N
Check for
Updates

Relaxed Multi-Way Trees with Group Updates

Kim S. Larsen*

Department of Mathematics and Computer Science
University of Southern Denmark, Main campus: Odense University
Campusvej 55, DK-5230 Odense M, Denmark.

www.imada.sdu.dk/~kslarsen
kslarsen@imada.sdu.dk

ABSTRACT

Data structures with relaxed balance differ from standard
structures in that rebalancing can be delayed and inter-
spersed with updates. This gives extra flexibility in both
sequential and parallel applications.

We study the version of multi-way trees called (a,b)-trees
(which includes B-trees) with the operations insertion, dele-
tion, and group insertion. The latter has applications in
for instance document databases and WWW search engines.
We prove that we obtain the optimal asymptotic rebalanc-
ing complexities of amortized constant time for insertion and
deletion and amortized logarithmic time in the size of the
group for group insertion. These results hold even for the
relaxed version.

Our results also demonstrate that a binary tree scheme with
the same complexities can be designed. This is an improve-
ment over the existing results in the most interesting cases.

1. INTRODUCTION

We focus on the type of multi-way trees usually referred
to as (a,b)-trees [15, 27], and in particular, we adopt the
relazed (a,b)-trees [22, 23]. In the context of search trees,
“relaxed” is the term used when a structure is generalized in
such a way that updating may be carried out independent
of rebalancing which can be carried out later, possibly in
small steps. In the context of B-trees [3], this approach was
discussed first in [31], followed by complexity results in [22,
23], and a study of variations with other properties in [16].

The paper [20] contains a fairly complete reference list to
the work on relaxed structures in general. In brief, a re-

*Supported in part by the Danish Natural Sciences Research
Council (SNF) and in part by the IST Programme of the EU
under contract number IST-1999-14186 (ALCOM-FT).

Permission to make digital or hard copies of part or al of thiswork or
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citdion on the first page. To
copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or afee.

PODS '01 Santa Barbara, California USA

© 2001 ACM 1-58113-361-8/01/05 ... $5.00.

93

laxed version of AVL-trees [1] was introduced in [31, 32]
with complexity results matching the standard results [28]
in [19, 21]. A relaxed version of red-black trees [11] (see also
[2]) was introduced in [29, 30] with complexity results grad-
ually matching the standard results [34] in [7, 8, 5, 6, 20].
Another variant is described in [13]. Finally, a general result
for creating relaxed structures can be found in [24], and per-
formance results from experiments with relaxed structures
can be found in [4, 12].

The disadvantage of relaxation is that the strict control on
search path lengths is loosened (temporarily). The advan-
tage of relaxed structures is flexibility. Since rebalancing can
be delayed and carried out in small steps interspersed with
updates, they give extra possibilities for control, both with
regards to trade-off between time spent on updating and
time spent on rebalancing in a single processor scenario, but
also with regards to concurrency control. Note also that a
relaxed structure can always be used as a standard structure
simply by deciding to carry out all rebalancing operations
due to an update immediately. Thus, an asymptotic com-
plexity result carries over from the relaxed to the standard
case.

In this paper, we consider group update operations, where
a number of keys must or may be inserted or deleted at
the same time. These operations, in particular group inser-
tion, have renewed interest because of applications in WWW
search engines or document databases using inverted index
techniques [9, 10], or in other applications where a large
number of keys must or can be brought into the main index
at the same time [18]. Structures with relaxed balance are
well suited for concurrent applications of this nature because
newly inserted elements are available immediately after the
actual update. Rebalancing can be done later, possibly by a
background process, for instance when the search frequency
drops.

For red-black trees [11] and height-valued trees [35, 25] (an
AVL-tree variant), relaxed variants have been studied in [14,
26] where an entire tree of new keys to be inserted can be
brought into the tree as one update. For both structures, the
upper bound derived on the number of rebalancing opera-
tions required to balance the tree again is O(log n+log® m),
where n is the size of the main index and m is the size of
the tree which is inserted.

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F375551.375566&domain=pdf&date_stamp=2001-05-01

Group updates in B-trees have been considered in [33] based
on [31]. The focus in [33] is on searching and the necessary
concurrency control. There is no new bound on the num-
ber of operations, so the best bound one can give on the
basis of [31] is O(mlog, n), where a is the degree of the
nodes. However, if many updates go to the same leaves, the
performance will be correspondingly better. As a remark
regarding notation, since the base for the logarithm can be
quite large for multi-way trees, we leave the constant in when
stating the asymptotic performance, even though formally
this does not signify anything since O(log,n) = O(log,n)
for any constant c.

In this paper, we define a relaxed multi-way structure where
the number of rebalancing operations carried out in response
to the insertion of a tree of size m is the optimal O4(log, m)
(we use the notation O4(f(n)) to mean amortized O(f(n)))
and insertion and deletion become O4(1). These results also
imply a relaxed binary structure with the same complexities
(the logarithm now base 2).

We now remark on the definition of what a group insertion
algorithm is (the discussion for group deletion is similar).
We study the core problem of moving m keys in between two
neighbor keys in the main index. However, if one considers
the problem of moving m arbitrary keys in, they first have
to be divided up into groups (via a search procedure). This
can be done for our structure exactly as it has been done
in [14, 26, 33]. The difference between our approach and
the earlier ones lie in the rebalancing after the insertion of a
whole tree, which is the focus in the main part of our paper.

For group insertion of m arbitrary keys considered in [14,
26], a bound of O(logn + -7, log® m;) is stated, assuming
that there are p locations where trees of sizes my,... ,m, are
inserted. Our corresponding result for the same operation

is 0a(X2, log, m:).

2. RELAXED (A,B)-TREES

Partly for comparison and partly because a standard (a,b)-
tree will be the ideal state for a relaxed (a,b)-tree, we give
the definition here. Terminology which carries over to the
relaxed case will not be repeated.

We consider leaf-oriented (a,b)-trees which means that all
keys are kept in the leaves. Internal nodes contain routers,
which are of the same type as the keys and often copies of
some of these. The purpose of the routers is to guide the
searches to the correct leaves. The term leaf-oriented, which
is usually used when discussing relaxed data structures, cor-
responds to BT -trees [3] versus internal B-trees.

Leaf-oriented trees are often the choice in large database-
oriented applications. Thus, we assume that the leaves con-
tain the keys and references to the actual data associated
with the keys. For uniformity, these references are referred
to as children just like the references from internal nodes.

Standard (a,b)-Trees

If a > 2 and b > 2a — 1, then an (a,b)-tree can be defined
as a multi-way search tree fulfilling the following structural
invariant:

94

e The root has at most b children and at least 2 children.

e All other nodes have at most b children and at least a
children.

e All leaves have the same depth.

The number of children of a node is often referred to as the
degree of the node.

Additionally, an (a,b)-tree must fulfill the following search
tree invariant: Each internal node » with m children (point-
ers to subtrees) stores m — 1 distinct routers in increasing
order ki,k2,... ,km—1. Let ko = —oco and k,, = co. Then
all keys in the range [k, ki+1), 0 < ¢ < m —1, in the subtree
of a node w are stored in the ¢th subtree of u.

Relaxed(a,b)-Trees

First we relax the invariants from the standard case such
that updates can legally be performed without immediate
subsequent rebalancing. Removing all requirements would
of course accomplish this. However, as usual we are in-
terested in being able to rebalance efficiently at some later
time. In order to express the new structural invariant, we
introduce the following: Every node has a tag, which is a
non-positive integer. This is also commonly referred to as
the weight of the node. We define the relazed depth, rd(u),
of a node u as follows:

_ f tw),
rd(u) = { rd(p(u)) + 1+ (1),

if u is the root
otherwise

where t(u) denotes the tag of u, and p(u) denotes the parent
of u.

Only the structural invariant is altered:

e All nodes have at most b children.

e All leaves have the same relaxed depth.

Of course, by definition, an internal node must have at least
one child.

Now, if a node in a relaxed (a, b)-tree has a property different
from what it could have in a standard (a, b)-tree, we refer to
this as a conflict: A tag value different from zero is referred
to as a weight conflict. If the tag is zero, but the node as
fewer than a children, this is an underfull conflict, and the
node is called underfull. In the special case of the root, that
node is underfull (and there is an underfull conflict) only if
it has fewer than 2 children, i.e., one child.

To finish the degree terminology regarding nodes, a node
with degree 0 is called empty and a node with degree b is
call full.

The intuition regarding tag values is that they measure the
distance from where a node is located in the tree compared
with where it ought to be. More concretely, if a node u has
tag value ¢t < 0, then all the descendants of u, the leaves in
particular, are |¢| levels too far from the root compared with

nodes which are not in the subtree of w. Thus, u should be
moved |¢| levels closer to the root to fix the problem.

We proceed to the description of the operations on relaxed
(a,b)-trees. All operations are depicted in the appendix. In
the following sections, we define the notation used in the
appendix, and give additional explanation of any conditions
which cannot be (or is not) given in the illustrations. Part
of the purpose of the illustrations is to have these as easy
visual reference in the proofs to follow, so we have made an
attempt not to clutter them with obvious information which
can be given once (in the sections below).

In general, the top-most node before an operation is carried
out is physically the same node as the top-most node after
the operation is carried out, such that the reference in its
parent remains valid.

When we say that a number ¢ of pointers are divided up as
evenly as possible (into two nodes), we mean that one node
receives |4/2] pointers and the other [¢/2]. When ¢ is odd,
it is not important for the results in this paper which node
receives the most.

Update Operations

Any update operation is preceded by a search for the correct
location. The searching is facilitated by the search tree in-
variant and proceeds exactly as in all multi-way search trees.
In the discussion of insertion and deletion below, we assume
that we have already located the correct leaf.

In the appendix, Greek letters are used to denote a (possibly
empty) collection of pointers. If a is such a collection of
pointers, we let |@| denote the number of pointers in the
collection a. We do not explicitly show the keys or routers.
The tags of the nodes are shown as superscripts to the right
of the nodes. Single pointers are denoted by an z in the
leaves and by a dot in the internal nodes.

Insertion: There are two possibilities. Either the correct
leaf for the insertion is full or it is not. If the leaf is not full,
the new key is just added to that leaf. Even though this
is not apparent in the illustration, we assume that keys are
kept in sorted order. If the leaf is full, all the existing keys
together with the one to be inserted are divided as equally
as possible into two groups a; and az. All the keys in oy
are smaller than any key in as.

Deletion: If present, the correct key (which could be in any
location in the leaf) is found and removed.

Group Insertion: The node marked “Root of T'”, is the root
of an entire (a,b)-tree T'. It is a requirement that all the
keys in T lie between the largest key in a and the smallest
key in .

Rebalancing Operations

For Absorption, Penetration, Redundant Root Elimination,
and Root Weight Elimination, there are no additional com-
ments.

Split: The pointers in ayB are divided as evenly as possible
into two groups 41 and Ja.

95

Sharing: There are two symmetric variants of this operation:
either the left or the right sibling is underfull. The pointers
in the two nodes are divided up as evenly as possible.

Fusion: There are two symmetric variants of this operation:
either the left or the right sibling is underfull. The pointers
in the underfull node is moved to the sibling. Then the now
empty node is removed, along with the reference to it in the
parent.

3. CORRECTNESS

There are some important points regarding correctness:

e If one of the operations is applied to a relaxed (a,b)-
tree, then the resulting tree is again a relaxed (a,b)-
tree.

e Leaves always have tag values zero.

Though it would be quite space consuming to go through
every operation regarding these properties, they are very
simple to check because they can be verified separately for
each operation. We omit these details.

Of course, the first property must hold if the set-up should
be meaningful at all. The second property, along with the
definition of the update operations, ensures that updates
can always be made.

The next important aspect is as to whether the collection of
operations suffice to rebalance the tree.

THEOREM 1. If there is a conflict in a relazed (a,b)-tree,
then one of the rebalancing operations can be applied.

PROOF. Assume first that the root has a conflict. Since
there are no restrictions on the root operations, either Re-
dundant Root Elimination or Root Weight Elimination can
be applied.

Now assume that the root does not have a conflict. Let u be
a top-most node with a conflict, i.e., a node closest to the
root. We note that it has a parent, and that the parent does
not have a conflict. Thus, we can assume that the parent
has tag value zero.

If there is a top-most conflict which is a weight conflict, we
choose such a conflict to deal with next. Absorption and
Split cover all cases when the tag value is —1, and Penetra-
tion can be applied if the tag value is smaller.

We may now assume that the top-most conflict is an under-
full node and that none of its siblings has a weight conflict.
Thus, the conflict node and its siblings have tag values zero.
Clearly then, Sharing and Fusion cover all cases. [

Of course, this is merely one aspect of the question as to
whether the collection of operations suffice to rebalance the
tree.

Theorem 1 leaves the question unanswered as to whether
the rebalancing process will ever terminate (if the updating
terminates). This question is answered affirmatively in the
next section.

4. COMPLEXITY

As already mentioned, searching and the actual updating
is carried out as in [14, 26], for instance; with regards to
searching, also as in [33]. We focus on the subsequent re-
balancing. We derive the amortized rebalancing complexity
of the update operations using the potential function tech-
nique [36].

First we define the potential ®(u) of a node u. The potential
of a tree is then merely the sum of the potentials of all the
nodes in the tree. We use the notation c(u) to denote the
number of children of u.

3, t(u) =0, c(u) <a

1, t(u) =0, c(u) =a

2, t(u) =0, c(u) =b
®(u) =< 3, t(u) = -1, c(u) <2

5, t(u) = -1, c(u) > 2

12(|t(u)| = 1) + 5, t(u) < -1

0, otherwise

The “otherwise” case covers nodes u where t(u) = 0 and
a < c(u) <b.

If u is the root, ®(u) is defined similarly, except that we
substitute the constant 2 for a.

It is well-known that even though (a, b)-trees can be defined
if just b > 2a — 1, the best complexities are only obtained
if b > 2a [15]. Naturally, since we might just use plain
insertion and deletion, this property carries over.

THEOREM 2. If b > 2a, then starting from an empty
(a,b)-tree, the number of rebalancing operations is Oa(1)
in response to an insertion or deletion and O(log, m) in
response to a group insertion of another (a,b)-tree of size
m > 2.

PROOF. In this proof, we make many references to the
illustrations in the appendix. Some terminology shortens
the proof significantly: We use P for parent to refer to the
top node of an operation. Similarly, for children, we use L,
C, and R for left, right, and center, respectively. A subscript
of “1” refers to a node before the operation is carried out
and a subscript of “2” refers to a node after the operation
is carried out.

Below, we prove that every rebalancing operation decreases
the potential. Thus, the number of rebalancing operations
which can be carried out is bounded by the increase in po-
tential due to the update operations.

Insertion and deletion alter a constant number of nodes and
do not introduce tag values smaller than —1. Thus, by def-

96

inition of the potential function, these operations increase
the potential by at most a constant.

Group insertion adds an unbounded number of nodes to
the tree. However, since the tree T’ which is added is an
(a,b)-tree, all nodes in 7" different from the root will have
potential zero after the update. Thus, only a constant num-
ber of nodes will have their potential changed to a value
different from zero. Nodes with tag values at least —1 have
constant potential, so only the node C5 can contribute with
a non-constant potential increase. Indeed, by inserting the
tree T', a potential increase proportional to the height of 7’
occurs. Since T” is an (a, b)-tree, this increase is O(log, m),
where m is the number of elements in T".

The operations and the potential function were designed to
accomplish what we prove now, namely that any rebalancing
operation decreases the potential:

Absorption: By removing the —1 node, the potential drops
at least 3. Now, assume first that ¢ = 0. If P is underfull,
then P; was also underfull, since a —1 node has degree at
least one. Thus, the maximal increase will occur if |a| +
|B] + |y] = b. This increase is 2, so there is a total drop of
at least 1. If instead ¢ = —1, then the potential for P, can
increase compared with P; if the degree of P; was at most
2. Again, this increase is at most 2. If ¢ < —1, then the
potential of P> equals that of P;. Thus, in all cases, there
is a total decrease in potential of at least 1.

Split: C1 must have degree at least 2; otherwise we cannot
have |a| + |8] + |y| > b. Assume that the degree of C; is 2.
Then the degree of P; is b. Thus, the potential before the
operation is 3+ 2 = 5. Since |a| + |B8] + || > b > 2a, at
most one of Ly and Ry can have degree as small as a. Thus,
the potential after the operation is at most 3 + 1 = 4. Now
assume that the degree of C, is at least 3. Thus, its potential
is 5. The same argument as before applies to the situation
after the operation, so we get a total drop in potential of at
least 1.

Sharing: This operation has two symmetric variants, which
can be treated simultaneously. One of L; and R; is underfull
and has a potential of 3. Afterwards, L, and R» both have
degree at least a and less than b, so the potential of each
node is at most 1. Thus, the potential decreases with at
least 1.

Fusion: This operation has two symmetric variants, which
can be treated simultaneously. The potential of P; can in-
crease with at most 2. This happens in the case where t = 0
and the degree of P; is a. Thus, we must show that the
potential at the level below decreases by at least 3.

Now, an underfull node is removed which decreases the po-
tential by 3. The remaining child of P» has possibly had
its degree increased. However, since its degree is less than
2a < b, the potential of that node cannot increase.

Penetration: The potential of Cs is 12 smaller than Ci; also
if t+1 = —1. The potential of P> is 5 and the potential of
L> and R» is at most 3 for each of them. This is a total of
11. Thus, the potential decreases.

Redundant Root Elimination: Clearly, the potential of C;
cannot increase, and since P; is underfull, removing this
nodes decreases the potential.

Root Weight Elimination: The number of pointers in the
node is at least two which, because this is the root, means
at least a. By inspecting the potential function, it follows
that with at least a pointers, a node with a negative tag
always has a strictly larger potential than a node with tag
zero. Thus, the potential decreases. [

This result is asymptotically optimal. Clearly, no opera-
tion can take time less than a constant, so the asymptotic
complexity of insertion and deletion cannot be improved.

Regarding the complexity of group insertion, choose a path
which from every node follows a pointer located roughly in
the middle of the node. If we insert a tree of height h at the
resulting leaf, at least A — 1 nodes in the original tree must
be split. This imposes a lower bound of Q(log, m) on the
operation.

The proof above is the place to start if one considers alter-
ing the collection of rebalancing operations. After a radical
change, it is of course necessary to verify all properties again.
However, if operations are only generalized, the collection is
of course still sufficient. One example of a possible general-
ization is the following: In the fusion operations, allow Lq,
Ry, and C> to have non-zero, but identical, tag values. With
this generalization, a slightly different potential function can
be used to obtain the same asymptotic results. However, it
is important to note that a generalization is not necessar-
ily an improvement and can lead to worse performance. In
fact, in the worst scenario, a generalization could lead to
infinite loops. For the safe generalizations, where the same
asymptotic results can obtained, experiments can be used
to decide on the exact collection.

5. ADDITION AL OPERATIONS

Note that in Theorem 2, we could have taken insertion to
mean “any modification of a leaf such that the number of
elements increase”. Clearly, as it appears from the proof
of that theorem, this more general operation would also be
O4(1). Similarly, deletion could be taken to mean “any
modification of a leaf such that the number of elements de-
crease”, and this operation would also be Oa(1).

A standard operation in dictionary implementations is the
join operations (also sometimes referred to as merge, meld,
or union) which takes two dictionaries as arguments and
combines them into one. It is always assumed that all keys
in one of the dictionaries are smaller than all keys in the
other. Assume that the dictionaries have sizes n1 and no.
Then by performing a group insertion of the smaller into the
larger, in the left-most or right-most leaf, as appropriate to
preserve the search tree invariant, we obtain a relaxed join
operation with complexity O4(log min{ni,n2}).

Another standard operation is the split operation (on dic-
tionaries; not on (a, b)-tree nodes) which given a key value
produces two dictionaries; one with all the keys smaller than
or equal to the given key and another with the rest. By first

97

searching in T for the given key value and using group in-
sertion to insert a “fake” root with a small enough tag value
t ([t| should be larger than the height of T"), then this fake
root will eventually make its way up to become a child of the
root at which point the left-most and right-most pointers in
the root can be used to form the desired trees. A special
mark must be put on the fake root and the operations mod-
ified such that no other operation than split can be applied
to such a marked child of the root.

For group deletion, if all deletions regarding any particular
leaf are carried out at the same time, the time to rebalance
after the deletion of m elements located in p < m leaves
become O4(p) instead of O4(m).

6. CONCLUDING REMARKS

Using colors or techniques as in [2], (2, 4)-trees can be rep-
resented as binary trees, where small parts of the tree of
height zero or one represent nodes of degree up to four.

By interpreting all the rebalancing operations in that repre-
sentation, we immediately obtain that a relaxed binary tree
with all the same properties exists, i.e., rebalancing after
insertion and deletion is O4(1) and rebalancing after group
insertion is O 4 (log m), where m is the size of the tree which
is inserted.

This improves on the results in [14, 26], which claim a rebal-
ancing complexity in this case of O(log n +log? m), where n
is the size of the tree in which the update is carried out.

Of course, the result from [14, 26] is a worst-case result,
whereas ours is amortized time. This means that if one
considers any one operation in isolation, we cannot claim a
good worst-case bound. We can of course claim O(n), since
no more than O(n) potential can be accumulated in the
tree. However, in practice, it is the complexity of carrying
out (long) sequences of operations which is interesting.

Additionally, our amortization proof is given in the tradi-
tional manner, assuming that the starting state is an empty
tree. However, it is of course also interesting to discuss
which results hold when starting with an initially nonempty
structure. One interesting point is that as soon as 2(n) op-
erations have been carried out, then these operations can
“pay” for the potential which should be present in the tree.
Thus, after that point, all the asymptotic amortized results
are valid. In principle, this holds whenever 2(n) operations
have been performed, independent of what the actual con-
stant is, so it could be ﬁn operations, for example. In
practice, this constant should probably be closer to one be-
fore reasonable run-time constants can be guaranteed.

This discussion assumes that the initial nonempty tree has
been built completely independent from the intended use.
By inspection of the potential function used in this paper,
one observes that if all nodes have a number of children
strictly between the extreme values of a and b, then the
potential of the whole tree is zero. Thus, all the amortized
results hold immediately. In fact, it is also unproblematic
to allow for instance a constant number of extreme nodes.
Trees with such properties can be constructed for all except
very small values of @ and b [17].

7.
(1]

(2]

3]

[4]

[5]

[6]

(8]

[10]

[11]

[12]

REFERENCES

G. M. Adel’'son-Vel’skii and E. M. Landis. An
Algorithm for the Organisation of Information.
Doklady Akadamii Nauk SSSR, 146:263-266, 1962. In
Russian. English translation in Soviet Math. Doklady,
3:1259-1263, 1962.

R. Bayer. Symmetric Binary B-Trees: Data Structure
and Maintenance Algorithms. Acta Informatica,
1:290-306, 1972.

R. Bayer and E. McCreight. Organization and
Maintenance of Large Ordered Indexes. Acta
Informatica, 1:173-189, 1972.

L. Bougé, J. Gabarré, X. Messeguer, and

N. Schabanel. Concurrent Rebalancing of AVL Trees:
A Fine-Grained Approach. In Proceedings of the Third
Annual European Conference on Parallel Processing,
volume 1300 of Lecture Notes in Computer Science,
pages 421-429. Springer-Verlag, 1997.

J. Boyar, R. Fagerberg, and K. S. Larsen.
Amortization Results for Chromatic Search Trees,
with an Application to Priority Queues. In Fourth
International Workshop on Algorithms and Data
Structures, volume 955 of Lecture Notes in Computer
Science, pages 270-281. Springer-Verlag, 1995.

J. Boyar, R. Fagerberg, and K. S. Larsen.
Amortization Results for Chromatic Search Trees,
with an Application to Priority Queues. Journal of
Computer and System Sciences, 55(3):504-521, 1997.

J. F. Boyar and K. S. Larsen. Efficient Rebalancing of
Chromatic Search Trees. In Proceedings of the Third
Scandinavian Workshop on Algorithm Theory, volume
621 of Lecture Notes in Computer Science, pages
151-164. Springer-Verlag, 1992.

J. F. Boyar and K. S. Larsen. Efficient Rebalancing of
Chromatic Search Trees. Journal of Computer and
System Sciences, 49(3):667-682, 1994.

A. F. Cardenas. Analysis and Performance of Inverted
Data Base Structures. Communications of the ACM,
18(5):253-263, 1975.

C. Faloutsos and H. V. Jagadish. Hybrid Index
Organizations for Text Databases. In Third
International Conference on Extending Database
Technology, volume 580 of Lecture Notes in Computer
Science, pages 310-327, 1992.

L. J. Guibas and R. Sedgewick. A Dichromatic
Framework for Balanced Trees. In Proceedings of the
19th Annual IEEE Symposium on the Foundations of
Computer Science, pages 821, 1978.

S. Hanke. The Performance of Concurrent Red-Black
Tree Algorithms. In Proceedings of the 3rd
International Workshop on Algorithm Engineering,
volume 1668 of Lecture Notes in Computer Science,
pages 286-300. Springer-Verlag, 1999.

98

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

S. Hanke, T. Ottmann, and E. Soisalon-Soininen.
Relaxed Balanced Red-Black Trees. In Proceedings of
the 3rd Italian Conference on Algorithms and
Complexity, volume 1203 of Lecture Notes in
Computer Science, pages 193—204. Springer-Verlag,
1997.

S. Hanke and E. Soisalon-Soininen. Group Updates for
Red-Black Trees. In Proceedings of the 4th Italian
Conference on Algorithms and Complexity, volume
1767 of Lecture Notes in Computer Science, pages
253-262. Springer-Verlag, 2000.

S. Huddleston and K. Mehlhorn. A New Data
Structure for Representing Sorted Lists. Acta
Informatica, 17:157-184, 1982.

L. Jacobsen and K. S. Larsen. Variants of (a,b)-Trees
with Relaxed Balance. International Journal of
Foundations of Computer Science. To appear.

L. Jacobsen, K. S. Larsen, and M. N. Nielsen. On the
Existence and Construction of Non-Extreme
(a,b)-Trees. In preparation.

S.-D. Lang, J. R. Driscoll, and J. H. Jou. Batch
Insertion for Tree Structured File
Organizations—Improving Differential Database
Representation. Information Systems, 11(2):167-175,
1986.

K. S. Larsen. AVL Trees with Relaxed Balance. In
Proceedings of the 8th International Parallel
Processing Symposium, pages 888-893. IEEE
Computer Society Press, 1994.

K. S. Larsen. Amortized Constant Relaxed
Rebalancing using Standard Rotations. Acta
Informatica, 35(10):859-874, 1998.

K. S. Larsen. AVL Trees with Relaxed Balance.
Journal of Computer and System Sciences,
61(3):508-522, 2000.

K. S. Larsen and R. Fagerberg. B-Trees with Relaxed
Balance. In Proceedings of the 9th International
Parallel Processing Symposium, pages 196-202. IEEE
Computer Society Press, 1995.

K. S. Larsen and R. Fagerberg. Efficient Rebalancing
of B-Trees with Relaxed Balance. International
Journal of Foundations of Computer Science,
7(2):169-186, 1996.

K. S. Larsen, T. Ottmann, and E. Soisalon-Soininen.
Relaxed Balance for Search Trees with Local
Rebalancing. In Fifth Annual European Symposium on
Algorithms, volume 1284 of Lecture Notes in Computer
Science, pages 350-363. Springer-Verlag, 1997.

K. S. Larsen, E. Soisalon-Soininen, and P. Widmayer.
Relaxed Balance through Standard Rotations. In Fifth
International Workshop on Algorithms and Data
Structures, volume 1272 of Lecture Notes in Computer
Science, pages 450—-461. Springer-Verlag, 1997. To
appear in Algorithmica.

[26]

(27]

28]

29]

(30]

[31]

32]

[33]

[34]

[35]

[36]

L. Malmi and E. Soisalon-Soininen. Group Updates
for Relaxed Height-Balanced Trees. In Proceedings of
the Eighteenth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages
358-367. ACM Press, 1999.

K. Mehlhorn. Sorting and Searching, volume 1 of Data
Structures and Algorithms. Springer-Verlag, 1986.

K. Mehlhorn and A. Tsakalidis. An Amortized
Analysis of Insertions into AVL-Trees. SIAM Journal
on Computing, 15(1):22-33, 1986.

O. Nurmi and E. Soisalon-Soininen. Uncoupling
Updating and Rebalancing in Chromatic Binary
Search Trees. In Proceedings of the Tenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 192-198, 1991.

O. Nurmi and E. Soisalon-Soininen. Chromatic Binary
Search Trees—A Structure for Concurrent
Rebalancing. Acta Informatica, 33(6):547-557, 1996.

O. Nurmi, E. Soisalon-Soininen, and D. Wood.
Concurrency Control in Database Structures with
Relaxed Balance. In Proceedings of the 6th ACM
Symposium on Principles of Database Systems, pages
170-176, 1987.

O. Nurmi, E. Soisalon-Soininen, and D. Wood.
Relaxed AVL Trees, Main-Memory Databases and
Concurrency. International Journal of Computer
Mathematics, 62:23-44, 1996.

K. Pollari-Malmi, E. Soisalon-Soininen, and

T. Ylénen. Concurrency Control in B-Trees with
Batch Updates. IEEE Transactions on Knowledge and
Data Engineering, 8(6):975-984, 1996.

N. Sarnak and R. E. Tarjan. Planar Point Location
Using Persistent Search Trees. Communications of the
ACM, 29:669-679, 1986.

E. Soisalon-Soininen and P. Widmayer. Relaxed
Balancing in Search Trees. In Advances in Algorithms,
Languages, and Complezity, pages 267-283. Kluwer
Academic Publishers, 1997.

R. E. Tarjan. Amortized Computational Complexity.
SIAM Journal on Algebraic and Discrete Methods,
6(2):306-318, 1985.

99

APPENDIX

Update Operations

0 0
I — [a Je]]

Insertion of z: |a| < b.

[7 I —

[]

Insertion of z: |a| = b, az = a1as.

o [e[]" — [T 7

Deletion of z.

0 -1
[e[B]] 3 RN -
0

[e] ° [Rootof”] [£]

Insertion of T': t = —h(T").

RebalancingOperations

t t
(o[(B] o[[A]]
—
I

Absorption: |a| + |8+ |v] <b.

0 -1
(][]] Al

-1
v []

Split: [a] + 8] + 11| > b, a7 = 616>,

[&]

Sharing: |y| < a, |y| + |8] + |e| > 2a (symmetric in children).

100

RebalancingOperations (continued)

t t
al-[-]8 [a]dB8] |
—
0 0 0
(7] b [] (6]

Fusion: |y| < a, || + |0] < 2a (symmetric in children).

[alJ8] | . 7y N S
(o] > 7 T 1" 8] °

Penetration.

t1

RooT
[]
t2 - Root 0
[a [] [o []

Redundant Root Elimination.

ROOTTa T — RO

Root Weight Elimination: |a| > 2.

101

