Statistical Analysis of Networks

Lecture ERGM




MODELS ACCOUNTING FOR SPECIFIC TIE-FORMATION
MECHANISMS

“Small World’ “Scale-tTree”

Small World configuration (SW)(Watts and Strogatz, 1998) Scale free networks model (or Barabasi-Albert model, 1999) based on:

@ Preferential Attachment (PA) tie formation mechanism = the probability

@ high node connectivity with low average distance among regions of the : .. .
& y 8 g res that a new node will be connected to i is proportional to the degree d;

network: ¢(G) < ¢(Grand), Grand = random networks of equal size o _ , T i
@ degree distribution P(x) with fat tails approximating a power law with

@ high tendency towards clustering, I'(G) > ' (Grand) parameter a (2 < o < 3)
© Standard (de Solla Price, 1963): P(x) = Cx~
a—1 x \ ¢
. T ted (Cl t et al, 2009): P(x) =
[Random graph (Erdos & Renyi, 1959)] _ . © Troncated (Clauset et al, 2009): P() =S (xm,-n>



COMMON FEATURES OF INTEREST

Beyond nodal and dyadic attributes, many real networks exhibit the following
features:

e Reciprocity of ties

e Degree heterogeneity among actors
Activity, Popularity

e Homophily by actor attributes
Higher propensity to form ties between actors with similar attributes

e Transitivity of relationships
Friends of friends have a higher propensity to be friends

e Equivalence of nodes
Some nodes may have identical/similar patterns of relationships



NETWORK MODELS

“A good [statistical network graph] model needs to be both estimable from
data and a reasonable representation of that data, to be theoretically
plausible about the type of effects that might have produced the network,
and to be amenable to examining which competing effects might be the best
explanation of the data.” (Robins and Morris, 2007)

Small-word and Preferential attachment models:
—— not really intended to meet such criteria

Statistical modeling: evaluation and fitting of network models

e Testing: evaluation of competing theories of network formation

e Estimation: evaluation of parameters in a presumed network model
e Description: summaries of main network patterns

e Prediction: prediction of missing or future network relations



RANDOM GRAPH AND RANDOM MATRIX

@ Let G =(V,E) be a graph. If E (and perhaps V) is a
random set, then G is a random graph

e Can consider G to be a random variable on some set G
of possible graphs (“multinomial” representation)

* Let Y be the adjancency matrix of random graph G, then Yis a
random matrix

N . .| valued and
_ 1 relationship from actor / to actor j _ )
Y = Yij Yi = 0 otherwise signed ties can
nxn be considered

—a N = n(n—1) array of binary random variables
— Y represents a random network with nodes the actors
and edges the relationship

e basic problem of stochastic modeling is to specify

distribution for Y i.e., P(Y = y)




STATISTICAL MODELS FOR NETWORK DATA

- Statistical model for the ties in a network

But
- The overall structure — the network — is evident

- What kind of structural elements can be included in a model for
the tie variable ?



(MAIN) NETWORK DEPENDENCIES

1. Reciprocation: dependencies between Yj; and Y,

2. Homophily: tendency of similar actor to relate to each other (assortative
mixing by attribuite)

3. Transitivity: Y; = Yy, = 1 will lead to increase P(Y;, = 1) (triad/triangle closure:
“friends of my friends are my friends”)

4. Degree differentials: some actors are higly connected and others have only
few connections (sociality)

Problem: Type 2, 3, 4, and partially 1: all can lead to similar macro signatures
(network configurations, e.g. “clustering”)

So, for three actors of the same type: Aim: to be able to fit
=N these terms

aa simultaneously and
identify the effects of

o O each mechanism on

Cycle-closing tie may form because of transitivity but also the overall outcome.

homophily



MODEL CONSTRUCTION - GENERAL IDEA

The probability of observing a specific graph (Y,,) is dependent on
local characteristis of the graph (f (Y,;))



EXPONENTIAL RANDOM GRAPH (ERGM)
Probability distribution of the set of possible graphs

exp {Zl’le 012 (y)} network statistics

p(y — y) — C(@) / (network feutures)

where 01 5, are parameters g1 5. x(y) are statistics, and c(6)
Is a normalizing constant:

K
c(f) = Z exp {Z ngk()’)}

yey k=1
In other words,

P(Y =y) < big1(y) + O282(y) + O3g3(y) + ... + Okgr(y)

Intuition: the ERGM places more/less weight on graphsw\itﬁ\

certain features, as determined by 6. —
’ yt.g network statistics = number of

local congurations of a specific
type




ERGM PROBABILITY

exp {Zle Ok gk (Y)}
c(0)

PLY =] =

» The probability of a graph Y is an exponential family model.

> Parameter vector 6 (weights), statistics vector (counts of ties, reciprocal ties, transitive
triplets, degree distribution, homophilic ties, .. .)

» The probability of a graph thus depends on the structures that it includes, given the parameters.

» The following two graphs have a different probability depending on the terms and parameters
of the model:
O

ERGM specifies the probability of the entire network (the left hand side), as a function
of terms that represent network features we hypothesize may occur more or less
likely than expected by chance (the right hand side)




MODEL CONSTRUCTION - GENERAL FRAMEWORK

E.g. friendship: are

Q Step 1: each network tie is a random variable. there more
/ reciprocated ties than

Q Step 2: a dependence hypothesis is proposed, defining

contingencies among the tie variables.

would be expected by
chance ?

Q Step 3: the dependence hypothesis implies a specific form | pmodel will include

to the model.

a density
parameter

Q Step 4: simplification of parameters through homogeneity | (randomness

or other constraints.

Q Stepb: estimate and interpret parameters

S

ERGMs:
superficially resembling linear
regression or GLMs

occurance of ties)
and a reciprocation
parameter

MLE will be the
parameter value such
that the most probable
degree of reciprocation
is that which occurs in
the observed network




TIES AS RANDOM VARIABLES

We model tie variables: Y = [Yj]

Yi; = 1 if i has a tie to j, 0 otherwise
The realization of Y is denoted by y = [y;]

Random graph and random directed graphs on a

Graph
1 2
3 4

Tie variables:

TID FEND YD CERD EYND £V

node set N= {1,2,3.4}

Directed graph

5

3 4

1

2

Tie variables:

Y5, N Yy Yo, Doy By,
Yo 1. Yy 15y, ¥y ¥y

2123



MODEL: STATISTICAL ANALYSIS

© Estimate parameters of the process
e Joint estimation of multiple, possibly correlated, effects

@ Inference

e |s a certain parameter significantly different from zero?
e Uncertainty in parameter estimates

© Goodness of fit

e [raditional diagnostics

e Model fit (BIC, AIC)
e Estimation diagnostics (MCMC performance)

ork-specific goodness-of-fit

@ Network statistics already in the model as covariates
etwork properties not in the model




ERGM: SOME NOTATIONS

Probability distribution of the set of possible graphs

probability
exp{zl’le gkgk(y)} L of a single graph

P(Y =y) = (0)

Since each network tie is a random variable, the goal is to re-express the
probability of the graph in terms of the probabilities of an individual tie:

- this gives a “local” view of the model

- and some insight into what the coefficients mean

In order to re-express the probability of the graph in terms of the
probabilities of a tie, we need to introduce some notation:

= Y, ={Y with Yj; = 1} the graph w/ the (/,j)th dyad set to 1
= Y ={Y with Yj = 0} the graph w/ the (i, j)th dyad set to 0
Y7 = { Yk with (k,/) # (i,j)} all dyads except (i,j)



ERGM: THE CONDITIONAL PROBABILITY OF A LINK

exp { S0, ke }
c(f)

A simple logical re-expression of P(Y =y) =

PrlY = y,j“)
Pr(Y :y,-}L)Jr Pr(Y:y,JT)
exp{6'g(y; )}

Pr(Yy = 11Yj) =

~ exp{07a(y])} +exp{07g(y;)}

Note:
the costant term c(8) has canceled out, but ... an even simpler
expression, in terms of the odds, can be used



ERGM: THE CONDITIONAL LOG-ODDS PROBABILITY OF A LINK
Reminder: logit(p) = log (ﬁ)

. B —_ exp{QTg()/,#)}
= Given, Pr( Yij = 1] YU) — exp{ng(y;)}+eX|aj{9Tg(y,j)}
= T[hen

Hil v = ] _
o8 { v v | =077 - £07)

=07 5(yy)

Note: d(y;j) is known as the change statistic

@ Useful implication: each unit change in gi for (/,)) tie
present (versus absent) increases the conditional log-odds
of (i,j) by Ok

@ ( is the impact of the covariate on the log-odds of a tie
[Prob= odds/(1+odds)]




An undirected network and graph:
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TYPES OF COVARIATES - G(Y) TERMS IN THE MODEL

What creates heterogeneity in the probability of a tie being formed?

attributes of nodes

Heterogeneity by group
— Average activity
— Mixing by group

Individual heterogeneity

attributes of links

eterogeneity in
— Duration
— Types (sex, drug...)

configurations

Degree distributions (or stars)

oo o ¢ o
® 90 0 0
Cycle distributions (2, 3, 4, etc.)
° ¢
./? @ ® ¢ o
S~——__ ‘
o
Shared partner distributions :

Dyad
>~ Independent
Terms

Dyad
(In)dependent
Terms



ERG TYPES OF STATISTICAL MODELS (BASED ON DIFFERENT
DEPENDENCE HYPOTHESES) /1

Exponential Random Graph Model — ERGM class (also known as p*
model, especially in SNA literature)

dependency generated by specific structural configurations,
including:

— Erdés-Rény (Bernoulli) model (edge independence)

— Py model (dyad independence with attributes and reciprocity, Holland
and Leinhardt, 1981)

_ exp{p i YiYit0 i it i i ) i i+ B i Vi b

P(Y =y) c(p,a,3,6)

where
@ () controls the expected number of edges
@ p represent the expected tendency toward reciprocation

@ «; productivity of node i; 3; attractiveness of node j



ERG TYPES OF STATISTICAL MODELS (BASED ON DIFFERENT
DEPENDENCE HYPOTHESES) /2

Exponential Random Graph Model — ERGM class (also known as p*
model, especially in SNA literature)

dependency generated by specific structural configurations,
including:

— Markov Random Graph model (Markov dependence: edges share a
vertex, Frank and Strauss,1986)

@ . )
{ij} n{kl} #D O,/"\m they involve a shared actor (undirected)
@

/O'\ ‘/C&‘ /‘Q'\ (directed)
» ® © @ ©

Ok Si(y) + 8 "I'[y]} (with triangles)



MARKOV RANDOM GRAPH MODEL (BASIC CONFIGURATIONS FOR

UN/DIRECTED GRAPHS)

©—@ ok ,
{ Ne—1 (undirected)
PY =y.8) = — O S +6.T e © ®
(Y =y:8) H(a)‘”‘P{Z k Sie(y) {y)} 06’00
ke ® © @°
2-star  3-star 4-star
o
(I expifL+ 65, + 383+ 7T} R
/ 6 o
(directed)
Typical spefication @ &  arcs @ —@  reciprocated
arcs

2-out-star  2-in-star
@ transitive
triad

@ @ )
@<@ @<® @<@

@ cyclic
&

2-mixed-star ...

(and higher order versions of stars)

(and higher
order
versions of
miads)




ERG TYPES OF STATISTICAL MODELS (BASED ON DIFFERENT
DEPENDENCE HYPOTHESES) /3

Exponential Random Graph Model — ERGM class (also known as p*
model, especially in SNA literature)

dependency generated by specific structural configurations,
including:

— Social circuit model (dependence might arise from the
presence of other edges - partial conditional dependence)

Tie variables Y and.Y,, are conditionally independent for distinct 7, 7, £, /

unless:
Vi =landy,; =1 i k and so they complete
or a social circuit
yy=landy, =1 j /

(eg red ties are observed)



INTERPRETATION OF STAR AND TRIAD EFFECTS

Stars Out-stars In-stars

» k—stars: number of subgraphs with
one/two/three... endpoints (in/out in
directed ties) with respects to node i

interpretation:

» tendency of edges “ to stick together” on
endpoints (“edge clustering”)

Undirected Directed

» Most basic terms for endogeneous
clustering

» each term counts triads of a given type
(triangles, cycles, ...)

interpretation:

» tendency towards transitive closure




ERGM PARAMETRIZATION (DIRECTED NETWORK)

« ERG form is just a way of writing models — to use it, we must
choose a set of terms (t)

« Some basics (dyad independence terms):

- Edge term: )}y,

» Captures overall tendency of ties to form/not (density effect)
- Row-sum term: }y.

« Captures net tendency to send ties (sender/expansiveness effect)
- Col-sum term: } y.
» Captures net tendency to receive ties (receiver/popularity effect)
- Mutuality term: Zizj:=iyijyi
» Captures tendency of ties to reciprocate one another (reciprocity effect)

- Linear covariates: } >y X

- Captures tendency of y, edges to covary with X, (covariate effect)



ERGM PARAMETRIZATION AND NETWORK STATISTICS /1

If we believe that the frequency of interaction/density IS an
iImportant aspect of the network Q ............ a

We should include

Counts of the number of ties in our model



ERGM PARAMETRIZATION AND NETWORK STATISTICS /2

If we believe that the reciprocity is an important aspect of the
(directed) network 94 ........ ,?

We should include

Counts of @——=€) the number of mutual ties in our model



ERGM PARAMETRIZATION AND NETWORK STATISTICS /3

If we believe that an important aspect of the network is that

0

G/I two edge indicators {i,/} and {i 'k} are
Teeo PN conditionally dependent if {ij} N {i’ k} =2

We should include counts of

S AN

etc



ERGM PARAMETRIZATION AND NETWORK STATISTICS /4

If we believe that the attributes of the actors are
Important (selection effects, homophily, etc)

P

Heterophily/homophily Distance/similarity

We should include counts of




ERGM PARAMETRIZATION AND NETWORK STATISTICS /5

If we believe that (Snijders, et al., 2006)

I two edge indicators {i,k} and {/,j} are conditionally
o dependentif i, (i} cE

. Alt-k-Triangles (/
. ' ‘ b J \ clustered regions *"* S 4D

Alt-k-2-Paths (A2P)




ERGM SPECIFICATION

Model specification involves:
1. choosing the set of network statistics g(y)

a. from minimal: # of edges

b. to satured: one term for every dyad in the network
2. choosing homogeneity constraints on the parameter 6
i.e, for edges:

a. all homogeneus
b. group specific (by sex, age,...)
c. dyad specific

I j/ "'\‘_ ‘\ 4 & = [ @ There is one parameter for each class of network

configurations

AI\}} AMLAAAK= L The corresponding statistic is the number of

configurations in y




ERGM ESTIMATION

*MLE: really hard to compute the constant k(n)

* Simulated ML: relatively “simple” to simulate a sample of m
random networks (via MCMC, also in Bayesian framework) from
an ERGM with a fixed parameter n, (P, ) and thus approximate
and then maximize loglikehood

* Pseudo MLE (PMLE): the same of logit model estimation with
DV Y and covariate matrix given by:

A = {g(l,y(_,,-j)) — Q(Ofy(—ij))}

* PMLE: usually works well in the choice of n,

1,J

Amati V., Lomi A., Mira A. (2018) Social Network Modelling, Annual Review of
Statistics and Its Application, 5, 343-369.



FITTING ERGM TO DATA IN R

= Dedicated statnet package for fitting, simulating models in
ERG form
= Basic call structure:

ergm(y ~ terml(arg) + term2(arg))

= All available terms can be found in:

help("ergm-terms")



FITTING ERGM TO DATA IN R

= statnet employs MCMC methods and MCMC-MLE methods

to perform likelihood-based inference

= What happens when you run ergm?

= First guess at # done using the MPLE

= Simulation of y4,...,y, based on the initial guess

= The simulated sample is used to find # using MLE

= Previous two steps are iterated for good measure (since initial
estimate is likely off)



FLORENTINE FAMILIES: BUSINESS NETWORK

|

estimates and standard errors, for a model

/ "‘ ’ Markov model
v ” 4 containing edges, 2-stars, 3-stars, triangles
Edge = - 4.27 (1.13)*
NV 2-star = 1.09 (0.65)
3-star = -0.67 (0.41)

Triangle= 1.32 (0.65)*

Interpretation:
e Edges occur relatively rarely (negative edge parameter)

@ Business ties tend to occur in triangular clusters
@ Although not significant, star effects suggest that there is
a tendency for a limited number of business partners



MODEL EVALUATION

@ Is the model-class itself able to represent a range of
realistic networks?

— model degeneracy: small range of graphs covered
as

the parameters vary (Handcock 2003)

@ What are the properties of different methods of
estimation?

—e.g, MLE, psuedolikelihood, Bayesian framework

— computational failure: estimates do not exist for
certain observable graphs

@ Can we assess the goodness-of-fit of models?

— appropriate measures and tests
(Besag 2000; Hunter, Goodreau, Handcock 2007)



ERGM: GOODNESS OF FIT

General reasoning:

ERGM (approx) Fitted
class MLE ERGM
exp{n-9g(y)} — ] — exp{7-9(y)}
T \)
yobs Randomly generated

networks Yi. Ya. ...

X U4

How does the observed network is “representative of
the sample Y, Y,, ...?



ADD HEALTH DATA SET

— “Add Health” is a school-based study of the
health-related

behaviors of adolescents in grades 7 to 12.

@ Each nominated up to 5 boys and 5 girls as their friends
@ 160 schools: Smallest has 69 adolescents in grades 7—12

The data: Simulated network,

model A:
School 10: 205 Students

@

8 0 O

O @b

O®
@ .

Circle: Female : LR
Square: Male 0% 0P
Triangle: missing




ADD HEALTH DATA SET

The data: Simulated network,
model B:

School 10: 205 Students

Simulated graph: By grade




ADD HEALTH DATA SET

@ Model A: g(y) contains terms for
o # of edges

e Homophily effects of grade, sex, and race factors
e Main effects of grade, sex, and race factors

Y ,-(.632)i EP;, where EP; =# edges with / shared
partners

@ Model B: g(y) contains terms for
e # of edges
o # of neighbors of the same sex (homophily effect)
o # of 2-stars
o # of triangles



GRAPHICAL GOF: ADD HEALTH DATA

n=205
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See also Kolaczyk (2009) on Lazega’s network of collaborative working ties (case
study 6.5.4, pp. 188-193) for parameter and GOF interpretation)




ERGM EXAMPLE: ACQUAINTANCESHIP UNDIRECTED NETWORK (N= 20)
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PARAMETER ESTIMATES: 1. MARKOV MODEL, 2. SOCIAL CIRCUIT MODEL

Parameter Estimate Standard error Convergence
Markov model "

Edge -2.165 0.716 -0.046

. ot 0.108 0.100 -0.038

. choir -0.044* 0.012 -0.032
Triangle 0.733* 0.104 -0.022

Social circuit model

Edge —3-222 1.270 -0.015
Popularity/Activity (k-stars) ‘1 -;5:* 0.476 -0.015
Multiple triangulation (k-triangles) ; 0.535 -0.016

-0.252* 0.088 -0.025

Multiple connectivity (k-2paths)

- Good convergence for both models (statistics not reported here)

- Edges are uncommon in both models (negative edge parameter, although a large
se in SC model) unless they are part of higher order configuration (as in SC model)

- No high-degree actors (unless involved in triangulation or multiple connectivity

effects)
- Triangulation occurs through the formation of k-triangle bases rather than edges:
sharing several partners tends towards a direct tie



SIMULATION RESULTS: MARKOV MODEL (N=20, EDGES=68, 2-STARS=583)

# of edges # of 2-stars
400 - 400 -
300 - 300 -
)
2 )
(O] |
= ()
g 200 - T 200 -
L o)
L
100 100 A
0 =
8 0
0 20 40 6P3e0\ 100 120 0 250 502930 100012501500
(a) ge (b) Start2

Bimodal distributions

Observed network is not «typical» of the networks by the estimated Markov model




SIMULATION RESULTS: SOCIAL CIR. MODEL (N=20, EDGES=68, 2-STARS=583)

# of edges # of 2-stars
400 - 400 -
300 - 300 -
> >
e 2
£ S
o 200 o 200 -
o o
L I
100 100 -

750 1000 1250 1500

(c) Start2

One modal distributions

Social circuit model is to be preferred for the observed network




MORE ON ERGM AND NETWORK MODELING
Other types of relational data (network):

- Valued / weighted (Generalized ERGM)

- Bipartite data

- Multiplex data

Longitudinal data (Temporal Exponential Random Graph Model, TERGM)

Egocentric network (ergm.ego in R, also simulation of complete networks from
these egodata that are consistent with the observed model statistics)

Other modeling approach:

- Latent network models: assuming the existence of latent (i.e., unobserved)
variables, such that the observed variables have a simple probability
distribution given the latent variables.

- An important class: stochastic blocks models



