
HAT-trie: A Cache-conscious Trie-based Data Structure for Strings

Nikolas Askitis Ranjan Sinha

School of Computer Science and Information Technology,
RMIT University, Melbourne 3001, Australia.
Email: {naskitis,rsinha}@cs.rmit.edu.au

Abstract

Tries are the fastest tree-based data structures for
managing strings in-memory, but are space-intensive.
The burst-trie is almost as fast but reduces space by
collapsing trie-chains into buckets. This is not how-
ever, a cache-conscious approach and can lead to poor
performance on current processors. In this paper, we
introduce the HAT-trie, a cache-conscious trie-based
data structure that is formed by carefully combining
existing components. We evaluate performance using
several real-world datasets and against other high-
performance data structures. We show strong im-
provements in both time and space; in most cases ap-
proaching that of the cache-conscious hash table. Our
HAT-trie is shown to be the most efficient trie-based
data structure for managing variable-length strings
in-memory while maintaining sort order.

Keywords: String, tree, trie, hash table, cache, in-
memory.

1 Introduction

Trie-based data structures offer rapid access to strings
while maintaining reasonable worst-case performance.
They are successful in a variety of applications, such
as text compression (Bell, Cleary & Witten 1990)
and dictionary management (Aoe, Morimoto & Sato
1992), but are space-intensive. Measures need to be
taken to reduce their space consumption, if they are
to remain feasible for maintaining large sets of strings.

The most successful procedure for reducing the
space of a trie structure has been the burst-
trie (Heinz, Zobel & Williams 2002). The burst-trie
is an in-memory string data structure that can signifi-
cantly reduce the number of trie nodes maintained by
as much as 80%, at little to no cost in access speed.
It achieves this by selectively collapsing chains of trie
nodes into small buckets of strings that share a com-
mon prefix. When a bucket has reached its capacity,
it is burst into smaller buckets that are parented by
a new trie node.

Buckets are internally unsorted, but they can be
accessed in lexicographic order. The burst-trie can
therefore provide fast sorted access to strings; buck-
ets can be rapidly sorted on demand. It is currently
the fastest and most compact in-memory tree struc-
ture that can handle large volumes of variable-length
strings, in sort order. The effectiveness of the burst-
trie has been demonstrated by its basis in burst-
sort (Sinha, Ring & Zobel 2006, Sinha & Zobel 2004),

Copyright c©2007, Australian Computer Society, Inc. This pa-
per appeared at Thirtieth Australasian Computer Science Con-
ference (ACSC2007), Ballarat, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
62. Gillian Dobbie, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

which is, to the best of our knowledge, the fastest in-
memory data structure for the sorting of large sets of
strings.

Although fast, the burst-trie is not cache-
conscious. Like many in-memory data structures, it
is efficient in a setting where all memory accesses
are of equal cost. In practice however, a single ran-
dom access to memory typically incurs many hun-
dreds of clock cycles. Current processors therefore
implement a hierarchy of small but fast caches be-
tween the CPU and main memory — that intercept
and service memory requests whenever possible — to
attempt to minimize the consultation of main mem-
ory (a cache-miss). It is of paramount importance to
make the best possible use of these caches, to prevent
severe performance bottlenecks that arise from exces-
sive cache-misses. Programmers however, generally
have no administrative control over these caches, yet
this is usually not a problem in practice. Programs
have been shown to make good use of cache through
careful design that aims at improving temporal and
spatial access locality. This is achieved through a va-
riety of techniques that generally attempt to make
memory access more regular or predictable.

Although space-intensive, tries can — to some ex-
tent — be cache-conscious. Trie nodes are small
in size, improving the probability of frequently ac-
cessed trie-paths to reside within cache. The burst-
trie however, represents buckets as linked lists which
are known for their cache inefficiency. When travers-
ing a linked list, the address of a child can not be
known until the parent is processed. Known as the
pointer-chasing problem, this hinders the effective-
ness of hardware prefetchers (Yang, Lebeck, Tseng
& Lee 2004), that attempt to reduce cache-misses
by anticipating and loading data into cache ahead of
the running program. This is the property under-
lying the efficiency of structures such as the cache-
conscious array hash (Askitis & Zobel 2005), where
the usual linked lists of a chaining hash table are re-
placed by dynamic arrays that are contiguously allo-
cated in memory. Arrays exhibit stride access pat-
terns that can be easily detected and exploited by
hardware prefetchers.

Our motivation was to address the shortcomings of
the burst-trie, by developing a cache-conscious vari-
ant that exploits the cache hierarchy used on mod-
ern processors. We introduce the HAT-trie, which
combines the trie-index of the burst-trie with buck-
ets that are represented as cache-conscious hash ta-
bles (Askitis & Zobel 2005). We present two variants
of the HAT-trie that differ in the manner of how buck-
ets are split: hybrid and pure. The former employs
the B-trie splitting algorithm (Askitis & Zobel 2006)
that reduces the number of buckets at little cost, by
permitting multiple pointers to a bucket. The lat-
ter employs the bursting technique of the burst-trie,
which is faster but usually requires more space.

97



We experimentally examined the performance of
the HAT-tries, comparing them to a selection of
data structures that are currently among the best in
dynamic in-memory string management: the burst-
trie, array hash, chained hash tables with move-to-
front, and the compact binary search tree, which is
a more cache-efficient variant that eliminates string
pointers by storing strings within their respective
nodes (Askitis & Zobel 2005). We used datasets ac-
quired from real-world sources — containing variable-
length strings with a range of characteristics — to
compare space, time and cache efficiency of build-
ing and searching the data structures. To build and
search, our HAT-tries were up to 80% faster than the
burst-trie, with a (simultaneous) space reduction of
up to 70%. The HAT-tries were more efficient than
the optimized binary search tree, with the pure HAT-
trie in particular, approaching, and in some cases sur-
passing, the performance of the cache-conscious array
hash, which is currently the best for unsorted string
management. These are strong results that further
substantiate the importance of considering cache on
pointer-intensive data structures, that are otherwise
efficient.

2 Background

A trie node, named for its successful use in informa-
tion retrieval (Fredkin 1960), is an array of point-
ers, one for each character in an alphabet. Each leaf
node is the terminus of a chain of trie nodes rep-
resenting a string (Knuth 1998). For string man-
agement, tries are fast with reasonable worst-case
performance, and are valuable for applications such
as data mining (Agrawal & Srikant 1994), dictio-
nary and text processing (Aoe et al. 1992, Bentley
& Sedgewick 1997), pattern matching (Flajolet &
Puech 1986), and compression (Bell et al. 1990). Tries
can be regarded as cache-conscious, as frequently ac-
cessed trie-paths may be cache-resident. Nonetheless,
they are space-intensive, prohibiting use with large
volumes of strings (Comer 1979, McCreight 1976).

Space can be conserved by reducing the number
of trie nodes and by changing their structure. The
compact trie (Bell et al. 1990) omits chains of tries
that descend into a single leaf. Similarly, the Pa-
tricia trie (Sedgewick 1998) omits all chains without
branches, not just those that lead to leaves. Tries
can be represented as linked lists (Severance 1974),
eliminating unused pointers. The ternary search
tree (Bentley & Sedgewick 1997, Sedgewick 1998)
can save space by using 3-way trie-nodes for less
than, equal to, and greater than comparisons; reduc-
ing node size for sparse data. Trie compression (Al-
Suwaiyel & Horowitz 1984), trie compaction (Maly
1976), and heuristics (Comer 1979) have also been
applied. These techniques, however, save space at
the expense of time and do not take the memory hi-
erarchy into account. Acharya et al. (Acharya, Zhu &
Shen 1999) addressed this issue by developing cache-
efficient algorithms that choose between several rep-
resentations of trie nodes. Although fast, space ef-
ficiency relative to previous methods is unclear for
large sets of strings.

The burst-trie (Heinz et al. 2002) successfully re-
duced the number of trie nodes at little cost, by col-
lapsing trie-chains into buckets that share a common
prefix. Buckets — represented as linked lists with
move-to-front on access (Knuth 1998) — are then
selectively burst into smaller buckets that are par-
ented by a new trie. Although computationally effi-
cient, the burst-trie was not designed to exploit cache;
linked lists are not cache-conscious structures (Yang
et al. 2004). Consequentially, performance is jeop-

ardized when used on modern cache-oriented proces-
sors.

Current processors attempt to reduce memory
latency by prefetching items that are likely to be
requested in the near future. Hardware prefetch-
ers (Collins, Sair, Calder & Tullsen 2002, Yang
et al. 2004) generate prefetch requests from informa-
tion accumulated at runtime. The simplest imple-
mentation being a hardware-based stride prediction
table (Fu, Patel & Janssens 1992), which works well
with array-based applications. Similarly, software
prefetchers such as software caching (Aggarwal 2002)
and jump-pointers (Roth & Sohi 1999), attempt to
hide latency by fetching data before it is needed.
Nonetheless, the effectiveness of prefetching remains
poor when applied to pointer-intensive data struc-
tures. The binary search tree, where nodes and their
associated strings are likely scattered in main mem-
ory, is an example.

Careful data layout (Chilimbi, Hill & Larus 1999)
and cache-conscious memory allocation (Badawy, Ag-
garwal, Yeung & Tseng 2001, Hallberg, Palm, &
Brorsson 2003) have shown the best results at improv-
ing the cache usage of pointer-intensive data struc-
tures. These techniques address the cause of cache
misses, being poor access locality, rather than the
manifestation of cache misses. The cache-sensitive
search tree (Rao & Ross 1999) and the cache-
conscious B+-tree (Rao & Ross 2000) are such ex-
amples, that exploit cache by changing the layout of
nodes to eliminate (almost all) pointers to random
memory. Nodes are contiguously allocated and are
accessed through arithmetic offsets, improving spa-
tial locality by making good use of hardware prefetch-
ers (Berg 2002). These data structures are fast but
remain expensive to update.

Based on the success of copying strings to array-
based buckets in string sorting (Sinha et al. 2006),
Askitis and Zobel (2005) replaced the linked lists of
the chaining hash table (previously the best method
for string hashing (Zobel, Williams & Heinz 2001))
with re-sizable buckets (arrays), forming the cache-
conscious array hash. Arrays require more instruc-
tions for search, but compensate by eliminating the
pointer-chasing problem through contiguous memory
allocation. Performance gains of up to 96% over
chained hashing were observed for both search and
update costs, with space overheads at best, reduced
to less than two bits per string, at no impact to speed.
It is plausible that similar techniques can also lead
to substantial gains for pointer-intensive data struc-
tures, such as the burst-trie.

Cache-oblivious data structures have received con-
siderable attention in recent literature. These data
structures aim to perform well on all levels of the
memory hierarchy — including disk — without prior
knowledge of the size and speed of each level (Frigo,
Leiserson, Prokop & Ramachandran 1999, Kumar
2002). Brodal and Fagerberg for example, have re-
cently proved the existence of a static (one that can
not change once constructed) cache-oblivious string
dictionary (Brodal & Fagerberg 2006). However, the
study is from a theoretical perspective, and shows
no empirical performance of speed and memory con-
sumption, against well-known data structures; which
is of value in practice. This is not uncommon,
with studies demonstrating (in theory) that cache-
oblivious structures can almost match the perfor-
mance of optimized data structures (Bender, Brodal,
Fagerberg, Ge, He, Hu, Iacono & Lopez-Ortiz 2003).

Similarly, the dynamic cache-oblivious B-
tree (Bender, Demaine & Farach-Colton 2000) has
been described in theory, but with no discussion of
actual performance. The cache-oblivious dynamic

98



Figure 1: A hybrid HAT-trie, where buckets are split using B-trie splitting. A pure HAT-trie maintains only
pure buckets that are burst, not split. Pure buckets are shown in dashed boxes. Strings are length-encoded
(shown as brackets).

dictionary (Bender, Duan, Iacono & Wu 2002), which
is a simplification of the cache-oblivious B-tree, is
developed and evaluated against a B-tree, but only
on a simulated memory hierarchy. Another example
includes the cache-oblivious priority queue (Arge,
Bender, Demaine, Holland-Minkley & Munro 2002).
All of these data structures however, assume a
uniform distribution in data and operations (Bender,
Demaine & Farach-Colton 2002), which is typically
not observed in practice.

There have been recent studies evaluating the
practicality of these data structures (Ladner, Fortna
& Nguyen 2002, Brodal, Fagerberg & Jacob 2002,
Arge, Bender, Demaine, Leiserson & Mehlhorn 2004)
with empirical results showing superior performance
to conventional data structures, but not for those that
have been tuned (both in memory consumption and
time) to a specific memory hierarchy (Arge, Brodal
& Fagerberg 2004). The data structures we present
in this paper are not cache-oblivious, as they have
been designed specifically to exploit cache between
main memory and the CPU, and reside solely within
(volatile) main memory. We omit comparisons of ex-
isting cache-oblivious data structures for our full pa-
per.

3 The HAT-trie

The fastest data structures currently available for
managing (storing and retrieving) variable-length
strings in-memory, is the burst-trie (Heinz et al. 2002)
and the chaining hash table with move-to-front on ac-
cess (Zobel et al. 2001). These data structures are fast
because they minimize the number of instructions re-
quired for search and update, but are not particularly
cache-conscious. We know from literature that linked
lists — used as buckets and as chains respectively —
are the cause.

To address the bottlenecks of the burst-trie, we
must significantly reduce the cost of trie traversal
— being the number of trie nodes created — but
more importantly, the cost of searching buckets, as
these are currently the most expensive components
to access. Such a reduction can only be achieved by
changing the representation of buckets from linked
lists, to large cache-conscious arrays. It is therefore
attractive to consider structuring buckets as cache-
conscious hash tables (Askitis & Zobel 2005). The
advantage of using the array hash, as opposed to a
simple array, is that buckets can scale much more ef-
ficiently, further reducing the number of trie nodes
maintained.

This approach forms the basis of the HAT-trie,
of which we studied two variants: pure and hybrid.
These variants differ in the manner of how buckets are
maintained and split. In the former, buckets contain
strings that share only one prefix, which is removed.

These buckets are classified as pure and are referenced
by a single parent pointer. In the latter, buckets also
share a single prefix, however, it is not removed; the
last character of the prefix is stored along with the
string. These buckets are classified as hybrid, and
have more than one parent pointer. The hybrid HAT-
trie can also maintain pure buckets. An example is
shown in Figure 1.

The HAT-tries are built and searched in a top-
down manner. A trie is accessed by following the
pointer corresponding to the lead character of the
query. Pointer traversal will consume the lead charac-
ter unless a hybrid bucket is accessed. Short strings
can be consumed (deleted) and are handled by set-
ting an end-of-string flag in the respective trie or pure
bucket. When needed, an empty pure bucket can
be created to serve as an end-of-string flag. Given
the situation where strings have associated data fields
(which does not arise in our data), alternative ap-
proaches to storing consumed strings is to use an aux-
iliary data structure (Askitis & Zobel 2006). Buckets
can also be modified to accommodate data fields effi-
ciently (Askitis & Zobel 2005).

The HAT-trie begins as a single empty hybrid
bucket, which is populated until full. Buckets do
not maintain duplicates, hence an insertion occurs
only on search failure. When a bucket is full, it is
burst or split, depending on the type of HAT-trie. A
pure HAT-trie, bursts a full bucket into at most A
pure buckets that are parented by a new trie (A is
the size of the alphabet). The strings are then dis-
tributed amongst the pure buckets, according to their
lead character, which is removed. Strings can be con-
sumed during the bursting procedure.

The hybrid HAT-trie however, splits buckets in
two using the B-trie algorithm (Askitis & Zobel 2006),
which we summarize. On split, a pure bucket is con-
verted into a hybrid by creating a new parent trie with
all pointers assigned to it. The old trie is pushed up
as a grandparent and the splitting procedure contin-
ues as a hybrid. To split a hybrid, we find a suitable
split-point that achieves good — preferably even —
distribution, which may not always be possible. We
access the strings in the bucket to accumulate the
occurrence of every lead character. These occurrence
counters are then traversed, in lexicographic order, to
determine how many groups of strings to move, to ac-
quire a distribution of at least 0.75 (number of strings
moved divided by those that remain). This ratio was
found to provide good space-efficiency for the b-trie.
Once acquired, the split-point is chosen as the letter
representing the current occurrence counter.

In the event where no strings remain, the last oc-
currence counter accessed is used as the split-point.
This can result in the creation of an empty bucket.
The two new buckets are then classified as pure or
hybrid, based on split-point, and the strings are dis-

99



Dataset Type Distinct String Average Volume (MB) Volume (MB)
strings occs length of distinct total

distinct Text 28,772,169 28,772,169 9.59 304.56 304.56
trec Text 612,219 177,999,203 5.06 5.68 1,079.46
urls Non-text 1,287,597 9,997,487 30.93 45.82 318.56
genome Non-text 262,084 31,623,000 9.0 3.8 316.23

Table 1: Characteristics of the datasets used in the experiments.

0 500 1000
Memory Usage (MB)

0

50

100

150

200

T
im

e 
(s

ec
on

ds
)

Array hash 
Hybrid HAT-trie
Pure HAT-trie
Burst-trie
Standard hash

0 20 40 60
Memory Usage (MB)

0

10

20

30

40

T
im

e 
(s

ec
on

ds
)

Array hash 
Hybrid HAT-trie
Pure HAT-trie
Burst-trie
Standard hash

(a) Distinct (b) Trec

0 20 40 60 80 100
Memory Usage (MB)

0

5

10

15

20

25

T
im

e 
(s

ec
on

ds
)

Array hash 
Hybrid HAT-trie
Pure HAT-trie
Burst-trie
Compact BST
Standard hash

0 10 20 30 40
Memory Usage (MB)

0

10

20

30

40
T

im
e 

(s
ec

on
ds

)
Array hash 
Hybrid HAT-trie
Pure HAT-trie
Burst-trie
Compact BST
Standard hash

(c) Urls (d) Genome

Figure 2: Construction costs of datasets distinct, trec, urls and genome. Graph plots represent bucket thresholds
(sizes). Smaller buckets require more memory.

tributed accordingly. A string can be consumed dur-
ing this process. Empty buckets are then deleted with
their associated parent pointers set to null. The split-
ting procedure terminates only when both buckets do
not exceed bucket capacity. Otherwise, the bucket
that remains full is re-split.

Askitis and Zobel (2005) discuss in detail, the op-
erations of the array hash. From an implementation
perspective, we represent buckets as an array of n+1
word-length pointers, which are empty or point to
their respective slot entries; a dynamic bucket (ar-
ray) containing length-encoded strings. We reserve
the first pointer for house-keeping information: the
bucket type or character range, the end-of-string flag
and the number of strings.

To perform an insertion or search on a bucket,
the required slot is found by first hashing what re-
mains of the query string (after traversing the tries),
by using a fast bitwise hash function (Ramakrishna
& Zobel 1997). Once the required slot is accessed,
its array is searched on a per-character basis, with
a mismatch prompting a skip to the next string in

the array. Insertion only occurs when the string is
not found or if the slot is empty. In such a case, the
string is length-encoded and appended to the end of
the array, by first growing (or initially creating) the
array in an exact-fit manner, being the length of the
string, which is cache-efficient.

The HAT-tries however, do impose a fixed space
overhead per bucket, being the fixed number of slot
pointers. Consequentially, some space is wasted when
a bucket maintains only a few strings. It would be
more efficient in this case, to represent an under-
loaded bucket as a simple array which is changed to
an array hash when full. Alternatively, buckets can
maintain a variable number of slots, which is altered
according to frequency of access. This will save space,
but at the cost of re-hashing buckets.

4 Experimental Design

We compared the speed (elapsed time) of construc-
tion, search and the memory requirements of our
HAT-tries against that of the array hash, the binary

100



0 500 1000
Memory Usage (MB)

0

50

100

150

T
im

e 
(s

ec
on

ds
)

Array hash 
Hybrid HAT-trie
Pure HAT-trie
Burst-trie
Standard hash

0 20 40 60
Memory Usage (MB)

0

10

20

30

40

50

T
im

e 
(s

ec
on

ds
)

Array hash 
Hybrid HAT-trie
Pure HAT-trie
Burst-trie
Standard hash

(a) Distinct (b) Trec

0 20 40 60 80 100
Memory Usage (MB)

0

5

10

15

20

T
im

e 
(s

ec
on

ds
)

Array hash 
Hybrid HAT-trie
Pure HAT-trie
Burst-trie
Compact BST
Standard hash

0 10 20 30 40
Memory Usage (MB)

0

10

20

30

40

T
im

e 
(s

ec
on

ds
)

Array hash 
Hybrid HAT-trie
Pure HAT-trie
Burst-trie
Compact BST
Standard hash

(c) Urls (d) Genome

Figure 3: Self-search costs of datasets distinct, trec, url and genome. Graph plots represent bucket thresholds
(sizes). Smaller buckets require more memory.

search tree, the burst-trie and the chaining hash ta-
ble with move-to-front (which we call the standard
hash); a group that includes the fastest and best-
known data structures for in-memory string manage-
ment. Our measure of memory takes into account the
overhead imposed by the operating system per allo-
cation, which is usually eight bytes; a figure which we
found to be consistent after comparing our measure
with that reported by the operating system under the
/proc/stat/ table.

Although the binary search tree is well-known for
its logarithmic average-case performance, it is not
cache-conscious and in our initial experiments, we
found it to be very slow. For a fairer comparison,
we developed the compact BST, which stores strings
directly within their respective nodes. This improves
overall cache-efficiency (Askitis & Zobel 2005).

Our datasets consist of null-terminated variable-
length strings that appear in occurrence order and
are therefore unsorted; the characteristics of these
datasets are shown in Table 1. The distinct dataset
was acquired after parsing the GOV2 web crawl. Dis-
tributed as part of the TREC project, it does not
contain duplicates. The highly skew trec dataset is
the complete set of word occurrences, with duplicates,
from the first of five TREC CDs (Harman 1995). The
url dataset, also extracted from TREC web data, con-
sists of complete URLs with duplicates. Finally, the
genome dataset, extracted from GenBank, consists of
fixed-length n-gram sequences with duplicates. Un-
like the skew distributions observed in plain text how-
ever, these strings have a more uniform distribution.

The experiments were conducted on a 2.8 GHz
Pentium IV machine, with 1 MB of L2 cache, 256-
byte cache lines, a TLB capacity of 64 entries, 2 GB
of RAM with a 4 KB page size, and a Linux operating
system under light load using kernel 2.6.17. Our trie
nodes used an alphabet that comprised of the first 128
characters of the ASCII table. We measured cache
performance using PAPI (Dongarra, London, Moore,
Mucci & Terpstra 2001) (available online), which ob-
tains the actual number of TLB and L2 cache misses
incurred during search. We restricted cache compar-
ison to the array hash and the HAT-tries, as these
were significantly better than the alternatives. We di-
rect the reader to (Meyer, Sanders & Sibeyn 2003) for
detailed information on the different types of caches
used by modern processors.

The number of slots used by the array and stan-
dard hash were varied from 31,622 to 10,000,000 using
the following sequence: 3.1622 × 104, 105, 3.16227 ×
105, 106, 3.162277× 106, and 107. For the burst-trie,
we varied the bucket threshold (the number of strings
needed to trigger a burst) by 25, 35, 50, 75, and 100.
The HAT-tries have two parameters which are set at
runtime: bucket threshold and the number of slots
used. We began with a threshold of 1024 strings,
doubling until 16, 384. We set the number of slots
used by every bucket to 1024 for the hybrid HAT-
trie, and 512 for the pure HAT-trie. These settings
were found to offer a good trade-off between space
and speed. The pure HAT-trie requires fewer slots as
it maintains only pure buckets that typically contain
fewer strings.

101



0 500 1000
Memory Usage (MB)

0

2

4

6

L
2 

ca
ch

e-
m

is
s 

/ s
ea

rc
h

Array hash - L2
Hybrid HAT-trie - L2
Pure HAT-trie - L2

0

5

10 T
L

B
 cache-m

iss / search

Array hash - TLB
Hybrid HAT-trie - TLB
Pure HAT-trie - TLB

0 20 40 60
Memory Usage (MB)

0.0

0.2

0.4

0.6

0.8

1.0

L
2 

ca
ch

e-
m

is
s 

/ s
ea

rc
h

Array hash - L2
Hybrid HAT-trie - L2
Pure HAT-trie - L2

0

1

2

3

T
L

B
 cache-m

iss / search

Array hash - TLB
Hybrid HAT-trie - TLB
Pure HAT-trie - TLB

(a) Distinct (b) Trec

0 20 40 60 80 100
Memory Usage (MB)

0

1

2

3

4

L
2 

ca
ch

e-
m

is
s 

/ s
ea

rc
h

Array hash - L2
Hybrid HAT-trie - L2
Pure HAT-trie - L2

0

2

4

6

T
L

B
 cache-m

iss / search
Array hash - TLB
Hybrid HAT-trie - TLB
Pure HAT-trie - TLB

0 10 20 30 40
Memory Usage (MB)

0.0

0.5

1.0

1.5

2.0

L
2 

ca
ch

e-
m

is
s 

/ s
ea

rc
h

Array hash - L2
Hybrid HAT-trie - L2
Pure HAT-trie - L2

0

1

2

3

T
L

B
 cache-m

iss / search

Array hash - TLB
Hybrid HAT-trie - TLB
Pure HAT-trie - TLB

(c) Url (d) Genome

Figure 4: The number of L2 cache-misses during the self-search. Graph plots represent bucket thresholds (sizes).
Smaller buckets require more memory.

5 Results

For all collections, we measured performance for con-
struction and self-search. In a self-search, we search
for all the words, in-occurrence order, that were used
to construct the data structure. We now describe the
results and observed trends for each collection.

Distinct data. The distinct dataset shows three
important properties: there is no skew, each access
requires a full tree traversal, and a large number of
strings need to be managed. Such a collection is not
particularly trie-friendly. Figures 2(a) and 3(a) show
the effects on memory and speed as bucket thresh-
olds vary. Small buckets are split often, resulting in
a large number of tries and buckets. Larger buckets
are split less frequently and are therefore, more space-
efficient. We can see the effect on space in Table 2,
which shows the number of nodes created relative to
the bucket threshold.

We can save space by using larger buckets, but at
the anticipated cost of access time. The HAT-tries
however, showed little (if any) variance in the speed
of construction and search, as the bucket threshold
changed. For instance, with a threshold of 1024
strings, the hybrid HAT-trie required about 37 sec-
onds to build and 19 seconds to search, consuming
about 586 megabytes of memory. Buckets that were
sixteen times larger increased the build time by less
than ten seconds, while being faster to search (by
about two seconds) and (simultaneously) reducing
space to 270 megabytes; which is less than was re-
quired by the dataset. The pure HAT-trie displayed

even less variance in speed, with the largest buckets
being just as fast to build and search, as smaller buck-
ets. It remained consistently faster than the hybrid
HAT-trie, as a result of bursting, which is cheaper
and can lead to fewer strings per bucket, but at the
cost of some space.

These results are in contrary to the burst-trie,
which can only achieve its best time using smaller
buckets, and best space with larger buckets. Either
way, the burst-trie was of no contest, requiring over a
gigabyte of memory to reach its optimal search time
of 53 seconds. The hash tables remained the fastest
data structures, but only when given enough space,
which proved excessive for the standard hash, and
was partially omitted in these graphs. In comparison
however, the HAT-tries — the pure HAT-trie in par-
ticular — could almost match the speed and space-
efficiency of the array hash, while maintaining sorted
access to strings.

Despite our efforts at improving the cache-
efficiency of the binary search tree, we omitted it in
these graphs, as it required over 430 seconds to con-
struct and search, using 764 megabytes of memory.
Figure 4(a) shows the cache costs of the HAT-tries
and the array hash during search. The array hash
performed poorly under heavy load, incurring over
five L2 cache misses and almost twelve TLB misses
per search. As we add more slots to reduce the aver-
age load factor, buckets became smaller and cheaper
to access, and have improved probability of cache res-
idency. As a result, we see a sharp decline in the
number of cache misses.

In contrast however, increasing memory usage (by
using smaller buckets) is detrimental to the perfor-

102



Slots Threshold Tries Buckets Memory (MB)
1,024 1,024 11,826 47,479 586.34

Hybrid 1,024 2,048 6,384 23,374 447.48
HAT-trie 1,024 4,096 2,677 11,381 351.80

1,024 8,192 1,283 5,762 297.73
1,024 16,384 680 2,939 270.16

512 1,024 11,826 443,187 1,284.27
Pure 512 2,048 6,384 264,529 891.97
HAT-trie 512 4,096 2,677 130,994 575.63

512 8,192 1,283 64,001 409.72
512 16,384 680 34,780 332.13

- 25 564,723 6,153,817 1117.45
- 35 406,799 5,021,979 1038.30

Burst-trie - 50 292,000 4,058,240 981.30
- 75 173,005 3,018,590 922.16
- 100 128,868 2,498,127 901.74

Table 2: Node count as the bucket threshold varies with the distinct dataset.

mance of the HAT-tries. Although buckets remain
cheaper to access when they are small in size, main-
taining a large number of tries and buckets can ulti-
mately reduce cache-efficiency, as fewer are likely to
remain within cache. Furthermore, with an increase
of trie nodes, cache will likely be flooded with tries on
search, overwriting previously cached buckets. Con-
sequentially, this will lead to an increase in L2 cache
misses, as observed.

Temporal access locality is unlikely to be as effi-
cient for the HAT-tries, as it is for the hash tables.
Every trie encountered during search branches to a
new location in memory. Tries (apart from those close
to the root of the tree) are therefore, less likely to
be visited frequently, especially as their numbers in-
crease. The number of conversions of virtual to phys-
ical addresses (TLB misses), is likely to increase as
a result. Larger buckets are therefore of value to the
HAT-tries, as they reduce the number of nodes cre-
ated and space consumed, yielding higher cache effi-
ciency.

Skewed data. Our next experiment evaluates cost
where some strings are accessed much more frequently
than others. We repeated the previous experiment
using trec; the results are shown in Figures 2(b)
and 3(b).

With just over half a million distinct strings, the
data structures were much smaller than those con-
structed previously. The array hash performed well,
even with a load factor of about 20 strings (31,622
slots). Although buckets were large, 99% of the
searches need only access the first string of each
bucket. Contrary to our previous results on the dis-
tinct dataset, it is clear that under skew access, the
array hash can perform at its best, for both construc-
tion and search, with large buckets. The standard
hash was also fast to access under heavy load as a
result of move-to-front, but required more space.

Our HAT-tries remained competitive, being able
to approach the speed of the array hash — the pure
HAT-trie in particular — while almost matching its
space consumption. The pure HAT-trie showed little
variance in speed as we varied the bucket thresholds.
The hybrid HAT-trie however, was slower to search
with larger buckets, due to the use of b-trie splitting,
which works more efficiently with a large number of
strings per bucket (only 612,219 strings are distinct
in this dataset). Both HAT-tries however, surpassed
the performance of the burst-trie, which reached an
optimal construction and search speed of about forty
seconds (at least ten seconds slower) while requiring
almost three times the space. The compact BST was

once again, too expensive and was omitted, requiring
over 65 seconds to construct and search, while con-
suming about 15 megabytes of memory. It required
less space than the burst-trie, as a result of eliminat-
ing string pointers.

Cache efficiency is shown with Figure 4(b). Larger
buckets lead to a reduction in cache misses for the
HAT-tries, which is consistent with what we observed
in previous experiments. The array hash performed
well with large buckets, as a result of heavy skew.
That is, larger buckets (slot entries) are more fre-
quently accessed and are likely to remain in cache
longer than smaller, but more numerous buckets. The
pure HAT-trie remains more cache efficient than the
hybrid HAT-trie however, as a result of bursting buck-
ets and using 512 (as opposed to 1024) slots per
bucket, which can reduce TLB misses under skew.
Although using large buckets is more cache-efficient,
the cost of searching a hybrid HAT-trie with large
buckets, is expensive. The cause is the manner of how
buckets were split during construction. The b-trie al-
gorithm is not as effective at splitting buckets, when
deprived of strings (Askitis & Zobel 2006); buckets,
although fewer in number, are likely to be split un-
evenly in this case.

This results in frequently accessed buckets that
contain too many strings, and are therefore, more
computationally expensive to search, albeit in cache.
We confirmed this after comparing the instruction
and CPU cycle costs during search, which were higher
for larger buckets.

URL data. The URL dataset is highly skew and
contains long strings, some in excess of a hundred
characters. URLs typically share long prefixes; most
URLs start with “http://www”. As a result, string
comparisons can be more expensive.

The HAT-tries have the advantage of stripping
away some of these prefixes during trie traversal, sav-
ing space and time. As a result, in Figures 2(c)
and 3(c), the HAT-tries required the least amount of
space (by using larger buckets) while simultaneously
approaching the speed of the array hash. Interest-
ingly however, the burst-trie remained expensive in
both time and space. Even though prefixes are re-
moved, the overhead imposed by linked list buckets,
is too high.

The compact BST, although pointer-intensive, was
almost twice as fast as the burst-trie, while requiring
less space. This is due to the elimination of string
pointers, which halves the number of random accesses
made, the effects of which become more apparent un-
der skew access. Its performance however, will start

103



to deteriorate as the number of searches increase, as
observed with trec. As observed in previous experi-
ments, the HAT-tries were able to perform at their
best using large buckets that are more cache efficient,
as shown in Figure 4(c).

Genome data. Our last experiment involves the
genome dataset, containing fixed-length strings of
strong skew. However, these strings are distributed
much more uniformly than those of text. As shown in
Figures 2(d) and 3(d), the HAT-tries almost matched
the speed of the array hash for construction and
search, while requiring less space. In contrast, for
a high load factor, the cost of searching the array
hash was higher, as string prefixes are not removed.
Figure 4(d) shows that larger buckets allow the HAT-
tries to approach and surpass the L2 and TLB perfor-
mance of the array hash. Combined with the use of a
trie-structure that strips away common prefixes (sav-
ing both space and comparison costs), the HAT-tries
were superior. The burst-trie and the compact BST
were greatly inferior to the array hash and the HAT-
tries. The standard hash could only approach their
speed, once given excessive space.

6 Conclusion

The burst-trie is currently the fastest in-memory data
structure for maintaining strings in sort order, which
is for example, a key requirement needed by database
management software. It is not however, cache-
conscious which presents a serious performance bot-
tleneck with modern processors that typically use a
hierarchy of caches to reduce costly accesses to main
memory. We have introduced the HAT-trie, a vari-
ant of the burst-trie that carefully combines exist-
ing data structures to yield a fast, compact, scalable,
and cache-conscious data structure, that can main-
tain variable-length strings in-memory and in sort or-
der. We proposed two versions of the HAT-trie, hy-
brid and pure, which differ in the manner of how they
split nodes.

We compared the HAT-tries to the cache-conscious
array hash (which is currently the best for unsorted
string management), an optimized binary search tree,
the burst-trie and the chaining hash table with move-
to-front on access. For both construction and search,
the HAT-tries were up to 80% faster than the burst-
trie, while simultaneously reducing space consump-
tion by as much as 70%. The chaining hash ta-
ble could only compete in speed once given excessive
space, while the binary search tree proved to be too
inefficient in most cases.

Our HAT-tries — the pure HAT-trie in particu-
lar — could approach, and in some cases surpass, the
speed of the array hash while requiring less space.
In general, the hybrid HAT-trie required the least
space of all data structures, but was not as fast as
the pure HAT-trie. Our results highlight further po-
tential improvements, primarily with the way buck-
ets are structured. However, to our knowledge, the
current HAT-tries are the first trie-based data struc-
tures that can approach the speed and space efficiency
of hash tables, while maintaining sorted access to
strings. These are strong results that further sub-
stantiate the effectiveness of using dynamic arrays in
the structural design of pointer-intensive data struc-
tures that are otherwise computationally efficient.

References

Acharya, A., Zhu, H. & Shen, K. (1999), Adaptive al-
gorithms for cache-efficient trie search, in ‘Proc.

ALENEX Workshop on Algorithm Engineering
and Experiments’, Springer-Verlag, pp. 296–311.

Aggarwal, A. (2002), Software caching vs. prefetch-
ing, in ‘Proc. Int. Symp. on Memory manage-
ment’, ACM Press, New York, pp. 157–162.

Agrawal, R. & Srikant, R. (1994), Fast algorithms for
mining association rules, in ‘Proc. VLDB Int.
Conf. on Very Large Databases’, Morgan Kauf-
mann, pp. 487–499.

Al-Suwaiyel, M. & Horowitz, E. (1984), ‘Algorithms
for trie compaction’, ACM trans. on Database
Systems 9(2), 243–263.

Aoe, J., Morimoto, K. & Sato, T. (1992), ‘An efficient
implementation of trie structures’, Software—
Practice and Experience 22(9), 695–721.

Arge, L., Bender, M. A., Demaine, E. D., Holland-
Minkley, B. & Munro, J. I. (2002), Cache-
oblivious priority queue and graph algorithm ap-
plications, in ‘Proc. ACM Symp. on Theory of
Computing’, ACM Press, New York, pp. 268–
276.

Arge, L., Bender, M. A., Demaine, E., Leiserson, C.
& Mehlhorn, K. (2004), Abstracts collection, in
‘Cache-Oblivious and Cache-Aware Algorithms’,
number 04301 in ‘Dagstuhl Seminar Proceed-
ings’, IBFI, Germany.

Arge, L., Brodal, G. & Fagerberg, R. (2004), In hand-
book on data structures and applications, in
‘Cache-oblivious Data Structures’, CRC Press.

Askitis, N. & Zobel, J. (2005), Cache-conscious col-
lision resolution for string hash tables, in ‘Proc.
SPIRE String Processing and Information Re-
trieval Symp.’, Springer-Verlag, pp. 92–104.

Askitis, N. & Zobel, J. (2006), B-tries for disk-based
string management. Manuscript in submission.

Badawy, A. A., Aggarwal, A., Yeung, D. & Tseng, C.
(2001), Evaluating the impact of memory system
performance on software prefetching and locality
optimizations, in ‘Proc. Int. Conference on Su-
percomputing’, ACM Press, New York, pp. 486–
500.

Bell, T. C., Cleary, J. G. & Witten, I. H. (1990), Text
Compression, Prentice-Hall.

Bender, M. A., Demaine, E. D. & Farach-Colton, M.
(2000), Cache-oblivious b-trees, in ‘IEEE Symp.
on the Foundations of Computer Science’, IEEE
Computer Society Press, pp. 399–409.

Bender, M. A., Demaine, E. D. & Farach-Colton, M.
(2002), Efficient tree layout in a multilevel mem-
ory hierarchy, in ‘Proc. European Symp. on Al-
gorithms’, Springer-Verlag, pp. 165–173.

Bender, M. A., Duan, Z., Iacono, J. & Wu, J. (2002),
‘A locality-preserving cache-oblivious dynamic
dictionary’, Proc. ACM-SIAM Symp. on Dis-
crete Algorithms 53(2), 29–38.

Bender, M., Brodal, G. S., Fagerberg, R., Ge, D., He,
S., Hu, H., Iacono, J. & Lopez-Ortiz, A. (2003),
The cost of cache-oblivious searching, in ‘IEEE
Symp. on the Foundations of Computer Science’,
IEEE Computer Society Press, pp. 271–282.

Bentley, J. & Sedgewick, R. (1997), Fast algorithms
for sorting and searching strings, in ‘Proc. ACM-
SIAM Symp. on Discrete Algorithms’, Soci-
ety for Industrial and Applied Mathematics,
pp. 360–369.

104



Berg, S. G. (2002), Cache prefetching, in ‘Tech Re-
port UW-CSE’, Uni. of Washington.

Brodal, G. S. & Fagerberg, R. (2006), Cache-oblivious
string dictionaries, in ‘Proc. ACM-SIAM Symp.
on Discrete Algorithms’, ACM Press, New York,
pp. 581–590.

Brodal, G. S., Fagerberg, R. & Jacob, R. (2002),
Cache oblivious search trees via binary trees of
small height, in ‘Proc. ACM-SIAM Symp. on
Discrete Algorithms’, ACM Press, New York,
pp. 39–48.

Chilimbi, T. M., Hill, M. D. & Larus, J. R. (1999),
Cache-conscious structure layout, in ‘Proc. ACM
SIGPLAN conf. on Programming Language De-
sign and Implementation’, ACM Press, New
York, pp. 1–12.

Collins, J., Sair, S., Calder, B. & Tullsen, D. M.
(2002), Pointer cache assisted prefetching, in
‘Proc. Annual ACM/IEEE MICRO Int. Symp.
on Microarchitecture’, IEEE Computer Society
Press, pp. 62–73.

Comer, D. (1979), ‘Heuristics for trie index min-
imization’, ACM trans. on Database Systems
4(3), 383–395.

Dongarra, J., London, K., Moore, S., Mucci, S. &
Terpstra, D. (2001), Using papi for hardware
performance monitoring on linux systems, in
‘Proc. Conf. on Linux Clusters: The HPC Rev-
olution’, Urbana, Illinois, USA.

Flajolet, P. & Puech, C. (1986), ‘Partial match re-
trieval of multimedia data’, Jour. of the ACM
33(2), 371–407.

Fredkin, E. (1960), ‘Trie memory’, Communications
of the ACM 3(9), 490–499.

Frigo, M., Leiserson, C. E., Prokop, H. & Ramachan-
dran, S. (1999), Cache-oblivious algorithms, in
‘IEEE Symp. on the Foundations of Computer
Science’, IEEE Computer Society Press, p. 285.

Fu, J. W. C., Patel, J. H. & Janssens, B. L.
(1992), Stride directed prefetching in scalar pro-
cessors, in ‘Proc. Annual ACM/IEEE MICRO
Int. Symp. on Microarchitecture’, IEEE Com-
puter Society Press, pp. 102–110.

Hallberg, J., Palm, T., & Brorsson, M. (2003), Cache-
conscious allocation of pointer-based data struc-
tures revisited with hw/sw prefetching, in ‘2nd
Annual Workshop on Duplicating, Deconstruct-
ing, and Debunking’.

Harman, D. (1995), Overview of the second text re-
trieval conference (TREC-2), in ‘Proc. Second
Text Retrieval Conference’, Pergamon Press,
Inc., pp. 271–289.

Heinz, S., Zobel, J. & Williams, H. E. (2002),
‘Burst tries: A fast, efficient data structure for
string keys’, ACM trans. on Information Sys-
tems 20(2), 192–223.

Knuth, D. E. (1998), The Art of Computer Program-
ming: Sorting and Searching, Vol. 3, second edn,
Addison-Wesley.

Kumar, P. (2002), Cache oblivious algorithms., in
‘Algorithms for Memory Hierarchies’, Vol. 2625
of Lecture Notes in Computer Science, Springer-
Verlag, pp. 193–212.

Ladner, R. E., Fortna, R. & Nguyen, B. (2002), A
comparison of cache aware and cache oblivious
static search trees using program instrumenta-
tion, in ‘Experimental algorithmics: from algo-
rithm design to robust and efficient software’,
Springer-Verlag, pp. 78–92.

Maly, K. (1976), ‘Compressed tries’, Communications
of the ACM 19(7), 409–415.

McCreight, E. M. (1976), ‘A space-economical suffix
tree construction algorithm’, Jour. of the ACM
23(2), 262–271.

Meyer, U., Sanders, P. & Sibeyn, J. F., eds (2003),
Algorithms for Memory Hierarchies, Vol. 2625
of Lecture Notes in Computer Science, Springer-
Verlag.

Ramakrishna, M. V. & Zobel, J. (1997), Perfor-
mance in practice of string hashing functions,
in ‘Proc. Int. Symp. on Database Systems for
Advanced Applications’, World Scientific Press,
Melbourne, Australia, pp. 215–223.

Rao, J. & Ross, K. A. (1999), Cache conscious
indexing for decision-support in main mem-
ory, in ‘Proc. VLDB Int. Conf. on Very Large
Databases’, Morgan Kaufmann, pp. 78–89.

Rao, J. & Ross, K. A. (2000), Making b+-trees
cache conscious in main memory, in ‘Proc. ACM-
SIGMOD Int. Conf. on the Management of
Data’, ACM Press, New York, pp. 475–486.

Roth, A. & Sohi, G. S. (1999), Effective jump-pointer
prefetching for linked data structures, in ‘Proc.
Int. Symp. on Computer Architecture’, IEEE
Computer Society Press, pp. 111–121.

Sedgewick, R. (1998), Algorithms in C, Addison-
Wesley.

Severance, D. G. (1974), ‘Identifier search mecha-
nisms: A survey and generalized model’, Proc.
ACM Computer Science Conf. 6(3), 175–194.

Sinha, R., Ring, D. & Zobel, J. (2006), ‘Cache-
efficient string sorting using copying’, ACM
Jour. of Exp. Algorithmics 11(1.2).

Sinha, R. & Zobel, J. (2004), ‘Cache-conscious sorting
of large sets of strings with dynamic tries’, ACM
Jour. of Exp. Algorithmics 9(1.5).

Yang, C., Lebeck, A. R., Tseng, H. & Lee, C.
(2004), ‘Tolerating memory latency through
push prefetching for pointer-intensive applica-
tions’, ACM Trans. Architecture Code Optimi-
sation 1(4), 445–475.

Zobel, J., Williams, H. E. & Heinz, S. (2001),
‘In-memory hash tables for accumulating text
vocabularies’, Information Processing Letters
80(6), 271–277.

105


