
Block 4.3

Survival analysis 

• Evaluating the performance of a survival model

• An introduction to competing risks

• Bias in Survival 
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Some steps should be considered in developing prediction models:

Validity
Presentation/Clinical 

Implementation

Possibly on external dataset !!!

Defining

problem
Coding/measuring

features/variables
Checking data 

quality

Model’s 

formula

Parameters/Hyperparameters 

estimation
Performance

INITIAL DATA ANALYSIS !!!

 Selection of variables

 Functional Forms 

 Interactions
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Survival model discrimination: time dependent ROC curves

The standard approach of ROC curve considers a binary event (disease) status and marker value for an 

individual as fixed over time.

In survival setting, individuals who are disease-free earlier may develop the disease later along the study 

follow-up. 

Thus, an ROC curve as a function of time is more appropriate. 

𝑀𝑖 : risk score for individual i, (i = 1, …, n), for example from the Cox model: 𝑥𝑖𝛽

𝐷𝑖 t : disease status at time t, taking values 1 or 0 

𝑆𝑒𝑛𝑠 𝑐, 𝑡 = 𝑃 𝑀𝑖 > 𝑐| 𝐷𝑖 𝑡 = 1

𝑆𝑝𝑒𝑐 𝑐, 𝑡 = 𝑃 𝑀𝑖 ≤ 𝑐| 𝐷𝑖 𝑡 = 0

For a given threshold c, the time-dependent sensitivity and specificity can be defined respectively by:
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The corresponding ROC curve for any time t plots Sens(c,t) against 1-Spec(c,t) for thresholds c and the 

time-dependent AUC is defined by: 

The AUC(t) is the probability that the estimated risk scores from a randomly selected pair of diseased and 

non-diseased individuals at time t are correctly relatively ordered. 

1. Cases: subjects who experience the event before time t and controls 

those who remain event-free through time t [cumulative/dynamic].

2. Cases: subjects who experience an event at time t ; controls can 

be compared to incident cases and are subjects with T>t

[incident/dynamic]

𝐴𝑈𝐶 𝑡 = න ሿ𝑆𝑒𝑛𝑠 𝑐, 𝑡 𝑑[1 − 𝑆𝑝𝑒𝑐 𝑐, 𝑡 ൯𝐴𝑈𝐶 𝑡 = 𝑃(𝑀𝑖 > 𝑀𝑗|𝑇𝑖 ≤ 𝑡, 𝑇𝑗 > 𝑡



Block 4.3

Assessment of model calibration

In the context of survival analysis, calibration refers to the agreement between predicted probabilities and 

observed event rates or frequencies of the outcome within a given duration of time. 

1. Subjects are divided into strata based on 

the predicted probability of the occurrence 

of the event by time t. 

2. Within each stratum, the mean predicted 

probability of the occurrence of the event by 

time t is computed. 

3. Then, within each stratum, the observed 

probability of the event by time t is computed 
by the Kaplan‐Meier estimator for the subjects 

in that stratum. 

4. The mean predicted and observed 

probabilities can then be compared across 
strata. 
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Initial checklist 

• Target population: who would be eligible to use the model and whatever 

inclusion/exclusion criteria

• Time origin: baseline time zero (if there is time involved!) 

• Target of prediction: event/parameter of interest

• Competing risks events after which the event of interest cannot occur or is not

of interest any longer

• Prediction time horizon: how far in time from the baseline the prediction is

projected (if there is time involved!) 

• Predictor/Prognostic variables: list of the predictors/features [measured at

baseline]  (how they were measured / context !)
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Competing risks

• Cancer specific death (with the competing event of death from other causes) 

• Return-to-work after traumatic injury (with the competing event of death)
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Clinical research studies often record the time to more than one “first” 

outcome:

Examples: death, cardiovascular disease (CVD), end stage renal disease 

(ESRD)

Situations with more than one possible type of event for each subject may be 

generally described by multistate models (that also allow for recurrent events).

The simplest example of a multistate model is the one of competing risks:

Alive out 

of hosp

HF re-hosp

Death
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A competing event is one that precludes* the occurrence of the event of 

interest:

After transplant or death, patient is no longer at risk for primary outcome of 

interest (ESRD or CVD)

Competing risks arise from different causes of failure that are considered as 

competing events.

We may model competing risks by a process with one transient state 0, 

corresponding to alive and free of the event and k absorbing states, say 

corresponding to event by cause h (h= 1,. . . ,k) 

* Note that this is different from censoring, which (only) make the event of interest 

impossible to observe…
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Remind: the distinctive feature of survival data is censoring

Consider one event of interest: death. 

Time to the event is censored for subjects still alive at the end of their observation.

Basic assumption: non-informative censoring. At any given point in time subjects who remain have the 

same future risk for the event of interest as censored subjects

T = survival time

C =censoring time 

Tobs =min(T,C)

 iii CTI  For each subject i we observe a pair of values 𝑇𝑖 , 𝛿𝑖

If a patient experiences a competing event, standard survival analysis methods would treat that patient 

as censored for the outcome of interest (e.g., ESRD or CVD).

? Why this could be a problem ?
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Particularly in the presence of strong* competing risks, as with frail or elderly 

populations, standard survival predictions may substantially overestimate the 

absolute risk of the event of interest because subjects with a competing (and 

thus censored) event are treated as if they could experience the event of 

interest [in the time-interval of the censoring date].

Such predictions have been said to refer to the risk of failing from the event of 

interest in a virtual world where the competing risk is absent.

* i.e. high incidence

The use of the (1-)Kaplan-Meier survival function results in estimates of 

incidence that are biased upward, regardless of whether the competing 

events are independent of one another (in any case an assumption untestable from the data). 
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Therefore, the correct cumulative incidence function for the k-th cause is 

defined as:

𝐶𝐼𝐹𝑘 𝑡 = 𝑃 𝑇𝑘 ≤ 𝑡

as the probability of experiencing the k-th event before time t and before the 

occurrence of a different type of event.

Property:

• the sum of the CIF of each of the individual outcomes will equal the CIF 

estimates of the incidence of the composite outcome consisting of all of the 

competing events.

𝑆 𝑡 = 𝑃 𝑇 > 𝑡 = 1 −෍

𝑘=1

𝐽

ሻ𝐶𝐼𝐹𝑘(𝑡
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Note that 𝐶𝐼𝐹𝑘 𝑡 is different from 1 − 𝐾𝑀𝑘 𝑡 : 

𝐶𝐼𝐹𝑘 𝑡 = 𝑃 𝑇 ≤ 𝑡, 𝑐𝑎𝑢𝑠𝑒 = 𝑘 = න
0

𝑡

𝑆 𝑢 ℎ𝑘 𝑢 𝑑𝑢

specific hazard for the k-th event of interest

not having failed from any other event before

If we compute 1-𝐾𝑀𝑘 𝑡 for each event of interest, the sum of the 1-𝐾𝑀𝑘 𝑡 will exceed that of 
the KM of the composite end point…     

1 − 𝐾𝑀𝑘 𝑡 = න
0

𝑡

𝑆 𝑢 𝑘ℎ𝑘 𝑢 𝑑𝑢

Survival estimate censoring pts that experience competing risks

(Aalen-Johansen estimator)
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Patient
no.

Follow up 

time

Event
type

No. 
at risk

HF re-
hosp.

1 10 HF re-hosp 10 1

2 20+ Alive 9 0

3 35 HF re-hosp 8 1

4 40 Death 7 0

5 50+ Alive 6 0

6 55 HF re-hosp 5 1

7 70 Death 4 0

8 71 Death 3 0

9 80 HF re-hosp 2 1

10 82+ Alive 1 0

KM:

𝑆 𝑡𝑖 = 𝑆 𝑡𝑖−1 1 −
𝑑𝑖
𝑖𝑛𝑡

𝑛𝑖

𝑑𝑖
𝑖𝑛𝑡 HF re-hosp in 𝑡𝑖

Censoring deaths
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x  1-KM(re-hosp)

* 1-KM(death)

CIF:

෍

𝑡𝑗<𝑡𝑖

𝑑𝑖
𝑖𝑛𝑡

𝑛𝑖
𝑆𝑡𝑜𝑡 𝑡𝑖−1
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Death (CR)

1.2%

0.1%

2.4%

CIF(t) : probability at time t of re-HF 

hosp. for a patient survived

until t

1-KM(t) : probability at time t of re-HF 

hosp. if death «does not exist»

Real data set: death is the competing risk for re-HF hospitalization
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Cause specific hazard function

ℎ𝑗 𝑡 = lim
∆𝑡→0

1

∆𝑡
𝑃 𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝑌 = 𝑗|𝑇 ≥ 𝑡

the rate of (only) events by cause j, in small time intervals 𝑡 + ∆𝑡, among those who have not 

yet died by any cause

𝐻 𝑡 = න
0

𝑡

ℎ 𝑡 𝑑𝑡 𝑆 𝑡 = 𝑒 ሻ−𝐻(𝑡 One-to-one relationship between hazard and cumulative 

incidence

𝐻𝑗 𝑡 = න
0

𝑡

൯𝑆 𝑡 ℎ𝑗(𝑡 𝑆 𝑡 = 𝑒
− σ𝑗 𝐻𝑗 𝑡 No longer a one-to-one correspondence

*To maintain the correspondence a «subdstribution» hazard approach has been also

introduced (Fine and Gray)
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Cause specific hazard regression models

Quite common to fit Cox models for cause specific hazards: 

To go from the J cause specific hazards to the cumulative incidence an approach formalized in 

multi-state models is used :  

ℎ𝑗 𝑡|𝑋 = 𝑒𝑥𝑝 𝜷𝑿 ℎ0𝑗 𝑡

baseline hazard for the jth cause 

Separate Cox cause-specific models for each transition and then

probabilities to be in each state could be computed
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Ignoring the competing risk overestimates the probability of the event of interest. 

This problem is specifically related to the cumulative risk, not to the cause-specific hazard rate. 

The competing risk issue comes about when you want to address the cumulative risk of a 

particular event, in which case you probably want to look at the cumulative risks of all types of events.  

When fitting regression models in the presence of competing risks, researchers can choose from different 

families of models: 

• modeling the effect of covariates on the cause-specific hazard of the outcome

estimate the effect of the covariates on the rate of occurrence of the outcome in those 

subjects who are currently event free 

• modeling the effect of covariates on the cumulative incidence function

estimate the effect of covariates on the absolute risk of the outcome over time (Fine and Gray)

• multi-state models : cause-specific transitions + cumulative incidence estimates

SUMMARY
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Initial checklist 

• Target population: who would be eligible to use the model and whatever 

inclusion/exclusion criteria

• Time origin: baseline time zero (if there is time involved!) 

• Target of prediction: event/parameter of interest

• Competing risks events after which the event of interest cannot occur or is not

of interest any longer

• Prediction time horizon: how far in time from the baseline the prediction is

projected (if there is time involved!) 

• Predictor/Prognostic variables: list of the predictors/features [measured at

baseline?]  (how they were measured / context !)
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Bias in the survival setting

When using non-experimental data to carry out causal investigations, several potential sources of bias

arise, in particular:

(a) Selection bias Do the data capture the target population?

(b) Immortal time bias Is exposure status assigned correctly?

Objective: to compare treated vs. not treated

Start of follow upStart of treatment

It may be the case that individuals who have longer history of treatment (i.e. larger (t0 - tx )) are 

very different from those with a short history…(for example, higher probability to include long-term 

users)

selection bias

study population

≠target population



Block 4.3

2003: RCT, Women’s Health Initiative: ITT of 

initiators compared with non-initiators: HR=1.24.
2006: Observational study, Nurses Health Study 

current HRT users compared with never users: 
HR=0.68.

Was the discrepancy due to unmeasured confounding?

2008: New analysis of 

the Nurses Health Study 

initiators compared with 

non-initiators: HR=1.20

The 2006 observational study did not target the same population, nor causal effect, as the RCT

Selection Bias
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Start of follow up Start of treatment/exposure change

If this information is used to assign individuals as treated/not treated from t0, 

those who are seen to have received treatment have a guaranteed survival 

time of at least tx .

This makes them immortal for a chunk of their follow-up time (Suissa, 2007)

Immortal time bias !

These errors do not usually arise in RCTs since protocols well define: 

population, treatment, follow-up, etc.

Suissa. Immortal time bias in observational studies of drug effects. Pharmacoepidemiol Drug Saf 2007; 241–9

Immortal time Bias
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The framework of target trial emulation (TTE) offers guidance for avoiding errors in data manipulation 

and analysis of observational data that may lead to biased results [Hernan and Robins, 2016].

The implementation of TTE is not however as straightforward as it. 

Hernan and Robins. Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available. American Journal of Epidemiology, 
2016, 183, 758–764

It consists of 3 iterative steps:

Advantage: selection and 

immortal time bias are 

avoided !!!

(Check with the data you have!)
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van Walraven C et al., Time-dependent bias was common in survival analyses published in leading clinical journals. J Clin Epidemiol. 2004 Jul;57(7):672-82.

In survival analysis, can occur that variables (exposure) in the model change 

value after the start of patient observation.

If a variable (exposure) change value during the follow up and is also baseline 

immeasurable and is treated as time-fixed at baseline, a time-dependent (TD) 

bias is introduced. 

Baseline immeasurable TD variables: 

cannot be measured at baseline and indicate what happened to 

patients during observation. Biased estimates can occur if they are 

analyzed as fixed variables.

A further note on time-dependent covariates/bias

https://www.ncbi.nlm.nih.gov/pubmed/?term=van%20Walraven%20C%5bAuthor%5d&cauthor=true&cauthor_uid=15358395
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Index visit (baseline): first evaluation with 

available LVEF (left ventricular ejection fraction) 

and a coded value of NYHA class (score of HF 

severity). 

Nov. 2009 Dec. 2015 Dec. 2016

Enrolment period

End of fup

HF  (Heart Failure) patients enrolled from 

2009  to 2015. 

HF progression: worsening of the disease

along follow up («exposure»).

Impact of HF progression on mortality?
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HF progression: 

(i) Hospital admission for HF or 

(ii) Clinical worsening due to the presence of at least 2 criteria compared to the levels 

observed at the index visit: a ≥1 increase in NYHA class or a ≥10 points decrease in LVEF 

or a ≥50% (and in any case > 25 mg) increase in furosemide dosage or a new 

combination of diuretics (thiazides + furosemide)

whatever came first.
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If we consider HF 

progression as a time 

fixed covariate at

baseline, the effect of 

such disease

worsening appears

protective with respect

to the risk of death !

Immortal/time dep bias !

Impact of HF progression on mortality: wrong approach
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If instead we treat HF progression

as a time-dependent covariate, 

the effect of such disease

worsening appears a risk factor

with respect to the risk of death, 

as it is expected*. 

S.M. Snapinn, Q. Jiang, B. Iglewicz

“Illustrating the Impact of a Time-Varying 

Covariate With an Extended Kaplan-Meier 

Estimator”, The American Statistician, Vol. 59, 

No. 4, 2005

Technical details of the estimation

procedure:  

*There is no standard test to compare directly these survival curves (patients can contribute to different curves at different times during follow-up)

Impact of HF progression on mortality: correct approach


