Statistical Analysis of Networks

Lecture ERGM

MODELS ACCOUNTING FOR SPECIFIC TIE-FORMATION MECHANISMS

"Small World"

Small World configuration (SW) (Watts and Strogatz, 1998)

- high node connectivity with low average distance among regions of the network: ℓ(G) ≤ ℓ(G_{Rand}), G_{Rand} = random networks of equal size
- high tendency towards clustering, $\Gamma(G) \gg \Gamma(G_{Rand})$

[Random graph (Erdos & Renyi, 1959)]

Scale free networks model (or Barabasi-Albert model, 1999) based on:

- Preferential Attachment (PA) tie formation mechanism \Rightarrow the probability that a new node will be connected to *i* is proportional to the degree d_i
- degree distribution P(x) with fat tails approximating a power law with parameter α (2 < α < 3)
 - **1** Standard (de Solla Price, 1963): $P(x) = Cx^{-\alpha}$
 - 2 Truncated (Clauset *et al.*, 2009): $P(x) = \frac{\alpha 1}{x_{min}} \left(\frac{x}{x_{min}}\right)^{-\alpha}$

"Scale-free"

COMMON FEATURES OF INTEREST

Beyond nodal and dyadic attributes, **many real networks** exhibit the following features:

- Reciprocity of ties
- Degree heterogeneity among actors Activity, Popularity
- Homophily by actor attributes Higher propensity to form ties between actors with similar attributes
- Transitivity of relationships Friends of friends have a higher propensity to be friends
- Equivalence of nodes

Some nodes may have identical/similar patterns of relationships

Network models

"A good [statistical network graph] model needs to be both estimable **from data** and a **reasonable representation of that data**, to be theoretically plausible about the **type of effects that might have produced the network**, and to be amenable to examining which **competing effects** might be the best explanation of the data." (Robins and Morris, 2007)

Statistical modeling: evaluation and fitting of network models

- Testing: evaluation of competing theories of network formation
- Estimation: evaluation of parameters in a presumed network model
- Description: summaries of main network patterns
- Prediction: prediction of missing or future network relations

Random graph and random matrix

- Let G = (V, E) be a graph. If E (and perhaps V) is a random set, then G is a random graph
 - Can consider G to be a random variable on some set **G** of possible graphs ("multinomial" representation)
- Let Y be the adjancency matrix of random graph G, then Y is a random matrix

$$Y \equiv \begin{bmatrix} Y_{ij} \end{bmatrix}_{nxn} \qquad Y_{ij} = \begin{cases} 1 & \text{relationship from actor } i \text{ to actor } j \\ 0 & \text{otherwise} \end{cases}$$

valued and signed ties can be considered

- a N = n(n - 1) array of binary random variables

 Y represents a random network with nodes the actors and edges the relationship

• The basic problem of stochastic modeling is to specify a distribution for Y i.e., P(Y = y)

STATISTICAL MODELS FOR NETWORK DATA

- Statistical model for the ties in a network But
- The overall structure the network is evident

- What kind of **structural** elements can be included in a model for the tie variable ?

(MAIN) NETWORK DEPENDENCIES

- 1. *Reciprocation*: dependencies between Y_{ij} and Y_{ji}
- 2. Homophily: tendency of similar actor to relate to each other (assortative mixing by attribuite)
- 3. Transitivity: $Y_{ij} = Y_{jh} = 1$ will lead to increase $P(Y_{ih} = 1)$ (triad/triangle closure: "friends of my friends are my friends")
- 4. *Degree differentials:* some actors are higly connected and others have only few connections (*sociality*)

Problem: Type 2, 3, 4, and partially 1: all can lead to similar macro signatures (network configurations, e.g. "clustering")

So, for three actors of the same type:

Cycle-closing tie may form because of *transitivity* but also *homophily* Aim: to be able to fit these terms simultaneously and identify the effects of each mechanism on the overall outcome.

MODEL CONSTRUCTION - GENERAL IDEA

The probability of observing a specific graph (Y_{ob}) is **dependent** on **local** characteristis of the graph $(f(Y_{ob}))$

EXPONENTIAL RANDOM GRAPH (ERGM)

Probability distribution of the set of possible graphs

$$P(Y = y) = \frac{exp\left\{\sum_{k=1}^{K} \theta_k g_k(y)\right\}}{c(\theta)}$$
 network statistics (network feutures)

where $\theta_{1,2...k}$ are parameters $g_{1,2...k}(y)$ are statistics, and $c(\theta)$ is a normalizing constant:

$$c(\theta) = \sum_{y \in \mathcal{Y}} exp\left\{\sum_{k=1}^{K} \theta_k g_k(y)\right\}$$

In other words,

$$P(Y = y) \propto \theta_1 g_1(y) + \theta_2 g_2(y) + \theta_3 g_3(y) + \dots + \theta_k g_k(y)$$

Intuition: the ERGM places more/less weight on graphs with certain features, as determined by θ, g

network statistics = number of local congurations of a specific type

ERGM PROBABILITY

$$P(Y = y) = \frac{exp\left\{\sum_{k=1}^{K} \theta_k g_k(y)\right\}}{c(\theta)}$$

- The probability of a graph x is an exponential family model.
- Parameter vector θ (weights), statistics vector (counts of ties, reciprocal ties, transitive triplets, degree distribution, homophilic ties, ...)
- ► The probability of a graph thus depends on the structures that it includes, given the parameters.
- The following two graphs have a different probability depending on the terms and parameters of the model:

ERGM specifies the probability of the entire network (the left hand side), as a function of terms that represent network features we hypothesize may occur more or less likely than expected by chance (the right hand side)

MODEL CONSTRUCTION - GENERAL FRAMEWORK

- **1** Step 1: each network tie is a random variable.
- Step 2: a dependence hypothesis is proposed, defining contingencies among the tie variables.
- Step 3: the dependence hypothesis implies a specific form to the model.
- Step 4: simplification of parameters through homogeneity or other constraints.
- Step5: estimate and interpret parameters

ERGMs: superficially resembling linear regression or GLMs E.g. friendship: are there more reciprocated ties than would be expected by chance ?

Model will include a density parameter (randomness occurance of ties) and a reciprocation parameter

MLE will be the parameter value such that the most probable degree of reciprocation is that which occurs in the observed network

TIES AS RANDOM VARIABLES

We model tie variables: $\mathbf{Y} = [Y_{ij}]$ $Y_{ij} = 1$ if *i* has a tie to *j*, 0 otherwise The realization of \mathbf{Y} is denoted by $y = [y_{ij}]$

Random graph and random directed graphs on a node set $N = \{1,2,3,4\}$

3

Directed graph

Tie variables:

 $Y_{12}, Y_{13}, Y_{14}, Y_{23}, Y_{24}, Y_{34}$

Tie variables:

$$Y_{12}, Y_{13}, Y_{14}, Y_{23}, Y_{24}, Y_{34}, Y_{21}, Y_{31}, Y_{41}, Y_{32}, Y_{42}, Y_{43}$$

MODEL: STATISTICAL ANALYSIS

- Estimate parameters of the process
 - Joint estimation of multiple, possibly correlated, effects
- Inference
 - Is a certain parameter significantly different from zero?
 - Uncertainty in parameter estimates
- Goodness of fit
 - Traditional diagnostics
 - Model fit (BIC, AIC)
 - Estimation diagnostics (MCMC performance)
 - Network-specific goodness-of-fit
 - Network statistics already in the model as covariates
 - Network properties not in the model

ERGM: SOME NOTATIONS

Probability distribution of the set of possible graphs

$$P(Y = y) = \frac{exp\left\{\sum_{k=1}^{K} \theta_k g_k(y)\right\}}{c(\theta)} \qquad \qquad \text{probability} \\ \text{of a single graph}$$

. . . .

Since each network tie is a random variable, the goal is to re-express the probability of the graph in terms of the probabilities of an individual tie:

- this gives a "local" view of the model

- and some insight into what the coefficients mean

In order to re-express the probability of the graph in terms of the probabilities of a tie, we need to introduce some notation:

•
$$Y_{ij}^+ = \{Y \text{ with } Y_{ij} = 1\}$$
 the graph w/ the (i, j) th dyad set to 1

- $Y_{ij}^- = \{Y \text{ with } Y_{ij} = 0\}$ the graph w/ the (i, j)th dyad set to 0
- $Y_{ij}^c = \{Y_{kl} \text{ with } (k, l) \neq (i, j)\}$ all dyads except (i,j)

ERGM: THE CONDITIONAL PROBABILITY OF A LINK

A simple logical re-expression of $P(Y = y) = \frac{exp\left\{\sum_{k=1}^{K} \theta_k g_k(y)\right\}}{c(\theta)}$

$$\Pr(Y_{ij} = 1 | Y_{ij}^c) = \frac{\Pr(Y = y_{ij}^+)}{\Pr(Y = y_{ij}^+) + \Pr(Y = y_{ij}^-)}$$
$$= \frac{\exp\{\theta^T g(y_{ij}^+)\}}{\exp\{\theta^T g(y_{ij}^+)\} + \exp\{\theta^T g(y_{ij}^-)\}}$$

Note:

the costant term $c(\theta)$ has canceled out, but . . . an even simpler expression, in terms of the odds, can be used

ERGM : the conditional log-odds probability of a link

Reminder: $logit(p) = log\left(\frac{p}{(1-p)}\right)$

• Given,
$$\Pr(Y_{ij} = 1 | Y_{ij}^c) = \frac{\exp\{\theta^T g(y_{ij}^+)\}}{\exp\{\theta^T g(y_{ii}^+)\} + \exp\{\theta^T g(y_{ii}^-)\}}$$

Then

$$\log \left\{ \frac{\Pr(Y_{ij} = 1 | Y_{ij}^c)}{\Pr(Y_{ij} = 0 | Y_{ij}^c)} \right\} = \theta^T [g(y_{ij}^+) - g(y_{ij}^-)]$$
$$= \theta^T \delta(y_{ij})$$

Note: $\delta(y_{ij})$ is known as the change statistic

- Useful implication: each unit change in g_k for (i, j) tie present (versus absent) increases the conditional log-odds of (i,j) by θ_k
- θ is the impact of the covariate on the log-odds of a tie [Prob= odds/(1+odds)]

An undirected network and graph:

	a	b	с	d	e	f
a	0	1	1	1	0	1
b	1	0	0	0	0	1
с	1	0	0	1	0	1
d	1	0	1	0	1	0
e	0	0	0	1	0	0
f	1	1	1	0	0	0

What if ab = 0 instead of 1?

2-stars {b,a,c}, {b,a,d} , {b,a,f} and {a,b,f} would disappear, and triangle {a,b,f} also!

= Change scores

Dyad	value	density	#2-star	#triangle
ab	1	1	3+1	1
ac	1	1	3+2	2
ad	1	1	3+2	1
ae	0	1	4+1	0
af	1	1	3+2	2
bc	0	1	2+3	2
bd	0	1	2+3	1
be	0	1	2+1	0
bf	1	1	1+2	1
cd	1	1	2+2	1
ce	0	1	3+1	1
cf	1	1	2+2	1
de	1	1	2+0	0
df	0	1	3+3	2
ef	0	1	1+3	0

Types of covariates - G(Y) terms in the model

What creates heterogeneity in the probability of a tie being formed?

ERG TYPES OF STATISTICAL MODELS (BASED ON DIFFERENT DEPENDENCE HYPOTHESES) /1

Exponential Random Graph Model – ERGM class (also known as p* model, especially in SNA literature)

dependency generated by specific structural configurations, including:

- Erdős-Rény (Bernoulli) model (edge independence)
- *p*₁ *model* (dyad independence with attributes and reciprocity, Holland and Leinhardt, 1981)

$$P(Y = y) = \frac{\exp\{\rho \sum_{i < j} y_{ij} y_{ji} + \theta \sum_{i,j} y_{ij} + \sum_{i} \alpha_{i} \sum_{j} y_{ij} + \sum_{j} \beta_{j} \sum_{i} y_{ij} \}}{c(\rho, \alpha, \beta, \theta)}$$

where

- θ controls the expected number of edges
- ρ represent the expected tendency toward reciprocation
- α_i productivity of node *i*; β_j attractiveness of node *j*

ERG TYPES OF STATISTICAL MODELS (BASED ON DIFFERENT DEPENDENCE HYPOTHESES) /2

Exponential Random Graph Model – ERGM class (also known as p* model, especially in SNA literature)

dependency generated by specific structural configurations, including:

Markov Random Graph model (Markov dependence: edges share a vertex, Frank and Strauss, 1986)

MARKOV RANDOM GRAPH MODEL (BASIC CONFIGURATIONS FOR UN/DIRECTED GRAPHS)

ERG TYPES OF STATISTICAL MODELS (BASED ON DIFFERENT DEPENDENCE HYPOTHESES) /3

Exponential Random Graph Model – ERGM class (also known as p* model, especially in SNA literature)

dependency generated by specific structural configurations, including:

Social circuit model (dependence might arise from the presence of other edges - partial conditional dependence)

Tie variables Y_{ij} and Y_{kl} are conditionally independent for distinct *i*, *j*, *k*, *l* unless:

INTERPRETATION OF STAR AND TRIAD EFFECTS

 k-stars: number of subgraphs with one/two/three... endpoints (in/out in directed ties) with respects to node i

interpretation:

 tendency of edges " to stick together" on endpoints ("edge clustering")

- Most basic terms for endogeneous clustering
- each term counts triads of a given type (triangles, cycles, ...)

interpretation:

tendency towards transitive closure

ERGM PARAMETRIZATION (DIRECTED NETWORK)

- ERG form is just a way of writing models to use it, we must choose a set of terms (t)
- Some basics (dyad independence terms):
 - Edge term: $\sum_{i} \sum_{j} y_{ij}$
 - · Captures overall tendency of ties to form/not (density effect)
 - Row-sum term: ∑_iy_{ij}
 - · Captures net tendency to send ties (sender/expansiveness effect)
 - Col-sum term: $\sum_{j} y_{ij}$
 - · Captures net tendency to receive ties (receiver/popularity effect)
 - Mutuality term: $\sum_{i}\sum_{j>i} y_{ij}y_{ji}$
 - · Captures tendency of ties to reciprocate one another (reciprocity effect)
 - Linear covariates: $\sum_{i} \sum_{j} \mathbf{y}_{ij} X_{ij}$
 - Captures tendency of y_{ii} edges to covary with X_{ii} (covariate effect)

If we believe that the frequency of interaction/density is an important aspect of the network

We should include

Counts of the number of ties in our model

If we believe that the **reciprocity** is an important aspect of the (directed) network

We should include

If we believe that an important aspect of the network is that

two edge indicators $\{i,j\}$ and $\{i',k\}$ are conditionally **dependent** if $\{i,j\} \cap \{i',k\} \neq \emptyset$

We should include counts of

friends meet through friends; clustering; etc

If we believe that the **attributes** of the actors are important (selection effects, homophily, etc)

We should include counts of

Heterophily/homophily

Distance/similarity

If we believe that (Snijders, et al., 2006)

two edge indicators $\{i,k\}$ and $\{l,j\}$ are conditionally **dependent** if $\{i,l\}$, $\{l,j\} \in E$

ERGM SPECIFICATION

Model specification involves:

- 1. choosing the set of network statistics g(y)
 - a. from minimal: # of edges
 - b. to satured: one term for every dyad in the network
- choosing homogeneity constraints on the parameter θ
 i.e, for edges:
 - a. all homogeneus
 - b. group specific (by sex, age,...)
 - c. dyad specific

- There is one parameter for each class of network configurations
- The corresponding statistic is the number of configurations in y

ERGM ESTIMATION

•MLE: really hard to compute the constant $\kappa(\eta)$

• Simulated ML: relatively "simple" to simulate a sample of *m* random networks (via MCMC, also in Bayesian framework) from an ERGM with a fixed parameter η_0 (P_{η_0}) and thus approximate and then maximize loglikehood

• Pseudo MLE (PMLE): the same of logit model estimation with DV Y and covariate matrix given by:

 $\Delta = \left\{ g(1, \mathbf{y}_{(-ij)}) - g(0, \mathbf{y}_{(-ij)}) \right\}_{i,j}$

• PMLE: usually works well in the choice of η_0

Amati V., Lomi A., Mira A. (2018) Social Network Modelling, *Annual Review of Statistics and Its Application*, 5, 343-369.

FITTING ERGM to data in $\ensuremath{\mathsf{R}}$

- Dedicated statnet package for fitting, simulating models in ERG form
- Basic call structure:

ergm(y ~ term1(arg) + term2(arg))

All available terms can be found in:

```
help("ergm-terms")
```

FITTING ERGM to data in $\ensuremath{\mathsf{R}}$

- statnet employs MCMC methods and MCMC-MLE methods to perform likelihood-based inference
- What happens when you run ergm?
 - First guess at θ done using the MPLE
 - Simulation of y_1, \ldots, y_n based on the initial guess
 - The simulated sample is used to find θ using MLE
 - Previous two steps are iterated for good measure (since initial estimate is likely off)

FLORENTINE FAMILIES: BUSINESS NETWORK

Interpretation:

- Edges occur relatively rarely (negative edge parameter)
- Business ties tend to occur in triangular clusters
- Although not significant, star effects suggest that there is a tendency for a limited number of business partners

MODEL EVALUATION

- Is the model-class itself able to represent a range of realistic networks?
 - model degeneracy: small range of graphs covered as

the parameters vary (Handcock 2003)

- What are the properties of different methods of estimation?
 - e.g, MLE, psuedolikelihood, Bayesian framework
 - computational failure: estimates do not exist for certain observable graphs
- Can we assess the goodness-of-fit of models?

appropriate measures and tests
 (Besag 2000; Hunter, Goodreau, Handcock 2007)

ERGM: GOODNESS OF FIT

General reasoning:

How does the observed network is "representative of the sample Y_1 , Y_2 , ...?

ADD HEALTH DATA SET

 "Add Health" is a school-based study of the health-related behaviors of adolescents in grades 7 to 12.

- Each nominated up to 5 boys and 5 girls as their friends
- 160 schools: Smallest has 69 adolescents in grades 7–12

The data:

Simulated network, model A:

School 10: 205 Students

ADD HEALTH DATA SET

The data:

School 10: 205 Students

Simulated network, model B:

ADD HEALTH DATA SET

- Model A: g(y) contains terms for
 - # of edges
 - Homophily effects of grade, sex, and race factors
 - Main effects of grade, sex, and race factors
 - ∑_i(.632)ⁱEP_i, where EP_i =# edges with *i* shared partners
- Model B: g(y) contains terms for
 - # of edges
 - # of neighbors of the same sex (homophily effect)
 - # of 2-stars
 - # of triangles

GRAPHICAL GOF: ADD HEALTH DATA

See also Kolaczyk (2009) on Lazega's network of collaborative working ties (case study 6.5.4, pp. 188-193) for parameter and GOF interpretation)

ERGM EXAMPLE: ACQUAINTANCESHIP UNDIRECTED NETWORK (N= 20)

PARAMETER ESTIMATES: 1. MARKOV MODEL, 2. SOCIAL CIRCUIT MODEL

Parameter	Estimate	Standard error	Convergence
Markov model	-2.165*	0.716	-0.046
Edge 2-star	0.108	0.100	-0.038
3-star	-0.044*	0.012	-0.032
Triangle	0.733*	0.104	-0.022
Social circuit model	-2.232	1.270	-0.015
Edge Popularity/Activity (<i>k</i> -stars)	-0.165	0.476	-0.015
Multiple triangulation (k-triangles)	1.355*	0.535	-0.016
Multiple connectivity (<i>k</i> -2paths)	-0.252*	0.088	-0.025

- Good convergence for both models (statistics not reported here)
- Edges are uncommon in both models (negative edge parameter, although a large se in SC model) unless they are part of higher order configuration (as in SC model)
- No high-degree actors (unless involved in triangulation or multiple connectivity effects)
- Triangulation occurs through the formation of *k*-triangle bases rather than edges: sharing several partners tends towards a direct tie

SIMULATION RESULTS: MARKOV MODEL (N=20, EDGES=68, 2-STARS=583)

SIMULATION RESULTS: SOCIAL CIR. MODEL (N=20, EDGES=68, 2-STARS=583)

Social circuit model is to be preferred for the observed network

More on ERGM and Network modeling

Other types of relational data (network):

- Valued / weighted (*Generalized ERGM*)
- Bipartite data
- Multiplex data

Longitudinal data (*Temporal Exponential Random Graph Model, TERGM*)

Egocentric network (ergm.ego in R, also simulation of complete networks from these egodata that are consistent with the observed model statistics)

Other modeling approach:

- Latent network models: assuming the existence of latent (i.e., unobserved) variables, such that the observed variables have a simple probability distribution given the latent variables.
- An important class: stochastic blocks models