤ n
2 then we have

Pr[pivot ≤ n

2
− δn] < (2c + 1)αc.

Proof First note that the probability for choosing the k-th element as pivot satisfies
(

n

2c + 1

)
· Pr[pivot = k] =

(
k − 1

c

)(
n − k

c

)
.

Theory Comput Syst (2016) 59:209–230 221

We use the notation of falling factorial x	 = x · · · (x − 	 + 1). Thus,

(
x

	

)
= x	

	! .

Pr[pivot = k] = (2c + 1)! · (k − 1)c · (n − k)c

(c!)2 · n2c+1

=
(

2c

c

)
(2c + 1)

1

(n − 2c)

c−1∏

i=0

(k − 1 − i)(n − k − i)

(n − 2i − 1)(n − 2i)
.

For k ≤ c we have Pr[pivot = k] = 0. So, let c < k ≤ n
2 − δn and let us consider

an index i in the product with 0 ≤ i < c:

(k − 1 − i)(n − k − i)

(n − 2i − 1)(n − 2i)
≤ (k − i)(n − k − i)

(n − 2i)(n − 2i)

=
((

n
2 − i

) − (
n
2 − k

)) · ((
n
2 − i

) + (
n
2 − k

))

(n − 2i)2

=
(

n
2 − i

)2 − (
n
2 − k

)2

(n − 2i)2

≤ 1

4
−

(
n
2 − (

n
2 − δn

))2

n2
= 1

4
− δ2.

We have
(2c

c

) ≤ 4c. Since 2c + 1 ≤ n
2 , we obtain:

Pr[pivot = k] ≤ 4c(2c + 1)
1

(n − 2c)

(
1

4
− δ2

)c

< (2c + 1)
2

n
αc.

Now, we obtain the desired result:

Pr
[
pivot ≤ n

2
− δn

]
<

� n
2 −δn	∑

k=0

(2c + 1)
2

n
αc ≤ (2c + 1)αc.

Recall that the only part of Theorem 1 which remains to be shown concerns
strategy where the pivot is the median of f (n) randomly selected elements with
f ∈ ω(1) ∩ o(n) with 1 ≤ f (n) ≤ n. As usual, we assume that the median of
k elements can be chosen with O(k) comparisons (and in linear time), e.g. with
the algorithm of [1]. Theorem 1 now follows from Theorem 2, Proposition 1, and
Theorem 3 which is stated and shown next.

Theorem 3 Let f ∈ ω(1) ∩ o(n) with 1 ≤ f (n) ≤ n and let the pivot be cho-
sen as median of f (n) randomly selected elements. Then the expected number of
comparisons used in all recursive calls of partitioning satisfies

E[Tpart(n)] ≤ 2n + o(n).

222 Theory Comput Syst (2016) 59:209–230

Theorem 3 is close to a well-known result in [13, Thm. 5] due to Martı́nez and
Roura on Quickselect, see Corollary 2 for the precise statement. We cannot use it
directly because we deal with QuickHeapsort, where after partitioning the recursive
call is always on the larger part. Our result has an elementary proof which is simpler
than that in [13].

Proof of Theorem 3 As an abbreviation, we let E(n) = E[Tpart(n)] be the expected
number of comparisons performed during partitioning. We are going to show that for
all ε > 0 there is some D ∈ R such that

E(n) < (2 + ε)n + D. (7)

We fix some 1 ≥ ε > 0 and choose δ > 0 such that (2 + ε)δ < ε
4 . Moreover, for

this proof let μ = n+1
2 . Positions of possible pivots k with μ−δn ≤ k ≤ μ+δn form a

small fraction of all positions, and they are located around the median. Nevertheless,
applying Lemma 4 with c = (f (n) − 1)/2 ∈ ω(1) ∩ o(n) yields for all n, which are
large enough:

Pr[pivot < μ − δn] ≤ f (n) ·
(

1 − 4δ2
)(f (n)−1)/2 ≤ 1

48
ε. (8)

The analogous inequality holds for Pr[pivot > μ + δn]. Because Tpivot(n) ∈ o(n),
we have

Tpivot(n) ≤ 1

8
εn (9)

for n large enough. Now, we choose n0 such that (8) and (9) hold for n ≥ n0 and
such that we have (2 + ε)δ + 2

n0
< ε

4 . We set D = E(n0) + 1. Hence, for n < n0 the
desired result (7) holds. Now, let n ≥ n0. From (3) we deduce by symmetry that

E(n) ≤ n − 1 + Tpivot(n) +
�μ+δn	∑

k=μ−δn�
Pr[pivot = k] · E(k − 1)

+ 2
n∑

k=�μ+δn	+1

Pr[pivot = k] · E(k − 1).

Since E is monotone, E(k) can be bounded by the highest value in the respective
interval. Hence, using (9) we obtain

E(n) ≤ n + 1

8
εn + Pr[μ − δn ≤ pivot ≤ μ + δn] · E (�μ + δn)

+ 2 Pr[pivot > μ + δn] · E(n − 1)

≤ n + 1

8
εn +

(
1 − 1

24
ε

)
· E (�μ + δn) + 2

1

48
ε · E(n − 1).

Theory Comput Syst (2016) 59:209–230 223

By induction we assume E(k) ≤ (2 + ε)k + D for k < n. Hence,

E(n) ≤ n + 1

8
εn +

(
1 − 1

24
ε

)
((2 + ε) (μ + δn) + D) + 1

24
ε((2 + ε)n + D)

≤ n + (2 + ε)

(
n + 1

2
+ δn

)
+ 1

8
εn + 1

24
ε(2 + ε)n + D

≤ 2n + 1 + ε

2
+ (2 + ε)δn + 3

4
εn + D

< (2 + ε)n + D.

Corollary 2 ([13]) Let f ∈ ω(1) ∩ o(n) with 1 ≤ f (n) ≤ n. When implement-
ing Quickselect with the median of f (n) randomly selected elements as pivot, the
expected number of comparisons is 2n + o(n).

Proof In QuickHeapsort the recursion is always on the larger part of the array. Hence,
the number of comparisons in partitioning for QuickHeapsort is an upper bound on
the number of comparisons in Quickselect.

In [13] it is also proved that choosing the pivot as median of O(
√

n) elements is
optimal for Quicksort as well as for Quickselect. This suggests that we choose the
same value in QuickHeapsort; what is backed by our experiments.

6 Modifications of QuickHeapsort Using Extra-space

In this section we want to describe some modification of QuickHeapsort using n bits
of extra storage. We introduce two bit arrays. In one of them (the CompareArray) we
store the comparisons already done. Since comparisons always take place between
the two children of some node in the heap, we can assign to every inner node one
of the three values right, left, unknown – according to the current knowledge about
the larger child. Hence, for CompareArray we are willing to spend two bits per inner
node. In the other array (the RedGreenArray) we store which element is red and
which is green.

Since the heaps have maximum size n/2, the RedGreenArray only requires n/2
bits. The CompareArray is only needed for the inner nodes of the heaps, i.e., length
n/4 is sufficient. Totally this sums up to n extra bits.

For the heap construction we do not use the algorithms described in Section 5.1.
With the CompareArray we can do better by using the algorithm of McDiarmid and
Reed [14]. The heap construction works similarly to Bottom-Up-Heapsort, i.e., the
array is traversed backward calling for all inner positions i the Reheap procedure on
i. The Reheap procedure takes the subheap with root i and restores the heap condition
if it is violated at the position i. First, the Reheap procedure determines a special
leaf using the SpecialLeaf procedure as described in Section 2, but without moving
the elements. Then, the final position of the former root is determined going upward

224 Theory Comput Syst (2016) 59:209–230

from the special leaf (bottom-up-phase). In the end, the elements above this final
position are moved up towards the root by one position. That means that all but one
element which are compared during the bottom-up-phase, stay in their places. Since
in the SpecialLeaf procedure these elements have been compared with their siblings,
these comparisons can be stored in the CompareArray and can be used later.

With another improvement concerning the construction of heaps with seven
elements as in [3] the benefits of this array can be exploited even more.

The RedGreenArray is used during the sorting phase, only. Its functionality is
straightforward: Every time a red element is inserted into the heap, the corresponding
bit is set to red. The SpecialLeaf procedure can stop as soon as it reaches an element
without green children. Whenever a red and a green element have to be compared,
the comparison can be skipped.

Theorem 4 Let f ∈ ω(1) ∩ o(n) with 1 ≤ f (n) ≤ n, e.g., f (n) = √
n, and

let E[T (n)] be the expected number of comparisons by QuickHeapsort using the
CompareArray with the improvement of [3] and the RedGreenArray on a fixed input
array of size n. Choosing the pivot as median of f (n) randomly selected elements in
time O(f (n)), we have

E[T (n)] ≤ n lg n − 0.997n + o(n).

Proof We can analyze the savings by the two arrays separately because the
CompareArray only affects comparisons between two green elements, while the
RedGreenArray only affects comparisons involving at least one red element.

First, we consider the heap construction using the CompareArray. With this array
we obtain the same worst case bound as for the standard heap construction method.
However, the CompareArray has the advantage that at the end of the heap construc-
tion many comparisons are stored in the array and can be reused for the extraction
phase. More precisely: For every comparison except the first one made when going
upward from the special leaf, one comparison is stored in the CompareArray since
for every additional comparison one element on the path defined by SpecialLeaf
stays at its place. Because every pair of siblings has to be compared at one point dur-
ing the heap construction or extraction, all these stored comparisons can be reused.
Hence, we only have to count the comparisons in the SpecialLeaf procedure during
the construction plus n

2 for the first comparison when going upward. Thus, we get an
amortized bound for the comparisons during construction of 3n

2 .
In [3] the notion of Fine-Heaps is introduced. A Fine Heap is a heap with the

additional CompareArray such that for every node the larger child is stored in the
array. Such a Fine-Heap of size m can be constructed using the above method with
2m comparisons. In [3] Carlsson, Chen and Mattsson showed that a Fine-Heap of
size m actually can be constructed with only 23

12m + O(lg2 m) comparisons. Thus,
by using the algorithm of [3] as a black-box, we have to invest 23

12m + O(lg2 m) for
the heap construction and at the end there are m

2 comparisons stored in the array.
All these comparisons stored in the array are used later. Summing up over all heaps
during an execution of QuickHeapsort, we can save another 1

12n comparisons addi-
tionally to the comparisons saved by the CompareArray with the result of [3]. Hence,

Theory Comput Syst (2016) 59:209–230 225

for the amortized cost of the heap construction T amort
cstr (i.e., the number of com-

parisons needed to build the heap minus the number of comparisons stored in the
CompareArray after the construction which all can be reused later) we have obtained

T amort
cstr (n) ≤ 17

12
n + o(n).

This bound is slightly better than the average case for the heap construction with
the algorithm of [14] which is 1.52n.

Now, we want to count the number of comparisons we save using the Red-
GreenArray. We distinguish the two cases that two red elements are compared and
that a red and a green element are compared. Every position in the heap has to
turn red at one point. At that time, all nodes below this position are already red.
Hence, for that element we save as many comparisons as the element is above the
bottom level. Summing over all levels of a heap of size m the saving results in
≈ m

4 ·1+ m
8 ·2+· · · = m·∑

i≥1
i2−i−1 = m. This estimate is exact up to O(lg m)-terms.

Since the expected number of heaps is O(lg n), we obtain for the overall saving the
value TsaveRR(n) = n + O(lg2 n).

Another place where we save comparisons with the RedGreenArray is when a
red element is compared with a green element. It occurs at least one time – when
the node looses its last green child – for every inner node that we compare a red
child with a green child. Hence, we save at least as many comparisons as there are
inner nodes with two children, i.e., at least m

2 − 1. Since every element – except the
expected O(lg n) pivot elements – is part of a heap exactly once, we save at least
TsaveRG(n) ≥ n

2 +O(lg n) comparisons when comparing green with red elements. In
the average case the saving might be even slightly higher since comparisons can also
be saved when a node does not loose its last green child.

Summing up all our savings and using the median of f (n) ∈ ω(1) ∩ o(n) as pivot
we obtain the proof of Theorem 4:

E[T (n)] ≤ T amort
cstr (n) + Text(n) + E[Tpart(n)] − TsaveRR(n) − TsaveRG(n)

≤ 17

12
n + n · (�lg n	 − 3) + 2{n} + 2n − 3n

2
+ o(n)

≤ n lg n − 0.997n + o(n).

7 Experimental Results

We implemented the above described algorithms and others and ran experiments
comparing the running times and number of comparisons. We sorted arrays of
different sizes; the data elements were randomly chosen 32-bit integers. All our
experiments were run on one core of an Intel Core i7-3770 CPU (3.40GHz, 8MB
Cache) with 32GB RAM (Operating system: Ubuntu Linux 64bit; Compiler: GNU’s
g++ (version 4.6.3) optimized with flag -O3).

226 Theory Comput Syst (2016) 59:209–230

7.1 Number of comparisons

In Fig. 1 we present the outcome of our experiments for the number of comparisons
for different values of n. We implemented different versions of QuickHeapsort – the
basic version, the improved variant of Section 2, and the version using bit arrays –
and compare these variants with Quicksort, Ultimate Heapsort, Bottom-Up-Heapsort
and MDR-Heapsort. All algorithms which require choosing pivot elements are imple-
mented with median of

√
n elements as pivot – for Quicksort we additionally show

the results for the standard version with median of three.
For the QuickHeapsort variants without extra bits we implemented the normal

algorithm for heap construction due to Floyd [9] (using at most 2m comparisons to

Fig. 1 QuickHeapsort with bit arrays and a median-of-
√

n pivot selection beats other algorithms with
respect to the number of comparisons

Theory Comput Syst (2016) 59:209–230 227

Table 1 Number of comparisons of QuickHeapsort and other algorithms run on 106 elements (the data
for Relaxed-Weak-Heapsort is taken from [8])

Sorting algorithm Average number of comparisons for n = 106

Basic QuickHeapsort with median of 3 21327478

Basic QuickHeapsort with median of
√

n 20783631

Improved QuickHeapsort, median of 3 20639046

QuickHeapsort with bit arrays, median of 3 19207289

Improved QuickHeapsort, median of
√

n 20135688

QuickHeapsort with bit arrays, median of
√

n 18690841 ∗Best result∗
Quicksort with median of 3 21491310

Quicksort with median of
√

n 19548149

Bottom-Up-Heapsort 20294866

MDR-Heapsort 20001084

Relaxed-Weak-Heapsort 18951425

Lower Bound: lg n! 18488884 ≈ lg (106!)

construct a heap of m elements). For the variant with extra bits, we implemented
the algorithm for heap construction as described in Section 6 (which uses the extra
bit array and which is the same as in MDR-Heapsort) – without the additional
modification by [3] for the Fine-Heap construction. Fig. 1 gives the the fraction
(#comparisons − n lg n)/n for different values of n: this yields approximately the
constant of the linear term of the number of comparisons. In Table 1 we display
the actual numbers of comparisons for n = 106. We also added the values for
Relaxed-Weak-Heapsort which were presented in [8].

We also compare the different pivot selection strategies on the basic QuickHeap-
sort with no modifications. We test sample of sizes of one, three, approximately lg n,

Table 2 Different strategies for pivot selection for basic QuickHeapsort tested on 104 and 106 elements

n 104 106

Sample size Average number of Standard Average number of Standard

comparisons deviation comparisons deviation

1 152573 4.281 21975912 3.452

3 146485 2.169 21327478 1.494

∼ lg n 143669 0.954 20945889 0.525

∼ 4
√

n 143620 0.857 20880430 0.352

∼ √
n/ lg n 142634 0.413 20795986 0.315

∼ √
n 142642 0.305 20783631 0.281

∼ n
3
4 147134 0.195 20914822 0.168

The standard deviation of our experiments is given in percent of the average number of comparisons

228 Theory Comput Syst (2016) 59:209–230

Table 3 Running times for QuickHeapsort and other algorithms tested on 106 elements, average over 10
runs

Sorting algorithm integer data time [s] log(4)-test-function time [s]

Basic QuickHeapsort, median of 3 0.1154 4.21

Basic QuickHeapsort, median of
√

n 0.1171 4.109

Improved QuickHeapsort, median of 3 0.1073 4.049

Improved QuickHeapsort, median of
√

n 0.1118 3.911

QuickHeapsort with bit arrays, median of 3 0.1581 3.756

QuickHeapsort with bit arrays, median of
√

n 0.164 3.70

Quicksort with median of 3 0.1181 3.946

Quicksort with median of
√

n 0.1316 3.648

Ultimate Heapsort 0.135 5.109

Bottom-Up-Heapsort 0.1677 4.132

MDR-Heapsort 0.2596 4.129

4
√

n,
√

n/ lg n,
√

n, and n
3
4 for the pivot selection. In Table 2 the average number of

comparisons and the standard deviations are listed. We ran the algorithms on arrays
of length n = 104 and n = 106. The displayed data is the average resp. standard
deviation of 100 runs of QuickHeapsort with the respective pivot selection strategy.
Clearly, the standard deviation decreases if more samples are used for pivot selec-
tion. The average number of comparisons reaches its minimum with a sample size of
approximately

√
n elements. The table also shows that the difference for the average

number of comparisons is relatively small as soon as we use a sample size between

lg n and n
3
4 .

7.2 Running time experiments

In Table 3 we present actual running times of the different algorithms for n = 106.
The numbers displayed here are averages over 10 runs. We tested two different com-
parison functions. “Integer data time” means the usual integer comparison, whereas
“log(4)-test-function time” means that four times the logarithm of both operands is
computed before comparing them. This test function has been suggested for example
in [8] in order to simulate expensive comparisons. Table 3 shows that for normal inte-
ger comparisons the best variant is improved QuickHeapsort with median-of-three
for pivot selection. For expensive comparisons, Quicksort with median of

√
n ele-

ments for pivot selection is slightly better than QuickHeapsort with bit arrays and
median of

√
n elements for pivot selection.

8 Conclusion

In this paper we have shown that with known techniques QuickHeapsort can be
implemented with expected number of comparisons less than n lg n − 0.03n + o(n)

Theory Comput Syst (2016) 59:209–230 229

and extra storage O(1). On the other hand, using n extra bits we can improve this
to n lg n − 0.997n + o(n), i.e., we showed that QuickHeapsort can compete with the
most advanced Heapsort variants. These theoretical estimates were also confirmed
by our experiments. We also considered different pivot selection strategies. For any
constant size sample for pivot selection, QuickHeapsort beats Quicksort for large n

since Quicksort performs ≈ Cn lg n comparisons on average with C > 1. However,
when choosing the pivot as median of

√
n elements (i.e., with the optimal strategy),

then our experiments show that Quicksort needs less comparisons than QuickHeap-
sort. However, using bit arrays QuickHeapsort is the winner, again. In order to make
the last statement rigorous, better theoretical bounds for Quicksort with sampling

√
n

elements are needed. For future work it would also be of interest to prove the opti-
mality of

√
n elements for pivot selection in QuickHeapsort, to estimate the lower

order terms of the expected number of comparisons of QuickHeapsort and also to
find an exact average case analysis for the saving by the bit arrays.

Acknowledgments We thank Martin Dietzfelbinger, Stefan Edelkamp, Jyrki Katajainen and the anony-
mous referees for various comments which improved the presentation of the paper. We also thank Simon
Paridon for helping us with the implementation of the algorithms.

Conflict of interests The authors declare that they have no conflict of interest.

References

1. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. J. Comput.
Syst. Sci. 7(4), 448–461 (1973)

2. Cantone, D., Cincotti, G.: QuickHeapsort, an efficient mix of classical sorting algorithms. Theor.
Comput. Sci. 285(1), 25–42 (2002)

3. Carlsson, S., Chen, J., Mattsson, C.: Heaps with Bits. In: D.-Z. Du, X.-S. Zhang (eds.) ISAAC, vol.
834 of LNCS, pp. 288–296. Springer (1994)

4. Chen, J.: A Framework for Constructing Heap-like structures in-place. In: K.-W. Ng, et al. (eds.)
ISAAC, vol. 762 of LNCS, pp. 118–127. Springer (1993)

5. Chen, J., Edelkamp, S., Elmasry, A., Katajainen, J.: In-place Heap Construction with Optimized Com-
parisons, Moves, and Cache Misses. In: B. Rovan, V. Sassone, P. Widmayer (eds.) MFCS, vol. 7464
of LNCS, pp. 259–270. Springer (2012)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press,
3rd edn. (2009)

7. Dutton, R.D.: Weak-heap sort. BIT 33(3), 372–381 (1993)
8. Edelkamp, S., Stiegeler, P.: Implementing HEAPSORT with n lg n − 0.9n and QUICKSORT with

n lg n + 0.2n comparisons. ACM J. of Exp. Alg., 7:5 (2002)
9. Floyd, R.W.: Algorithm 245: Treesort. Commun. ACM 7(12), 701 (1964)

10. Gonnet, G.H., Munro, J.I.: Heaps on Heaps. SIAM J. Comput. 15(4), 964–971 (1986)
11. Katajainen, J.: The ultimate heapsort. In: X. Lin (ed.) CATS, vol. 20 of Australian Computer Science

Communications, pp. 87–96. Springer-Verlag (1998)
12. Knuth, D.E.: The art of computer programming. vol. 3 Addison-Wesley (1998)
13. Martı́nez, C., Roura, S.: Optimal sampling strategies in Quicksort and Quickselect. SIAM J. Comput.

31(3), 683–705 (2001)
14. McDiarmid, C., Reed, B.A.: Building Heaps Fast. J. Alg. 10(3), 352–365 (1989)
15. Reinhardt, K.: Sorting in-place with a worst case complexity of n log n−1.3n+O(log n) comparisons

and εn log n + O(1) transports. In: T. Ibaraki, et al. (eds.) ISAAC, vol. 650 of LNCS, pp. 489–498.
Springer (1992)

230 Theory Comput Syst (2016) 59:209–230

16. Wang, X.-D., Wu, Y.-J.: An improved HEAPSORT Algorithm with n lg n − 0.788928n comparisons
in the Worst Case. J. Comput. Sci. Techn. 22, 898–903 (2007)

17. Wegener, I.: The worst case complexity of McDiarmid and Reed’s variant of Bottom-Up-Heap sort is
less than n lg n + 1.1n. In: C. Choffrut, M. Jantzen (eds.) STACS, vol. 480 of LNCS, pp. 137–147.
Springer (1991)

18. Wegener, I.: BOTTOM-UP-HEAPSORT, a new variant of HEAPSORT, beating, on an average,
QUICKSORT (if n is not very small). Theor. Comp. Sci. 118(1), 81–98 (1993)

	QuickHeapsort: Modifications and Improved Analysis
	Abstract
	Introduction
	QuickHeapsort
	Pseudocode
	Analysis of QuickHeapsort
	Comparison Between Quicksort and QuickHeapsort
	The Main Result

	Proof of Theorem 1
	Heap Construction
	Heap Extraction
	Partitioning

	Modifications of QuickHeapsort Using Extra-space
	Experimental Results
	Number of comparisons
	Running time experiments

	Conclusion
	Acknowledgments
	Conflict of interests
	References

